options(knitr.duplicate.label = 'allow')
DATA_PATH <- here("data/processed/syntactic_bootstrapping_tidy_data.csv") # make all variables (i.e. things that might change) as capital letters at the top of the scripts

ma_data <- read_csv(DATA_PATH) %>% filter(paradigm_type == "action_matching") %>% filter(inclusion_certainty == 2)

Data Overview

effect size & paper

n_effect_sizes <- ma_data %>%
  filter(!is.na(d_calc)) %>%
  nrow()

n_papers <- ma_data %>%
  distinct(unique_id) %>%
  nrow()

There are 42 effect sizes collected from 12 different papers.

Here are the papers in this analysis:

ma_data %>%
  count(short_cite) %>%
  arrange(-n) %>%
  DT::datatable()

## Forest plot

ma_model <- rma(ma_data$d_calc, ma_data$d_var_calc)
ma_model
## 
## Random-Effects Model (k = 42; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.5166 (SE = 0.1435)
## tau (square root of estimated tau^2 value):      0.7187
## I^2 (total heterogeneity / total variability):   83.83%
## H^2 (total variability / sampling variability):  6.19
## 
## Test for Heterogeneity:
## Q(df = 41) = 181.5424, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.5965  0.1253  4.7623  <.0001  0.3510  0.8420  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
forest(ma_model,
       header = T,
       slab = ma_data$unique_id,
       col = "red",
       cex = .7)

## funnel plot {.tabset} ### vanilla

ma_data %>% 
  mutate(color = ifelse(sentence_structure == "transitive", "red", "blue"),
         color_sample_size = ifelse(n_1 < 10, "red", ifelse(n_1 < 20, "orange", "yellow")),
         color_confidence = ifelse(inclusion_certainty == 1, "red", "black"))-> ma_data_funnel


ma_data_funnel %>% filter (abs(d_calc) < 5) -> ma_data_funnel_no_outlier

ss_colors <- ma_data_funnel$color
ss_colors_no_outlier <- ma_data_funnel_no_outlier$color 

ma_model_funnel <- rma(ma_data_funnel$d_calc, ma_data_funnel$d_var_calc)
ma_model_funnel_no_outlier <- rma(ma_data_funnel_no_outlier$d_calc, ma_data_funnel_no_outlier$d_var_calc)

f1<- funnel(ma_model_funnel, xlab = "Effect Size", col = ss_colors) 
legend("topright",bg = "white",legend = c("transitive","intransitive"),pch=16,col=c("red", "blue"))
title(main = "All effect sizes break down by sentence structure")

f2<- funnel(ma_model_funnel_no_outlier, xlab = "Effect Size", col = ss_colors_no_outlier) 
legend("topright",bg = "white",legend = c("transitive","intransitive"),pch=16,col=c("red", "blue"))
title(main = "effect sizes excluded outliers (abs <5) break down by sentence structure")

take into account sentence structure?

ma_model_sentence_structure <- rma(ma_data_funnel$d_calc~ma_data_funnel$sentence_structure, ma_data_funnel$d_var_calc)
ma_model_no_outlier_ss <- rma(ma_data_funnel_no_outlier$d_calc~ma_data_funnel_no_outlier$sentence_structure, ma_data_funnel_no_outlier$d_var_calc)

f3 <- funnel(ma_model_sentence_structure, xlab = "effect size", col = ss_colors)
f3_b <- funnel(ma_model_no_outlier_ss, xlab = "effect size", col = ss_colors_no_outlier)

take into account sentence structure and age?

ma_model_ss_age <- rma(ma_data_funnel$d_calc~ma_data_funnel$sentence_structure + ma_data_funnel $mean_age, ma_data_funnel$d_var_calc)
ma_model_funnel_no_outlier_ss_age <- rma(ma_data_funnel_no_outlier$d_calc~ma_data_funnel_no_outlier$sentence_structure+ma_data_funnel_no_outlier$mean_age, ma_data_funnel_no_outlier$d_var_calc)



f4 <- funnel(ma_model_ss_age, xlab = "effect size", col = ss_colors)
f4_b <- funnel(ma_model_funnel_no_outlier_ss_age, xlab = "effect size", col = ss_colors_no_outlier)

Variable Summary

Distribution with years:

ma_data %>% 
  ggplot(aes(x = publication_year, y = d_calc, size = n_1)) +
  xlim(1990,2020) + 
  geom_point() +
  geom_smooth(method = "lm") +
  geom_smooth(color = "red") +
  ylab("Effect Size") +
  xlab("publication year") +
  ggtitle("Syntactical Bootstrapping effect size with year") +
  theme(legend.position = "none") 

m_year <- rma.mv(d_calc ~ publication_year, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_year)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -60.8998  121.7996  127.7996  132.7124  128.5055   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4539  0.6737     11     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 176.4803, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0623, p-val = 0.8029
## 
## Model Results:
## 
##                   estimate       se     zval    pval     ci.lb     ci.ub 
## intrcpt            12.7595  48.7766   0.2616  0.7936  -82.8409  108.3600    
## publication_year   -0.0061   0.0243  -0.2496  0.8029   -0.0536    0.0415    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Continuous Variables

CONTINUOUS_VARS <- c("n_1", "x_1", "sd_1", "d_calc", "d_var_calc", "mean_age","n_train_test_pair","n_test_trial_per_pair","productive_vocab_mean", "productive_vocab_median")

long_continuous <- ma_data %>%
  pivot_longer(cols = CONTINUOUS_VARS)

long_continuous %>%
  ggplot(aes(x = value)) +
  geom_histogram() + 
  facet_wrap(~ name, scale = "free_x") +
  labs(title = "Distribution of continuous measures")

long_continuous %>%
  group_by(name) %>%
  summarize(mean = mean(value),
            sd = sd(value)) %>%
  kable()
name mean sd
d_calc 0.7084939 1.1050916
d_var_calc 0.1757144 0.2039025
mean_age 719.6813238 190.9659270
n_1 12.9761905 4.5289750
n_test_trial_per_pair 1.9761905 0.6043781
n_train_test_pair 1.8333333 1.2671587
productive_vocab_mean NA NA
productive_vocab_median NA NA
sd_1 0.1282059 0.0525234
x_1 0.5684455 0.0731893

Categorical Variables

CATEGORICAL_VARS <- c("sentence_structure", "agent_argument_type_clean", "patient_argument_type_clean", "stimuli_actor","agent_argument_number","transitive_event_type","intransitive_event_type",
                     "presentation_type", "character_identification",
                     "test_mass_or_distributed", "practice_phase", "test_method")

long_categorical <- ma_data %>%
  pivot_longer(cols = CATEGORICAL_VARS) %>%
  count(name, value) # this is a short cut for group_by() %>% summarize(count = n()) 

long_categorical %>%
  ggplot(aes(x = value, y = n)) +  
  facet_wrap(~ name, scale = "free_x") +
  geom_col(position = 'dodge',width=0.4) + 
  theme(text = element_text(size=8),
        axis.text.x = element_text(angle = 90, hjust = 1))  # rotate x-axis text

Prep for Moderators

ma_data_young <- ma_data_young <- ma_data %>%
    mutate(age_months = mean_age/30.44) %>% 
    filter(age_months < 36) 

ma_data_old <-  ma_data %>%
    mutate(age_months = mean_age/30.44) %>% 
    filter(age_months > 36 | age_months == 36) 

ma_data_vocab <- ma_data %>%
    filter(!is.na(productive_vocab_median)) 

no moderators

all

m1 <- rma.mv(d_calc, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m1)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -62.5424  125.0848  129.0848  132.5119  129.4006   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3591  0.5992     12     no  short_cite 
## 
## Test for Heterogeneity:
## Q(df = 41) = 181.5424, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.5517  0.1852  2.9783  0.0029  0.1886  0.9147  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36

m_young <- rma.mv(d_calc, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -60.1483  120.2966  124.2966  127.6237  124.6299   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3549  0.5958     12     no  short_cite 
## 
## Test for Heterogeneity:
## Q(df = 39) = 174.7976, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.5622  0.1843  3.0499  0.0023  0.2009  0.9235  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36

m_old <- rma.mv(d_calc, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_old)
## 
## Multivariate Meta-Analysis Model (k = 2; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
##   0.4489   -0.8978    1.1022   -0.8978    5.1022   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      1    yes  short_cite 
## 
## Test for Heterogeneity:
## Q(df = 1) = 0.0011, p-val = 0.9736
## 
## Model Results:
## 
## estimate      se     zval    pval    ci.lb   ci.ub 
##  -0.0776  0.1799  -0.4312  0.6663  -0.4301  0.2750    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Participants characteristics:

age only

colored by unique_id

ma_data %>% 
  ggplot(aes(x = mean_age/30.44, y = d_calc,color = unique_id)) +
  geom_point() +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") 

all

ma_data %>% 
  ggplot(aes(x = mean_age/30.44, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  geom_smooth(color = "red") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") +
  theme(legend.position = "none") 

m_simple <- rma.mv(d_calc ~ 1, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

