- Users will be able to input predictor values of their choosing
- Once input values are set, users click a submit button
- Once values are submitted, the user receives predicted Ozone level as output
8/9/2020
The following script displays the linear model used to predict Ozone.
data(airquality)
airquality <- subset(airquality, select = -(Day))
fit <- lm(Ozone ~ ., data = airquality)
summary(fit)$coefficients
## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -58.05383883 22.97114118 -2.527251 1.297198e-02 ## Solar.R 0.04959683 0.02345827 2.114258 3.683836e-02 ## Wind -3.31650940 0.64578918 -5.135591 1.286145e-06 ## Temp 1.87087379 0.27363201 6.837189 5.337230e-10 ## Month -2.99162786 1.51592267 -1.973470 5.104492e-02