## [1] 4683 4457 4102 4590 4839 4820 4928 4605 4457 4952 4784 5332 5200 4910 4617
## [16] 3997 3919 3395 3536 3181 2746 2722 2840 2908 2959 3179 3349 3382 3289 3013
## [31] 2781 3247 4107 4803 4881 5681 4858 4319 5322 5560 5829 5719 6061 6120 5822
## [46] 5738 5717 5847 6203 6033 6041 6299 6533 6744 7158 7127 7246 7119 7214 7101
## [61] 7167 7302 7392 7316 7483 6647 6713 7229 7767 7626 7452 7061 7514 7656 7683
## [76] 5738 7779 7417 7687 7623 7380 7288
Overall, the number of baptized girls saw an upward trend. Before surging more than 3-fold from around 2500 in 1660s to around 7500 in 1700s, the number had signigicantly dropped by a half from approximate 5000 in 1930.
There had been a slight decline overtime for number of newborn male during this time period. However, babyboys still outnumbered baby girls.
Is more boys than girls? Answer is TRUE
arbuthnot <- arbuthnot %>%
mutate(total = boys + girls)
arbuthnot <- arbuthnot %>%
mutate(boyprob = boys/ total)
arbuthnot <- arbuthnot %>%
mutate(moreboys = boys >girls)
head(arbuthnot)## # A tibble: 6 x 6
## year boys girls total boyprob moreboys
## <int> <int> <int> <int> <dbl> <lgl>
## 1 1629 5218 4683 9901 0.527 TRUE
## 2 1630 4858 4457 9315 0.522 TRUE
## 3 1631 4422 4102 8524 0.519 TRUE
## 4 1632 4994 4590 9584 0.521 TRUE
## 5 1633 5158 4839 9997 0.516 TRUE
## 6 1634 5035 4820 9855 0.511 TRUE
A ‘present’ reports data from 1940 to 2002 undercrosstab format with 3 columns and 63 rows.
## year
## Min. :1940
## 1st Qu.:1956
## Median :1971
## Mean :1971
## 3rd Qu.:1986
## Max. :2002
## [1] 63 3
## [1] "year" "boys" "girls"
In ‘present’ dataset, the norm is as same as in ‘arbuthnot’, while the preset data set has beem a much higher in magnitude.
present <- present %>%
mutate(more_boys = boys > girls)
# #compare norm with arbunthnot
sum(present$boys)>sum(present$girls)## [1] TRUE
## # A tibble: 6 x 4
## year boys girls more_boys
## <dbl> <dbl> <dbl> <lgl>
## 1 1940 1211684 1148715 TRUE
## 2 1941 1289734 1223693 TRUE
## 3 1942 1444365 1364631 TRUE
## 4 1943 1508959 1427901 TRUE
## 5 1944 1435301 1359499 TRUE
## 6 1945 1404587 1330869 TRUE
# compare magnitude with arbunthnot
y<-sum(present$boys)+sum(present$girls)
x<-sum(arbuthnot$boys)+sum(arbuthnot$girls)
y>x## [1] TRUE
The proportion of newborn boys has had gradually falling, but still dominated newborn girls so far.
The observation of Arbuthnot still held true since then.
present <- present %>%
mutate(total1 = boys + girls)
present <- present %>%
mutate(boyprob1 = boys / total1)
head(present)## # A tibble: 6 x 6
## year boys girls more_boys total1 boyprob1
## <dbl> <dbl> <dbl> <lgl> <dbl> <dbl>
## 1 1940 1211684 1148715 TRUE 2360399 0.513
## 2 1941 1289734 1223693 TRUE 2513427 0.513
## 3 1942 1444365 1364631 TRUE 2808996 0.514
## 4 1943 1508959 1427901 TRUE 2936860 0.514
## 5 1944 1435301 1359499 TRUE 2794800 0.514
## 6 1945 1404587 1330869 TRUE 2735456 0.513
Year 1961 has the most highest numbwe of newborn
#In what year did we see the most total number of births in the U.S.?
present <- present %>%
arrange(desc(total1))
head(present,1)## # A tibble: 1 x 6
## year boys girls more_boys total1 boyprob1
## <dbl> <dbl> <dbl> <lgl> <dbl> <dbl>
## 1 1961 2186274 2082052 TRUE 4268326 0.512