m_age <- rma.mv(d_calc ~ mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

m_age_log <- rma.mv(d_calc ~ log(mean_age), V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_simple)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -62.5424  125.0848  129.0848  132.5119  129.4006   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3591  0.5992     12     no  short_cite 
## 
## Test for Heterogeneity:
## Q(df = 41) = 181.5424, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.5517  0.1852  2.9783  0.0029  0.1886  0.9147  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m_age)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -59.3060  118.6119  124.6119  129.6785  125.2786   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3531  0.5942     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 172.5325, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 6.9726, p-val = 0.0083
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt     1.0613  0.2667   3.9788  <.0001   0.5385   1.5842  *** 
## mean_age   -0.0007  0.0003  -2.6406  0.0083  -0.0012  -0.0002   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m_age_log)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -59.4364  118.8729  124.8729  129.9395  125.5395   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3558  0.5965     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 173.6732, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 6.5950, p-val = 0.0102
## 
## Model Results:
## 
##                estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt          3.9792  1.3475   2.9530  0.0031   1.3381   6.6202  ** 
## log(mean_age)   -0.5181  0.2017  -2.5681  0.0102  -0.9134  -0.1227   * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
forest(m_age,
       header = T,
       slab = ma_data$unique_id,
       col = "red",
       cex = .7
)

funnel(m_age)

young, < 36

ma_data_young %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  geom_smooth(color = "red") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") +
  theme(legend.position = "none") 

m_age_young <- rma.mv(d_calc ~ mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -59.5766  119.1532  125.1532  130.0660  125.8591   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3553  0.5961     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 172.0856, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.8198, p-val = 0.3652
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt     0.9055  0.4216   2.1479  0.0317   0.0792  1.7318  * 
## mean_age   -0.0005  0.0005  -0.9054  0.3652  -0.0015  0.0005    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
forest(m_age_young,
       header = T,
       slab = ma_data_young$unique_id,
       col = "red",
       cex = .7
)

old, >= 36

ma_data_old %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  geom_smooth(color = "red") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") +
  theme(legend.position = "none") 

m_age_old <- rma.mv(d_calc ~ mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_age_old)
## 
## Multivariate Meta-Analysis Model (k = 2; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
##   0.0000   -0.0000    4.0000      -Inf   16.0000   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      1    yes  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 0) = 0.0000, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0011, p-val = 0.9736
## 
## Model Results:
## 
##           estimate       se     zval    pval      ci.lb    ci.ub 
## intrcpt    -1.7381  50.2056  -0.0346  0.9724  -100.1393  96.6631    
## mean_age    0.0013   0.0394   0.0331  0.9736    -0.0759   0.0786    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab

ma_data_vocab %>%
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  geom_smooth(color = "red") +
  ylab("Effect Size") +
  xlab("Median Vocabulary Size") +
  ggtitle("Syntactical Bootstrapping effect size vs. Median Vocabulary (months)") +
  theme(legend.position = "none") 

m_vocab <- rma.mv(d_calc ~ productive_vocab_median, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -46.0146   92.0292   98.0292  101.9167   99.0727   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2797  0.5289      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 27) = 102.2718, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 5.5235, p-val = 0.0188
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt                    1.1366  0.2886   3.9383  <.0001   0.5710   1.7023 
## productive_vocab_median   -0.0065  0.0028  -2.3502  0.0188  -0.0120  -0.0011 
##  
## intrcpt                  *** 
## productive_vocab_median    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_vocab_with_age <- rma.mv(d_calc ~ mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_vocab_with_age)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.7119   91.4238   97.4238  101.3113   98.4673   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2512  0.5012      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 27) = 99.3641, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 6.5365, p-val = 0.0106
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt     1.3171  0.3105   4.2417  <.0001   0.7085   1.9256  *** 
## mean_age   -0.0007  0.0003  -2.5567  0.0106  -0.0012  -0.0002    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Linguistic Stimuli

Sentence structure

SS only

m_SS <- rma.mv(d_calc ~  sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_SS)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.9721  115.9442  121.9442  127.0108  122.6108   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4221  0.6497     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 181.0730, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 9.4979, p-val = 0.0021
## 
## Model Results:
## 
##                               estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                         0.3695  0.2082  1.7749  0.0759  -0.0385  0.7775 
## sentence_structuretransitive    0.3330  0.1081  3.0819  0.0021   0.1212  0.5448 
##  
## intrcpt                        . 
## sentence_structuretransitive  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

all with age

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = sentence_structure)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") 

m_age_sentence <- rma.mv(d_calc ~ mean_age + sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_sentence)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -56.4046  112.8092  120.8092  127.4634  121.9856   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4073  0.6382     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 172.5204, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 13.0541, p-val = 0.0015
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.7803  0.2986   2.6131  0.0090   0.1950 
## mean_age                       -0.0005  0.0003  -1.8967  0.0579  -0.0010 
## sentence_structuretransitive    0.2765  0.1119   2.4700  0.0135   0.0571 
##                                ci.ub 
## intrcpt                       1.3656  ** 
## mean_age                      0.0000   . 
## sentence_structuretransitive  0.4959   * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_sentence <- rma.mv(d_calc ~ mean_age * sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_sentence)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -55.9772  111.9545  121.9545  130.1424  123.8295   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3924  0.6264     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 168.7293, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 13.9166, p-val = 0.0030
## 
## Model Results:
## 
##                                        estimate      se     zval    pval 
## intrcpt                                  0.7256  0.3020   2.4029  0.0163 
## mean_age                                -0.0004  0.0003  -1.4289  0.1530 
## sentence_structuretransitive             0.7463  0.5099   1.4637  0.1433 
## mean_age:sentence_structuretransitive   -0.0007  0.0007  -0.9464  0.3439 
##                                          ci.lb   ci.ub 
## intrcpt                                 0.1338  1.3175  * 
## mean_age                               -0.0010  0.0002    
## sentence_structuretransitive           -0.2530  1.7456    
## mean_age:sentence_structuretransitive  -0.0021  0.0007    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

< 36, young, age

ma_data_young %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, , color = sentence_structure)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), with sentence_structure") 

m_age_sentence_young <- rma.mv(d_calc ~ mean_age + sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_sentence_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -56.6513  113.3026  121.3026  127.7463  122.5526   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4108  0.6409     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 172.0851, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.9855, p-val = 0.0304
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.6009  0.4466   1.3455  0.1785  -0.2744 
## mean_age                       -0.0003  0.0005  -0.5001  0.6170  -0.0013 
## sentence_structuretransitive    0.2783  0.1120   2.4851  0.0130   0.0588 
##                                ci.ub 
## intrcpt                       1.4762    
## mean_age                      0.0008    
## sentence_structuretransitive  0.4978  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_sentence_young <- rma.mv(d_calc ~ mean_age * sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_sentence_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -56.2507  112.5014  122.5014  130.4190  124.5014   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3900  0.6245     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 164.7154, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 8.0723, p-val = 0.0445
## 
## Model Results:
## 
##                                        estimate      se     zval    pval 
## intrcpt                                  0.4720  0.4602   1.0255  0.3051 
## mean_age                                -0.0001  0.0006  -0.1089  0.9133 
## sentence_structuretransitive             0.8173  0.5190   1.5750  0.1153 
## mean_age:sentence_structuretransitive   -0.0008  0.0007  -1.0664  0.2862 
##                                          ci.lb   ci.ub 
## intrcpt                                -0.4300  1.3740    
## mean_age                               -0.0011  0.0010    
## sentence_structuretransitive           -0.1998  1.8345    
## mean_age:sentence_structuretransitive  -0.0022  0.0007    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old, age

ma_data_old %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = sentence_structure)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") 

all with vocab

ma_data_vocab %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = sentence_structure)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Median Productive Vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. Median Productive Vocab")

m_age_sentence_vocab <- rma.mv(d_calc ~ productive_vocab_median + sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_sentence_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -37.3877   74.7754   82.7754   87.8078   84.6802   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.1370  0.3701      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 79.0411, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 23.2106, p-val < .0001
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.6178  0.2527   2.4454  0.0145   0.1226 
## productive_vocab_median        -0.0021  0.0029  -0.7262  0.4677  -0.0079 
## sentence_structuretransitive    0.6266  0.1482   4.2277  <.0001   0.3361 
##                                ci.ub 
## intrcpt                       1.1130    * 
## productive_vocab_median       0.0036      
## sentence_structuretransitive  0.9171  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_sentence_vocab_interaction <- rma.mv(d_calc ~ productive_vocab_median * sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_sentence_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -37.3877   74.7754   82.7754   87.8078   84.6802   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.1370  0.3701      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 79.0411, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 23.2106, p-val < .0001
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.6178  0.2527   2.4454  0.0145   0.1226 
## productive_vocab_median        -0.0021  0.0029  -0.7262  0.4677  -0.0079 
## sentence_structuretransitive    0.6266  0.1482   4.2277  <.0001   0.3361 
##                                ci.ub 
## intrcpt                       1.1130    * 
## productive_vocab_median       0.0036      
## sentence_structuretransitive  0.9171  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Agent Arguement Type

m_AAT <- rma.mv(d_calc ~  agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
m_AAT_young <- rma.mv(d_calc ~  agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_AAT)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -59.7306  119.4613  129.4613  137.6492  131.3363   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2981  0.5460     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 161.5785, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 3.9182, p-val = 0.2704
## 
## Model Results:
## 
##                                         estimate      se    zval    pval 
## intrcpt                                   0.2662  0.2290  1.1624  0.2451 
## agent_argument_type_cleannoun_phrase      0.2212  0.1779  1.2434  0.2137 
## agent_argument_type_cleanpronoun          0.5085  0.4069  1.2497  0.2114 
## agent_argument_type_cleanvarying_agent    0.5913  0.3511  1.6840  0.0922 
##                                           ci.lb   ci.ub 
## intrcpt                                 -0.1827  0.7152    
## agent_argument_type_cleannoun_phrase    -0.1275  0.5699    
## agent_argument_type_cleanpronoun        -0.2890  1.3059    
## agent_argument_type_cleanvarying_agent  -0.0969  1.2795  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m_AAT_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.2187  114.4374  124.4374  132.3549  126.4374   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2791  0.5283     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 148.3998, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 4.3429, p-val = 0.2267
## 
## Model Results:
## 
##                                         estimate      se    zval    pval 
## intrcpt                                   0.2626  0.2230  1.1779  0.2388 
## agent_argument_type_cleannoun_phrase      0.2218  0.1778  1.2477  0.2122 
## agent_argument_type_cleanpronoun          0.5340  0.3986  1.3396  0.1804 
## agent_argument_type_cleanvarying_agent    0.6211  0.3418  1.8172  0.0692 
##                                           ci.lb   ci.ub 
## intrcpt                                 -0.1744  0.6997    
## agent_argument_type_cleannoun_phrase    -0.1266  0.5702    
## agent_argument_type_cleanpronoun        -0.2473  1.3152    
## agent_argument_type_cleanvarying_agent  -0.0488  1.2911  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = agent_argument_type_clean)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by agent argument") 

m_age_aa <- rma.mv(d_calc ~ mean_age + agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_aa)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -56.6817  113.3634  125.3634  135.0289  128.1634   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3013  0.5489     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 155.8375, p-val < .0001
## 
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 10.5496, p-val = 0.0321
## 
## Model Results:
## 
##                                         estimate      se     zval    pval 
## intrcpt                                   0.7767  0.3033   2.5609  0.0104 
## mean_age                                 -0.0007  0.0003  -2.5800  0.0099 
## agent_argument_type_cleannoun_phrase      0.2166  0.1780   1.2169  0.2236 
## agent_argument_type_cleanpronoun          0.5155  0.4083   1.2626  0.2067 
## agent_argument_type_cleanvarying_agent    0.5627  0.3529   1.5947  0.1108 
##                                           ci.lb    ci.ub 
## intrcpt                                  0.1823   1.3711   * 
## mean_age                                -0.0012  -0.0002  ** 
## agent_argument_type_cleannoun_phrase    -0.1322   0.5653     
## agent_argument_type_cleanpronoun        -0.2848   1.3158     
## agent_argument_type_cleanvarying_agent  -0.1289   1.2544     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_aa_interaction <- rma.mv(d_calc ~ mean_age * agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_aa_interaction)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -55.2818  110.5636  128.5636  142.3009  136.0636   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3222  0.5676     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 34) = 153.8321, p-val < .0001
## 
## Test of Moderators (coefficients 2:8):
## QM(df = 7) = 12.3265, p-val = 0.0903
## 
## Model Results:
## 
##                                                  estimate       se     zval 
## intrcpt                                            2.7599   1.9046   1.4491 
## mean_age                                          -0.0032   0.0024  -1.3190 
## agent_argument_type_cleannoun_phrase               2.3830   3.6608   0.6509 
## agent_argument_type_cleanpronoun                  -4.7721  12.0320  -0.3966 
## agent_argument_type_cleanvarying_agent            -1.4421   1.9335  -0.7459 
## mean_age:agent_argument_type_cleannoun_phrase     -0.0027   0.0045  -0.5986 
## mean_age:agent_argument_type_cleanpronoun          0.0077   0.0187   0.4126 
## mean_age:agent_argument_type_cleanvarying_agent    0.0026   0.0024   1.0565 
##                                                    pval     ci.lb    ci.ub 
## intrcpt                                          0.1473   -0.9730   6.4928    
## mean_age                                         0.1872   -0.0080   0.0016    
## agent_argument_type_cleannoun_phrase             0.5151   -4.7920   9.5579    
## agent_argument_type_cleanpronoun                 0.6917  -28.3544  18.8102    
## agent_argument_type_cleanvarying_agent           0.4557   -5.2318   2.3475    
## mean_age:agent_argument_type_cleannoun_phrase    0.5494   -0.0114   0.0061    
## mean_age:agent_argument_type_cleanpronoun        0.6799   -0.0289   0.0443    
## mean_age:agent_argument_type_cleanvarying_agent  0.2907   -0.0022   0.0074    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36, young

ma_data_young %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = agent_argument_type_clean)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by agent argument, young only") 

m_age_aa_young <- rma.mv(d_calc ~ mean_age + agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_aa_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -56.9120  113.8241  125.8241  135.1562  128.8241   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2921  0.5405     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 35) = 147.6122, p-val < .0001
## 
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 4.6937, p-val = 0.3202
## 
## Model Results:
## 
##                                         estimate      se     zval    pval 
## intrcpt                                   0.5383  0.4574   1.1766  0.2393 
## mean_age                                 -0.0004  0.0005  -0.6878  0.4916 
## agent_argument_type_cleannoun_phrase      0.2190  0.1779   1.2311  0.2183 
## agent_argument_type_cleanpronoun          0.5256  0.4045   1.2992  0.1939 
## agent_argument_type_cleanvarying_agent    0.5915  0.3507   1.6866  0.0917 
##                                           ci.lb   ci.ub 
## intrcpt                                 -0.3583  1.4348    
## mean_age                                -0.0014  0.0007    
## agent_argument_type_cleannoun_phrase    -0.1297  0.5677    
## agent_argument_type_cleanpronoun        -0.2673  1.3185    
## agent_argument_type_cleanvarying_agent  -0.0959  1.2789  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_aa_young_interaction <- rma.mv(d_calc ~ mean_age * agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_aa_young_interaction)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -55.3365  110.6731  128.6731  141.8647  136.8549   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2960  0.5440     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 141.8028, p-val < .0001
## 
## Test of Moderators (coefficients 2:8):
## QM(df = 7) = 7.0231, p-val = 0.4265
## 
## Model Results:
## 
##                                                  estimate       se     zval 
## intrcpt                                            2.7205   1.8492   1.4712 
## mean_age                                          -0.0032   0.0024  -1.3393 
## agent_argument_type_cleannoun_phrase               2.3820   3.6480   0.6529 
## agent_argument_type_cleanpronoun                  -4.7815  12.0232  -0.3977 
## agent_argument_type_cleanvarying_agent            -1.7002   1.9036  -0.8931 
## mean_age:agent_argument_type_cleannoun_phrase     -0.0027   0.0044  -0.5995 
## mean_age:agent_argument_type_cleanpronoun          0.0077   0.0187   0.4103 
## mean_age:agent_argument_type_cleanvarying_agent    0.0030   0.0024   1.2272 
##                                                    pval     ci.lb    ci.ub 
## intrcpt                                          0.1412   -0.9039   6.3450    
## mean_age                                         0.1805   -0.0078   0.0015    
## agent_argument_type_cleannoun_phrase             0.5138   -4.7681   9.5320    
## agent_argument_type_cleanpronoun                 0.6909  -28.3466  18.7836    
## agent_argument_type_cleanvarying_agent           0.3718   -5.4312   2.0309    
## mean_age:agent_argument_type_cleannoun_phrase    0.5488   -0.0114   0.0060    
## mean_age:agent_argument_type_cleanpronoun        0.6816   -0.0289   0.0442    
## mean_age:agent_argument_type_cleanvarying_agent  0.2197   -0.0018   0.0077    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>=36, old

ma_data_old %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = agent_argument_type_clean)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by agent argument, old only") 

Vocab

ma_data_vocab %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = agent_argument_type_clean)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by agent argument, with vocab") 

m_age_aa_vocab <- rma.mv(d_calc ~ productive_vocab_median + agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_aa_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -43.1779   86.3557   96.3557  102.4501   99.5136   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.1152  0.3395      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 90.5335, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 9.9595, p-val = 0.0189
## 
## Model Results:
## 
##                                         estimate      se     zval    pval 
## intrcpt                                   2.1576  0.5579   3.8677  0.0001 
## productive_vocab_median                  -0.0060  0.0028  -2.1324  0.0330 
## agent_argument_type_cleanpronoun         -1.2519  0.6221  -2.0125  0.0442 
## agent_argument_type_cleanvarying_agent   -1.2755  0.5890  -2.1655  0.0303 
##                                           ci.lb    ci.ub 
## intrcpt                                  1.0642   3.2510  *** 
## productive_vocab_median                 -0.0115  -0.0005    * 
## agent_argument_type_cleanpronoun        -2.4712  -0.0327    * 
## agent_argument_type_cleanvarying_agent  -2.4299  -0.1211    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_aa_vocab_interaction <- rma.mv(d_calc ~ productive_vocab_median * agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_aa_vocab_interaction)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.3340   84.6679   98.6679  106.6164  106.1346   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.1186  0.3444      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 23) = 89.7991, p-val < .0001
## 
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 10.6887, p-val = 0.0579
## 
## Model Results:
## 
##                                                                 estimate 
## intrcpt                                                         -11.4787 
## productive_vocab_median                                           0.4712 
## agent_argument_type_cleanpronoun                                 12.2133 
## agent_argument_type_cleanvarying_agent                           12.3730 
## productive_vocab_median:agent_argument_type_cleanpronoun         -0.4723 
## productive_vocab_median:agent_argument_type_cleanvarying_agent   -0.4774 
##                                                                      se 
## intrcpt                                                         17.0503 
## productive_vocab_median                                          0.5963 
## agent_argument_type_cleanpronoun                                17.0594 
## agent_argument_type_cleanvarying_agent                          17.0519 
## productive_vocab_median:agent_argument_type_cleanpronoun         0.5964 
## productive_vocab_median:agent_argument_type_cleanvarying_agent   0.5963 
##                                                                    zval    pval 
## intrcpt                                                         -0.6732  0.5008 
## productive_vocab_median                                          0.7902  0.4294 
## agent_argument_type_cleanpronoun                                 0.7159  0.4740 
## agent_argument_type_cleanvarying_agent                           0.7256  0.4681 
## productive_vocab_median:agent_argument_type_cleanpronoun        -0.7919  0.4284 
## productive_vocab_median:agent_argument_type_cleanvarying_agent  -0.8006  0.4233 
##                                                                    ci.lb 
## intrcpt                                                         -44.8967 
## productive_vocab_median                                          -0.6975 
## agent_argument_type_cleanpronoun                                -21.2224 
## agent_argument_type_cleanvarying_agent                          -21.0482 
## productive_vocab_median:agent_argument_type_cleanpronoun         -1.6413 
## productive_vocab_median:agent_argument_type_cleanvarying_agent   -1.6461 
##                                                                   ci.ub 
## intrcpt                                                         21.9393    
## productive_vocab_median                                          1.6399    
## agent_argument_type_cleanpronoun                                45.6490    
## agent_argument_type_cleanvarying_agent                          45.7941    
## productive_vocab_median:agent_argument_type_cleanpronoun         0.6967    
## productive_vocab_median:agent_argument_type_cleanvarying_agent   0.6913    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Patient Argument Type

m_PAT <- rma.mv(d_calc ~ patient_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_PAT)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -52.2215  104.4431  114.4431  122.6310  116.3181   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3252  0.5702     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 147.9291, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 19.8585, p-val = 0.0002
## 
## Model Results:
## 
##                                             estimate      se    zval    pval 
## intrcpt                                       0.3808  0.1878  2.0277  0.0426 
## patient_argument_type_cleannoun               0.2191  0.1137  1.9265  0.0540 
## patient_argument_type_cleanpronoun            0.7752  0.2952  2.6256  0.0086 
## patient_argument_type_cleanvarying_patient    1.8280  0.5648  3.2369  0.0012 
##                                               ci.lb   ci.ub 
## intrcpt                                      0.0127  0.7488   * 
## patient_argument_type_cleannoun             -0.0038  0.4421   . 
## patient_argument_type_cleanpronoun           0.1965  1.3539  ** 
## patient_argument_type_cleanvarying_patient   0.7211  2.9350  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma_data %>% group_by(patient_argument_type_clean) %>% count()
## # A tibble: 4 x 2
## # Groups:   patient_argument_type_clean [4]
##   patient_argument_type_clean     n
##   <chr>                       <int>
## 1 intransitive                   20
## 2 noun                           18
## 3 pronoun                         3
## 4 varying_patient                 1

Agent Argument Numbers

m_AAN <-  rma.mv(d_calc ~ agent_argument_number, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_AAN)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -61.1652  122.3304  130.3304  136.9846  131.5068   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3180  0.5639     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 168.5915, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 2.2764, p-val = 0.3204
## 
## Model Results:
## 
##                               estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                         0.4325  0.1939  2.2305  0.0257   0.0525  0.8126 
## agent_argument_number2          0.1949  0.1768  1.1023  0.2703  -0.1516  0.5415 
## agent_argument_numbervarying    0.2268  0.2054  1.1040  0.2696  -0.1759  0.6295 
##  
## intrcpt                       * 
## agent_argument_number2 
## agent_argument_numbervarying 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma_data %>% group_by(agent_argument_number) %>% count()
## # A tibble: 3 x 2
## # Groups:   agent_argument_number [3]
##   agent_argument_number     n
##   <chr>                 <int>
## 1 1                        15
## 2 2                         4
## 3 varying                  23

Number of sentence reptition

ma_data %>% ggplot(aes(x = n_repetitions_sentence)) +
  geom_histogram() 

### all

ma_data %>% 
  ggplot(aes(x = n_repetitions_sentence, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("number of reptition in sentence") +
  ggtitle("Syntactical Bootstrapping effect size vs. number of sentence repetition") 

m_rep <- rma.mv(d_calc ~ n_repetitions_sentence, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_rep)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -60.9292  121.8584  127.8584  132.9250  128.5251   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3711  0.6092     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 179.6973, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.3875, p-val = 0.1223
## 
## Model Results:
## 
##                         estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                   0.3343  0.2352  1.4213  0.1552  -0.1267  0.7954    
## n_repetitions_sentence    0.0226  0.0147  1.5452  0.1223  -0.0061  0.0514    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age <- rma.mv(d_calc ~ n_repetitions_sentence + mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_rep_age)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.7184  117.4369  125.4369  132.0911  126.6134   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3624  0.6020     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 171.9199, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.1728, p-val = 0.0277
## 
## Model Results:
## 
##                         estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt                   0.9500  0.3657   2.5976  0.0094   0.2332   1.6669  ** 
## n_repetitions_sentence    0.0073  0.0162   0.4514  0.6517  -0.0244   0.0390     
## mean_age                 -0.0006  0.0003  -2.1874  0.0287  -0.0012  -0.0001   * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age_interaction <- rma.mv(d_calc ~ n_repetitions_sentence * mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_rep_age_interaction)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.3567  116.7135  126.7135  134.9014  128.5885   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3812  0.6174     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 171.8211, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.1642, p-val = 0.0668
## 
## Model Results:
## 
##                                  estimate      se     zval    pval    ci.lb 
## intrcpt                            0.8792  1.0816   0.8128  0.4163  -1.2407 
## n_repetitions_sentence             0.0129  0.0802   0.1612  0.8719  -0.1443 
## mean_age                          -0.0005  0.0015  -0.3450  0.7301  -0.0034 
## n_repetitions_sentence:mean_age   -0.0000  0.0001  -0.0724  0.9423  -0.0002 
##                                   ci.ub 
## intrcpt                          2.9991    
## n_repetitions_sentence           0.1701    
## mean_age                         0.0024    
## n_repetitions_sentence:mean_age  0.0002    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

< 36, young only

ma_data_young %>% 
  ggplot(aes(x = n_repetitions_sentence, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("number of reptition in sentence") +
  ggtitle("Syntactical Bootstrapping effect size vs. number of sentence repetition, young only") 

m_rep_young <- rma.mv(d_calc ~ n_repetitions_sentence, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_rep_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -59.3245  118.6490  124.6490  129.5617  125.3548   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3601  0.6001     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 172.9840, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.7193, p-val = 0.3964
## 
## Model Results:
## 
##                         estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                   0.4363  0.2380  1.8331  0.0668  -0.0302  0.9028  . 
## n_repetitions_sentence    0.0130  0.0153  0.8481  0.3964  -0.0170  0.0430    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age_young <- rma.mv(d_calc ~ n_repetitions_sentence + mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_rep_age_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.9468  117.8936  125.8936  132.3373  127.1436   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3644  0.6037     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 171.2214, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.1158, p-val = 0.5724
## 
## Model Results:
## 
##                         estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                   0.7340  0.5278   1.3905  0.1644  -0.3006  1.7685    
## n_repetitions_sentence    0.0090  0.0166   0.5457  0.5853  -0.0234  0.0415    
## mean_age                 -0.0003  0.0005  -0.6316  0.5277  -0.0014  0.0007    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age_interaction_young <- rma.mv(d_calc ~ n_repetitions_sentence * mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_rep_age_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.4216  116.8433  126.8433  134.7609  128.8433   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3903  0.6248     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 170.8514, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 1.1968, p-val = 0.7538
## 
## Model Results:
## 
##                                  estimate      se     zval    pval    ci.lb 
## intrcpt                            0.3234  1.4349   0.2254  0.8217  -2.4890 
## n_repetitions_sentence             0.0378  0.0942   0.4010  0.6884  -0.1468 
## mean_age                           0.0002  0.0020   0.1217  0.9031  -0.0036 
## n_repetitions_sentence:mean_age   -0.0000  0.0001  -0.3107  0.7561  -0.0003 
##                                   ci.ub 
## intrcpt                          3.1358    
## n_repetitions_sentence           0.2224    
## mean_age                         0.0041    
## n_repetitions_sentence:mean_age  0.0002    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old only

ma_data_old %>% 
  ggplot(aes(x = n_repetitions_sentence, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("number of reptition in sentence") +
  ggtitle("Syntactical Bootstrapping effect size vs. number of sentence repetition, old only") 

m_rep_old <- rma.mv(d_calc ~ n_repetitions_sentence, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_rep_old)
## 
## Multivariate Meta-Analysis Model (k = 2; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
##   0.0000   -0.0000    4.0000      -Inf   16.0000   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      1    yes  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 0) = 0.0000, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0011, p-val = 0.9736
## 
## Model Results:
## 
##                         estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                  -0.1429  1.9821  -0.0721  0.9425  -4.0277  3.7420    
## n_repetitions_sentence    0.0060  0.1800   0.0331  0.9736  -0.3468  0.3587    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age_old <- rma.mv(d_calc ~ n_repetitions_sentence + mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_rep_age_old)
## 
## Multivariate Meta-Analysis Model (k = 2; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
##   0.0000   -0.0000    4.0000      -Inf   16.0000   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      1    yes  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 0) = 0.0000, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0011, p-val = 0.9736
## 
## Model Results:
## 
##                         estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                  -0.1429  1.9821  -0.0721  0.9425  -4.0277  3.7420    
## n_repetitions_sentence    0.0060  0.1800   0.0331  0.9736  -0.3468  0.3587    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age_interaction_old <- rma.mv(d_calc ~ n_repetitions_sentence * mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_rep_age_interaction_old)
## 
## Multivariate Meta-Analysis Model (k = 2; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
##   0.0000   -0.0000    4.0000      -Inf   16.0000   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      1    yes  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 0) = 0.0000, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0011, p-val = 0.9736
## 
## Model Results:
## 
##                         estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                  -0.1429  1.9821  -0.0721  0.9425  -4.0277  3.7420    
## n_repetitions_sentence    0.0060  0.1800   0.0331  0.9736  -0.3468  0.3587    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

add vocab in

m_rep_v_r <- rma.mv(d_calc ~ n_repetitions_sentence + productive_vocab_median, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_rep_v_r)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.7865   91.5731   99.5731  104.6055  101.4778   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2843  0.5332      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 102.0079, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 5.5373, p-val = 0.0627
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    1.1021  0.4466   2.4679  0.0136   0.2268  1.9774  * 
## n_repetitions_sentence     0.0022  0.0210   0.1055  0.9160  -0.0390  0.0435    
## productive_vocab_median   -0.0063  0.0034  -1.8549  0.0636  -0.0130  0.0004  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_v_r_interaction <- rma.mv(d_calc ~ n_repetitions_sentence *productive_vocab_median, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_rep_v_r)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.7865   91.5731   99.5731  104.6055  101.4778   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2843  0.5332      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 102.0079, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 5.5373, p-val = 0.0627
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    1.1021  0.4466   2.4679  0.0136   0.2268  1.9774  * 
## n_repetitions_sentence     0.0022  0.0210   0.1055  0.9160  -0.0390  0.0435    
## productive_vocab_median   -0.0063  0.0034  -1.8549  0.0636  -0.0130  0.0004  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Visual stimuli

stimuli_modality(video vs animation)

single moderator

m_SM <- rma.mv(d_calc ~ stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_SM)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -59.9625  119.9249  125.9249  130.9916  126.5916   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3818  0.6179     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 180.6334, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 4.9187, p-val = 0.0266
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt                  0.9246  0.2533   3.6505  0.0003   0.4282   1.4211  *** 
## stimuli_modalityvideo   -0.3949  0.1781  -2.2178  0.0266  -0.7439  -0.0459    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_modality)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli modality") 

m_stim_mod<- rma.mv(d_calc ~ mean_age + stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_stim_mod)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.0271  116.0543  124.0543  130.7085  125.2308   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3636  0.6030     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 171.2727, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.5577, p-val = 0.0228
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                  1.0946  0.2717   4.0289  <.0001   0.5621  1.6271  *** 
## mean_age                -0.0012  0.0007  -1.6308  0.1029  -0.0026  0.0002      
## stimuli_modalityvideo    0.3960  0.5160   0.7676  0.4427  -0.6152  1.4073      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_mod_interaction<- rma.mv(d_calc ~ mean_age * stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_stim_mod_interaction)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.2279  116.4559  126.4559  134.6438  128.3309   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3674  0.6062     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 171.2075, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.7419, p-val = 0.0517
## 
## Model Results:
## 
##                                 estimate      se     zval    pval    ci.lb 
## intrcpt                           0.6461  1.0735   0.6019  0.5473  -1.4578 
## mean_age                         -0.0004  0.0020  -0.1999  0.8416  -0.0043 
## stimuli_modalityvideo             0.9469  1.3743   0.6890  0.4908  -1.7468 
## mean_age:stimuli_modalityvideo   -0.0009  0.0022  -0.4323  0.6655  -0.0051 
##                                  ci.ub 
## intrcpt                         2.7500    
## mean_age                        0.0035    
## stimuli_modalityvideo           3.6405    
## mean_age:stimuli_modalityvideo  0.0033    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

< 36, young only

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_modality)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli modality, young") 

m_stim_mod_young<- rma.mv(d_calc ~ mean_age + stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_stim_mod_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.3680  116.7359  124.7359  131.1796  125.9859   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3723  0.6102     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 171.2599, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.1870, p-val = 0.5524
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                  1.0534  0.4873   2.1619  0.0306   0.0984  2.0085  * 
## mean_age                -0.0011  0.0012  -0.9393  0.3476  -0.0034  0.0012    
## stimuli_modalityvideo    0.3655  0.6004   0.6087  0.5427  -0.8113  1.5422    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_mod_interaction_young <- rma.mv(d_calc ~ mean_age * stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_stim_mod_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.4338  116.8676  126.8676  134.7852  128.8676   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3879  0.6228     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 171.2019, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 1.3752, p-val = 0.7114
## 
## Model Results:
## 
##                                 estimate      se     zval    pval    ci.lb 
## intrcpt                           0.6281  1.0834   0.5798  0.5621  -1.4952 
## mean_age                         -0.0004  0.0020  -0.1999  0.8416  -0.0043 
## stimuli_modalityvideo             1.0987  1.7623   0.6234  0.5330  -2.3555 
## mean_age:stimuli_modalityvideo   -0.0011  0.0025  -0.4424  0.6582  -0.0060 
##                                  ci.ub 
## intrcpt                         2.7515    
## mean_age                        0.0035    
## stimuli_modalityvideo           4.5528    
## mean_age:stimuli_modalityvideo  0.0038    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old only

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_modality)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli modality, old") 

vocab

ma_data_vocab %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = stimuli_modality)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median vocab, breakdown by stimuli modality, vocab") 

m_stim_mod_v <- rma.mv(d_calc ~ productive_vocab_median + stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_stim_mod_v)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.3388   90.6776   98.6776  103.7100  100.5824   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3082  0.5551      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 99.1928, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 5.5391, p-val = 0.0627
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    1.1471  0.3151   3.6410  0.0003   0.5296  1.7646 
## productive_vocab_median   -0.0064  0.0059  -1.0972  0.2726  -0.0179  0.0050 
## stimuli_modalityvideo     -0.0103  0.3735  -0.0277  0.9779  -0.7423  0.7216 
##  
## intrcpt                  *** 
## productive_vocab_median 
## stimuli_modalityvideo 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_mod_intereaction_v <- rma.mv(d_calc ~ productive_vocab_median * stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_stim_mod_intereaction_v)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.3710   90.7419  100.7419  106.8363  103.8998   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3024  0.5499      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 98.6450, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 6.0046, p-val = 0.1114
## 
## Model Results:
## 
##                                                estimate      se     zval 
## intrcpt                                          0.6842  0.7426   0.9214 
## productive_vocab_median                          0.0164  0.0339   0.4842 
## stimuli_modalityvideo                            0.4879  0.8152   0.5985 
## productive_vocab_median:stimuli_modalityvideo   -0.0236  0.0344  -0.6845 
##                                                  pval    ci.lb   ci.ub 
## intrcpt                                        0.3569  -0.7712  2.1396    
## productive_vocab_median                        0.6282  -0.0500  0.0829    
## stimuli_modalityvideo                          0.5495  -1.1098  2.0855    
## productive_vocab_median:stimuli_modalityvideo  0.4936  -0.0910  0.0439    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab age comparison

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_modality)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli modality, age compare vocab") 

m_stim_mod_v_a<- rma.mv(d_calc ~ mean_age + stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_stim_mod_v_a)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -44.2751   88.5502   96.5502  101.5826   98.4550   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2122  0.4606      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 93.9088, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.6570, p-val = 0.0217
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                  1.3622  0.3021   4.5088  <.0001   0.7701  1.9544  *** 
## mean_age                -0.0013  0.0007  -1.9192  0.0550  -0.0027  0.0000    . 
## stimuli_modalityvideo    0.5099  0.4828   1.0561  0.2909  -0.4364  1.4563      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_mod_interaction_v_a <- rma.mv(d_calc ~ mean_age * stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_stim_mod_interaction_v_a)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -44.4528   88.9056   98.9056  105.0000  102.0635   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2145  0.4631      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 93.7830, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.8993, p-val = 0.0481
## 
## Model Results:
## 
##                                 estimate      se     zval    pval    ci.lb 
## intrcpt                           0.8481  1.0716   0.7914  0.4287  -1.2522 
## mean_age                         -0.0004  0.0020  -0.1999  0.8416  -0.0043 
## stimuli_modalityvideo             1.1301  1.3309   0.8492  0.3958  -1.4784 
## mean_age:stimuli_modalityvideo   -0.0011  0.0021  -0.5009  0.6165  -0.0053 
##                                  ci.ub 
## intrcpt                         2.9484    
## mean_age                        0.0035    
## stimuli_modalityvideo           3.7387    
## mean_age:stimuli_modalityvideo  0.0031    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

stimuli_actor (person vs non-person)

single moderator

m_SA <- rma.mv(d_calc ~ stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_SA)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -60.9592  121.9184  127.9184  132.9851  128.5851   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4623  0.6799     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 181.4468, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 2.8628, p-val = 0.0906
## 
## Model Results:
## 
##                      estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                0.7302  0.2303   3.1708  0.0015   0.2788  1.1815  ** 
## stimuli_actorperson   -0.2834  0.1675  -1.6920  0.0906  -0.6117  0.0449   . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_actor)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli actor, all") 

m_stim_actor_age <- rma.mv(d_calc ~ mean_age + stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_stim_actor_age)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.4445  114.8891  122.8891  129.5433  124.0655   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3351  0.5788     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 169.9287, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 9.0313, p-val = 0.0109
## 
## Model Results:
## 
##                      estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt                1.2485  0.2950   4.2318  <.0001   0.6703   1.8267  *** 
## mean_age              -0.0013  0.0005  -2.5906  0.0096  -0.0022  -0.0003   ** 
## stimuli_actorperson    0.4541  0.3170   1.4323  0.1521  -0.1673   1.0754      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_actor_age_interaction <- rma.mv(d_calc ~ mean_age * stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_stim_actor_age_interaction)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -56.5707  113.1415  123.1415  131.3294  125.0165   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3394  0.5826     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 168.4545, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 9.1801, p-val = 0.0270
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.9240  0.8553   1.0804  0.2800  -0.7523 
## mean_age                       -0.0008  0.0012  -0.6736  0.5006  -0.0032 
## stimuli_actorperson             0.9494  1.2623   0.7521  0.4520  -1.5247 
## mean_age:stimuli_actorperson   -0.0007  0.0017  -0.4052  0.6853  -0.0040 
##                                ci.ub 
## intrcpt                       2.6004    
## mean_age                      0.0016    
## stimuli_actorperson           3.4235    
## mean_age:stimuli_actorperson  0.0026    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

< 36, young only

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_actor)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli actor, young") 

m_stim_actor_age_young <- rma.mv(d_calc ~ mean_age + stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_stim_actor_age_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.7929  115.5857  123.5857  130.0294  124.8357   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3405  0.5835     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 169.5477, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 2.6417, p-val = 0.2669
## 
## Model Results:
## 
##                      estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                1.2074  0.4760   2.5363  0.0112   0.2744  2.1404  * 
## mean_age              -0.0012  0.0008  -1.6078  0.1079  -0.0027  0.0003    
## stimuli_actorperson    0.4451  0.3301   1.3486  0.1775  -0.2018  1.0920    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_actor_age_interaction_young <- rma.mv(d_calc ~ mean_age * stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_stim_actor_age_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -56.7727  113.5454  123.5454  131.4630  125.5454   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3527  0.5939     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 168.3855, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 2.7939, p-val = 0.4245
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.8793  0.8953   0.9822  0.3260  -0.8754 
## mean_age                       -0.0008  0.0013  -0.6151  0.5385  -0.0032 
## stimuli_actorperson             1.2194  1.7964   0.6788  0.4973  -2.3015 
## mean_age:stimuli_actorperson   -0.0010  0.0023  -0.4380  0.6614  -0.0055 
##                                ci.ub 
## intrcpt                       2.6341    
## mean_age                      0.0017    
## stimuli_actorperson           4.7404    
## mean_age:stimuli_actorperson  0.0035    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old only

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_actor)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli actor, old") 

vocab

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = stimuli_actor)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli actor, vocab") 

m_stim_actor_vocab <- rma.mv(d_calc ~ productive_vocab_median + stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_stim_actor_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.3388   90.6776   98.6776  103.7100  100.5824   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3082  0.5551      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 99.1928, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 5.5391, p-val = 0.0627
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    1.1471  0.3151   3.6410  0.0003   0.5296  1.7646 
## productive_vocab_median   -0.0064  0.0059  -1.0972  0.2726  -0.0179  0.0050 
## stimuli_actorperson       -0.0103  0.3735  -0.0277  0.9779  -0.7423  0.7216 
##  
## intrcpt                  *** 
## productive_vocab_median 
## stimuli_actorperson 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_actor_vocab_interaction <- rma.mv(d_calc ~ productive_vocab_median * stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_stim_actor_vocab_interaction)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.3710   90.7419  100.7419  106.8363  103.8998   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3024  0.5499      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 98.6450, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 6.0046, p-val = 0.1114
## 
## Model Results:
## 
##                                              estimate      se     zval    pval 
## intrcpt                                        0.6842  0.7426   0.9214  0.3569 
## productive_vocab_median                        0.0164  0.0339   0.4842  0.6282 
## stimuli_actorperson                            0.4879  0.8152   0.5985  0.5495 
## productive_vocab_median:stimuli_actorperson   -0.0236  0.0344  -0.6845  0.4936 
##                                                ci.lb   ci.ub 
## intrcpt                                      -0.7712  2.1396    
## productive_vocab_median                      -0.0500  0.0829    
## stimuli_actorperson                          -1.1098  2.0855    
## productive_vocab_median:stimuli_actorperson  -0.0910  0.0439    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab age comparison

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_actor)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli actor, age vocab comparison") 

m_stim_actor_vocab_a <- rma.mv(d_calc ~ mean_age + stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_stim_actor_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -44.2751   88.5502   96.5502  101.5826   98.4550   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2122  0.4606      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 93.9088, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.6570, p-val = 0.0217
## 
## Model Results:
## 
##                      estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                1.3622  0.3021   4.5088  <.0001   0.7701  1.9544  *** 
## mean_age              -0.0013  0.0007  -1.9192  0.0550  -0.0027  0.0000    . 
## stimuli_actorperson    0.5099  0.4828   1.0561  0.2909  -0.4364  1.4563      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_actor_vocab_interaction_a <- rma.mv(d_calc ~ mean_age * stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_stim_actor_vocab_interaction_a)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -44.4528   88.9056   98.9056  105.0000  102.0635   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2145  0.4631      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 93.7830, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.8993, p-val = 0.0481
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.8481  1.0716   0.7914  0.4287  -1.2522 
## mean_age                       -0.0004  0.0020  -0.1999  0.8416  -0.0043 
## stimuli_actorperson             1.1301  1.3309   0.8492  0.3958  -1.4784 
## mean_age:stimuli_actorperson   -0.0011  0.0021  -0.5009  0.6165  -0.0053 
##                                ci.ub 
## intrcpt                       2.9484    
## mean_age                      0.0035    
## stimuli_actorperson           3.7387    
## mean_age:stimuli_actorperson  0.0031    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

transitive_event (indirect_caused_action vs direct caused action)

single moderator

m_TE <- rma.mv(d_calc ~ transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_TE)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -61.3636  122.7272  130.7272  137.3814  131.9037   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4145  0.6438     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 178.9380, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.3690, p-val = 0.8315
## 
## Model Results:
## 
##                                              estimate      se     zval    pval 
## intrcpt                                        0.5958  0.2082   2.8612  0.0042 
## transitive_event_typeindirect_caused_action   -0.0644  0.1756  -0.3668  0.7138 
## transitive_event_typeminimal_contact          -0.3471  0.6981  -0.4972  0.6191 
##                                                ci.lb   ci.ub 
## intrcpt                                       0.1877  1.0040  ** 
## transitive_event_typeindirect_caused_action  -0.4085  0.2797     
## transitive_event_typeminimal_contact         -1.7154  1.0212     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma_data %>% count(transitive_event_type)
## # A tibble: 3 x 2
##   transitive_event_type      n
##   <chr>                  <int>
## 1 direct_caused_action      31
## 2 indirect_caused_action     9
## 3 minimal_contact            2

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = transitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by transitive_event_type") 

m_age_vs_tran <- rma.mv(d_calc ~ mean_age + transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_age_vs_tran)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.9531  115.9063  125.9063  134.0942  127.7813   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3816  0.6177     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 169.6187, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.5822, p-val = 0.0555
## 
## Model Results:
## 
##                                              estimate      se     zval    pval 
## intrcpt                                        1.1189  0.2807   3.9859  <.0001 
## mean_age                                      -0.0007  0.0003  -2.6864  0.0072 
## transitive_event_typeindirect_caused_action    0.1248  0.1882   0.6632  0.5072 
## transitive_event_typeminimal_contact          -0.2626  0.6725  -0.3904  0.6962 
##                                                ci.lb    ci.ub 
## intrcpt                                       0.5687   1.6691  *** 
## mean_age                                     -0.0013  -0.0002   ** 
## transitive_event_typeindirect_caused_action  -0.2441   0.4937      
## transitive_event_typeminimal_contact         -1.5807   1.0556      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_transtivity_interaction <- rma.mv(d_calc ~ mean_age * transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_data_transtivity_interaction)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.3674  114.7349  128.7349  139.8195  132.7349   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3664  0.6053     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 165.4356, p-val < .0001
## 
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 10.1522, p-val = 0.0710
## 
## Model Results:
## 
##                                                       estimate      se     zval 
## intrcpt                                                 0.9886  0.3066   3.2239 
## mean_age                                               -0.0006  0.0003  -1.8512 
## transitive_event_typeindirect_caused_action             0.5856  0.5440   1.0766 
## transitive_event_typeminimal_contact                    6.0856  4.7943   1.2693 
## mean_age:transitive_event_typeindirect_caused_action   -0.0006  0.0006  -0.9079 
## mean_age:transitive_event_typeminimal_contact          -0.0077  0.0057  -1.3360 
##                                                         pval    ci.lb    ci.ub 
## intrcpt                                               0.0013   0.3876   1.5896 
## mean_age                                              0.0641  -0.0012   0.0000 
## transitive_event_typeindirect_caused_action           0.2817  -0.4806   1.6518 
## transitive_event_typeminimal_contact                  0.2043  -3.3110  15.4822 
## mean_age:transitive_event_typeindirect_caused_action  0.3639  -0.0018   0.0006 
## mean_age:transitive_event_typeminimal_contact         0.1816  -0.0189   0.0036 
##  
## intrcpt                                               ** 
## mean_age                                               . 
## transitive_event_typeindirect_caused_action 
## transitive_event_typeminimal_contact 
## mean_age:transitive_event_typeindirect_caused_action 
## mean_age:transitive_event_typeminimal_contact 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

young < 36

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = transitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by transitive_event_type") 

m_age_vs_tran_young <- rma.mv(d_calc ~ mean_age + transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_age_vs_tran_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.7902  115.5805  125.5805  133.4981  127.5805   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3661  0.6050     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 166.7696, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 2.0833, p-val = 0.5553
## 
## Model Results:
## 
##                                              estimate      se     zval    pval 
## intrcpt                                        0.8762  0.4265   2.0543  0.0399 
## mean_age                                      -0.0004  0.0005  -0.8325  0.4052 
## transitive_event_typeindirect_caused_action    0.2378  0.2318   1.0257  0.3050 
## transitive_event_typeminimal_contact          -0.2757  0.6609  -0.4171  0.6766 
##                                                ci.lb   ci.ub 
## intrcpt                                       0.0402  1.7121  * 
## mean_age                                     -0.0014  0.0006    
## transitive_event_typeindirect_caused_action  -0.2166  0.6922    
## transitive_event_typeminimal_contact         -1.5710  1.0197    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_transtivity_interaction_young <- rma.mv(d_calc ~ mean_age * transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_data_transtivity_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.1752  114.3503  128.3503  139.0348  132.6580   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3726  0.6104     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 34) = 164.7456, p-val < .0001
## 
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 4.3865, p-val = 0.4952
## 
## Model Results:
## 
##                                                       estimate      se     zval 
## intrcpt                                                 0.8075  0.4302   1.8771 
## mean_age                                               -0.0003  0.0005  -0.6345 
## transitive_event_typeindirect_caused_action             2.1225  2.8480   0.7453 
## transitive_event_typeminimal_contact                    6.2666  4.8044   1.3044 
## mean_age:transitive_event_typeindirect_caused_action   -0.0031  0.0046  -0.6640 
## mean_age:transitive_event_typeminimal_contact          -0.0079  0.0058  -1.3764 
##                                                         pval    ci.lb    ci.ub 
## intrcpt                                               0.0605  -0.0357   1.6507 
## mean_age                                              0.5258  -0.0013   0.0007 
## transitive_event_typeindirect_caused_action           0.4561  -3.4595   7.7046 
## transitive_event_typeminimal_contact                  0.1921  -3.1498  15.6831 
## mean_age:transitive_event_typeindirect_caused_action  0.5067  -0.0121   0.0060 
## mean_age:transitive_event_typeminimal_contact         0.1687  -0.0192   0.0034 
##  
## intrcpt                                               . 
## mean_age 
## transitive_event_typeindirect_caused_action 
## transitive_event_typeminimal_contact 
## mean_age:transitive_event_typeindirect_caused_action 
## mean_age:transitive_event_typeminimal_contact 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

old > 36

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = transitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by transitive_event_type") 

m_age_vs_tran_old <- rma.mv(d_calc ~ mean_age + transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)

summary(m_age_vs_tran_old)
## 
## Multivariate Meta-Analysis Model (k = 2; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
##   0.0000   -0.0000    4.0000      -Inf   16.0000   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      1    yes  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 0) = 0.0000, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0011, p-val = 0.9736
## 
## Model Results:
## 
##           estimate       se     zval    pval      ci.lb    ci.ub 
## intrcpt    -1.7381  50.2056  -0.0346  0.9724  -100.1393  96.6631    
## mean_age    0.0013   0.0394   0.0331  0.9736    -0.0759   0.0786    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_transtivity_interaction_old <- rma.mv(d_calc ~ mean_age * transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_data_transtivity_interaction_old)
## 
## Multivariate Meta-Analysis Model (k = 2; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
##   0.0000   -0.0000    4.0000      -Inf   16.0000   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      1    yes  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 0) = 0.0000, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0011, p-val = 0.9736
## 
## Model Results:
## 
##           estimate       se     zval    pval      ci.lb    ci.ub 
## intrcpt    -1.7381  50.2056  -0.0346  0.9724  -100.1393  96.6631    
## mean_age    0.0013   0.0394   0.0331  0.9736    -0.0759   0.0786    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = transitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median vocab, breakdown by transitive_event_type") 

m_age_vs_tran_vocab <- rma.mv(d_calc ~ productive_vocab_median + transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_vs_tran_old)
## 
## Multivariate Meta-Analysis Model (k = 2; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
##   0.0000   -0.0000    4.0000      -Inf   16.0000   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      1    yes  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 0) = 0.0000, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0011, p-val = 0.9736
## 
## Model Results:
## 
##           estimate       se     zval    pval      ci.lb    ci.ub 
## intrcpt    -1.7381  50.2056  -0.0346  0.9724  -100.1393  96.6631    
## mean_age    0.0013   0.0394   0.0331  0.9736    -0.0759   0.0786    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_transtivity_interaction_vocab <- rma.mv(d_calc ~ productive_vocab_median * transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_data_transtivity_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.4496   90.8992  100.8992  106.9936  104.0571   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2477  0.4977      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 97.4381, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 6.5079, p-val = 0.0894
## 
## Model Results:
## 
##                                                                      estimate 
## intrcpt                                                                1.0327 
## productive_vocab_median                                               -0.0056 
## transitive_event_typeindirect_caused_action                            0.3452 
## productive_vocab_median:transitive_event_typeindirect_caused_action   -0.0049 
##                                                                          se 
## intrcpt                                                              0.2982 
## productive_vocab_median                                              0.0037 
## transitive_event_typeindirect_caused_action                          0.3445 
## productive_vocab_median:transitive_event_typeindirect_caused_action  0.0061 
##                                                                         zval 
## intrcpt                                                               3.4638 
## productive_vocab_median                                              -1.5030 
## transitive_event_typeindirect_caused_action                           1.0021 
## productive_vocab_median:transitive_event_typeindirect_caused_action  -0.8035 
##                                                                        pval 
## intrcpt                                                              0.0005 
## productive_vocab_median                                              0.1328 
## transitive_event_typeindirect_caused_action                          0.3163 
## productive_vocab_median:transitive_event_typeindirect_caused_action  0.4217 
##                                                                        ci.lb 
## intrcpt                                                               0.4484 
## productive_vocab_median                                              -0.0129 
## transitive_event_typeindirect_caused_action                          -0.3300 
## productive_vocab_median:transitive_event_typeindirect_caused_action  -0.0168 
##                                                                       ci.ub 
## intrcpt                                                              1.6171 
## productive_vocab_median                                              0.0017 
## transitive_event_typeindirect_caused_action                          1.0204 
## productive_vocab_median:transitive_event_typeindirect_caused_action  0.0071 
##  
## intrcpt                                                              *** 
## productive_vocab_median 
## transitive_event_typeindirect_caused_action 
## productive_vocab_median:transitive_event_typeindirect_caused_action 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab age comparsion

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = mean_age, y = d_calc, size = n_1, color = transitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by transitive_event_type") 

m_age_vs_tran_vocab <- rma.mv(d_calc ~ mean_age + transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_vs_tran_old)
## 
## Multivariate Meta-Analysis Model (k = 2; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
##   0.0000   -0.0000    4.0000      -Inf   16.0000   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      1    yes  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 0) = 0.0000, p-val = 1.0000
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.0011, p-val = 0.9736
## 
## Model Results:
## 
##           estimate       se     zval    pval      ci.lb    ci.ub 
## intrcpt    -1.7381  50.2056  -0.0346  0.9724  -100.1393  96.6631    
## mean_age    0.0013   0.0394   0.0331  0.9736    -0.0759   0.0786    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_transtivity_interaction_vocab <- rma.mv(d_calc ~ mean_age * transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_data_transtivity_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.2636   90.5271  100.5271  106.6215  103.6850   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2203  0.4694      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 95.7234, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.5997, p-val = 0.0551
## 
## Model Results:
## 
##                                                       estimate      se     zval 
## intrcpt                                                 1.1911  0.3302   3.6070 
## mean_age                                               -0.0006  0.0003  -1.8151 
## transitive_event_typeindirect_caused_action             0.5459  0.5400   1.0109 
## mean_age:transitive_event_typeindirect_caused_action   -0.0005  0.0006  -0.8806 
##                                                         pval    ci.lb   ci.ub 
## intrcpt                                               0.0003   0.5439  1.8384 
## mean_age                                              0.0695  -0.0012  0.0000 
## transitive_event_typeindirect_caused_action           0.3120  -0.5124  1.6042 
## mean_age:transitive_event_typeindirect_caused_action  0.3785  -0.0017  0.0007 
##  
## intrcpt                                               *** 
## mean_age                                                . 
## transitive_event_typeindirect_caused_action 
## mean_age:transitive_event_typeindirect_caused_action 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

intransitive_event (one vs parallel)

single moderator

m_IE <- rma.mv(d_calc ~ intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_IE)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -62.3608  124.7215  130.7215  135.7882  131.3882   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3583  0.5986     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 179.3311, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1596, p-val = 0.6895
## 
## Model Results:
## 
##                                          estimate      se     zval    pval 
## intrcpt                                    0.6004  0.2218   2.7072  0.0068 
## intransitive_event_typeparallel_actions   -0.0578  0.1446  -0.3995  0.6895 
##                                            ci.lb   ci.ub 
## intrcpt                                   0.1657  1.0351  ** 
## intransitive_event_typeparallel_actions  -0.3411  0.2256     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma_data %>% count(intransitive_event_type) 
## # A tibble: 2 x 2
##   intransitive_event_type     n
##   <chr>                   <int>
## 1 one_action                 14
## 2 parallel_actions           28

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = intransitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by intransitive_event_type") 

m_age_vs_intran <- rma.mv(d_calc ~ mean_age + intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_age_vs_intran)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.9379  117.8757  125.8757  132.5300  127.0522   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3623  0.6019     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 172.4752, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.4195, p-val = 0.0245
## 
## Model Results:
## 
##                                          estimate      se     zval    pval 
## intrcpt                                    1.0275  0.2732   3.7616  0.0002 
## mean_age                                  -0.0007  0.0003  -2.6945  0.0070 
## intransitive_event_typeparallel_actions    0.1052  0.1567   0.6711  0.5021 
##                                            ci.lb    ci.ub 
## intrcpt                                   0.4921   1.5629  *** 
## mean_age                                 -0.0013  -0.0002   ** 
## intransitive_event_typeparallel_actions  -0.2020   0.4124      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_intranstivity_interaction <- rma.mv(d_calc ~ mean_age * intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_data_intranstivity_interaction)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.0204  116.0409  126.0409  134.2288  127.9159   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3525  0.5937     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 167.3711, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 8.0617, p-val = 0.0448
## 
## Model Results:
## 
##                                                   estimate      se     zval 
## intrcpt                                             0.4281  0.7948   0.5386 
## mean_age                                            0.0003  0.0014   0.2366 
## intransitive_event_typeparallel_actions             0.7376  0.8052   0.9161 
## mean_age:intransitive_event_typeparallel_actions   -0.0011  0.0014  -0.8014 
##                                                     pval    ci.lb   ci.ub 
## intrcpt                                           0.5901  -1.1297  1.9859    
## mean_age                                          0.8130  -0.0023  0.0030    
## intransitive_event_typeparallel_actions           0.3596  -0.8405  2.3158    
## mean_age:intransitive_event_typeparallel_actions  0.4229  -0.0039  0.0017    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

young < 36

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = intransitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by intransitive_event_type, young") 

m_age_vs_intran_young <- rma.mv(d_calc ~ mean_age + intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_age_vs_intran_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -59.2379  118.4758  126.4758  132.9194  127.7258   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3641  0.6034     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 171.9146, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.1888, p-val = 0.5519
## 
## Model Results:
## 
##                                          estimate      se     zval    pval 
## intrcpt                                    0.9037  0.4228   2.1373  0.0326 
## mean_age                                  -0.0006  0.0005  -1.0518  0.2929 
## intransitive_event_typeparallel_actions    0.0965  0.1584   0.6089  0.5426 
##                                            ci.lb   ci.ub 
## intrcpt                                   0.0750  1.7323  * 
## mean_age                                 -0.0016  0.0005    
## intransitive_event_typeparallel_actions  -0.2141  0.4070    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_intranstivity_interaction_young <- rma.mv(d_calc ~ mean_age * intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_data_intranstivity_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.4789  116.9579  126.9579  134.8755  128.9579   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3568  0.5974     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 167.3659, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 1.7133, p-val = 0.6340
## 
## Model Results:
## 
##                                                   estimate      se     zval 
## intrcpt                                             0.4024  0.8091   0.4973 
## mean_age                                            0.0003  0.0014   0.2525 
## intransitive_event_typeparallel_actions             0.6920  0.8372   0.8266 
## mean_age:intransitive_event_typeparallel_actions   -0.0011  0.0015  -0.7249 
##                                                     pval    ci.lb   ci.ub 
## intrcpt                                           0.6190  -1.1834  1.9882    
## mean_age                                          0.8007  -0.0023  0.0030    
## intransitive_event_typeparallel_actions           0.4084  -0.9488  2.3328    
## mean_age:intransitive_event_typeparallel_actions  0.4685  -0.0040  0.0018    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

old > 36

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = intransitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by intransitive_event_type, old") 

vocab

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = intransitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median vocab, breakdown by intransitive_event_type") 

m_age_vs_intran_vocab <- rma.mv(d_calc ~ productive_vocab_median + intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_vs_intran_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.9339   91.8677   99.8677  104.9001  101.7725   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2819  0.5309      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 102.2686, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 5.6787, p-val = 0.0585
## 
## Model Results:
## 
##                                          estimate      se     zval    pval 
## intrcpt                                    1.1123  0.2963   3.7540  0.0002 
## productive_vocab_median                   -0.0068  0.0029  -2.3773  0.0174 
## intransitive_event_typeparallel_actions    0.0588  0.1498   0.3923  0.6948 
##                                            ci.lb    ci.ub 
## intrcpt                                   0.5316   1.6930  *** 
## productive_vocab_median                  -0.0124  -0.0012    * 
## intransitive_event_typeparallel_actions  -0.2349   0.3524      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_intranstivity_interaction_vocab <- rma.mv(d_calc ~ productive_vocab_median * intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_data_intranstivity_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -44.7974   89.5949   99.5949  105.6893  102.7528   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2463  0.4963      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 94.0010, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.3754, p-val = 0.0608
## 
## Model Results:
## 
##                                                                  estimate 
## intrcpt                                                            0.7826 
## productive_vocab_median                                            0.0021 
## intransitive_event_typeparallel_actions                            0.3646 
## productive_vocab_median:intransitive_event_typeparallel_actions   -0.0109 
##                                                                      se 
## intrcpt                                                          0.3731 
## productive_vocab_median                                          0.0074 
## intransitive_event_typeparallel_actions                          0.2768 
## productive_vocab_median:intransitive_event_typeparallel_actions  0.0083 
##                                                                     zval 
## intrcpt                                                           2.0974 
## productive_vocab_median                                           0.2860 
## intransitive_event_typeparallel_actions                           1.3171 
## productive_vocab_median:intransitive_event_typeparallel_actions  -1.3106 
##                                                                    pval 
## intrcpt                                                          0.0360 
## productive_vocab_median                                          0.7749 
## intransitive_event_typeparallel_actions                          0.1878 
## productive_vocab_median:intransitive_event_typeparallel_actions  0.1900 
##                                                                    ci.lb 
## intrcpt                                                           0.0513 
## productive_vocab_median                                          -0.0123 
## intransitive_event_typeparallel_actions                          -0.1780 
## productive_vocab_median:intransitive_event_typeparallel_actions  -0.0272 
##                                                                   ci.ub 
## intrcpt                                                          1.5138  * 
## productive_vocab_median                                          0.0165    
## intransitive_event_typeparallel_actions                          0.9072    
## productive_vocab_median:intransitive_event_typeparallel_actions  0.0054    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab age comparsion

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = mean_age, y = d_calc, size = n_1, color = intransitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by intransitive_event_type") 

m_age_vs_intran_vocab <- rma.mv(d_calc ~ mean_age + intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_vs_intran_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.2784   90.5567   98.5567  103.5891  100.4615   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2430  0.4929      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 98.8755, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.3141, p-val = 0.0258
## 
## Model Results:
## 
##                                          estimate      se     zval    pval 
## intrcpt                                    1.2952  0.3085   4.1982  <.0001 
## mean_age                                  -0.0007  0.0003  -2.7003  0.0069 
## intransitive_event_typeparallel_actions    0.1384  0.1570   0.8812  0.3782 
##                                            ci.lb    ci.ub 
## intrcpt                                   0.6905   1.8999  *** 
## mean_age                                 -0.0013  -0.0002   ** 
## intransitive_event_typeparallel_actions  -0.1694   0.4462      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_intranstivity_interaction_vocab <- rma.mv(d_calc ~ mean_age * intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_data_intranstivity_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -44.5744   89.1489   99.1489  105.2433  102.3068   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2503  0.5003      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 93.3137, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.5866, p-val = 0.0554
## 
## Model Results:
## 
##                                                   estimate      se     zval 
## intrcpt                                             0.8844  0.8446   1.0471 
## mean_age                                           -0.0001  0.0013  -0.0474 
## intransitive_event_typeparallel_actions             0.5467  0.7921   0.6901 
## mean_age:intransitive_event_typeparallel_actions   -0.0007  0.0014  -0.5262 
##                                                     pval    ci.lb   ci.ub 
## intrcpt                                           0.2950  -0.7709  2.5396    
## mean_age                                          0.9622  -0.0027  0.0025    
## intransitive_event_typeparallel_actions           0.4901  -1.0059  2.0992    
## mean_age:intransitive_event_typeparallel_actions  0.5988  -0.0035  0.0020    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Visual Stimuli Pair

m_VSP <- rma.mv(d_calc ~ visual_stimuli_pair, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_VSP)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -61.1199  122.2397  134.2397  143.9052  137.0397   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4086  0.6392     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 176.2333, p-val < .0001
## 
## Test of Moderators (coefficients 2:5):
## QM(df = 4) = 0.4912, p-val = 0.9744
## 
## Model Results:
## 
##                                                             estimate      se 
## intrcpt                                                       0.6383  0.2454 
## visual_stimuli_pairdirect_caused_action_parallel_actions     -0.0572  0.1743 
## visual_stimuli_pairindirect_caused_action_one_action         -0.1105  0.3282 
## visual_stimuli_pairindirect_caused_action_parallel_actions   -0.0793  0.1941 
## visual_stimuli_pairminimal_contact_parallel_actions          -0.3895  0.7059 
##                                                                zval    pval 
## intrcpt                                                      2.6011  0.0093 
## visual_stimuli_pairdirect_caused_action_parallel_actions    -0.3280  0.7429 
## visual_stimuli_pairindirect_caused_action_one_action        -0.3367  0.7363 
## visual_stimuli_pairindirect_caused_action_parallel_actions  -0.4084  0.6830 
## visual_stimuli_pairminimal_contact_parallel_actions         -0.5519  0.5810 
##                                                               ci.lb   ci.ub 
## intrcpt                                                      0.1573  1.1192  ** 
## visual_stimuli_pairdirect_caused_action_parallel_actions    -0.3988  0.2844     
## visual_stimuli_pairindirect_caused_action_one_action        -0.7537  0.5327     
## visual_stimuli_pairindirect_caused_action_parallel_actions  -0.4597  0.3011     
## visual_stimuli_pairminimal_contact_parallel_actions         -1.7730  0.9939     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma_data %>% count()
## # A tibble: 1 x 1
##       n
##   <int>
## 1    42

n_repetition_video (??)

single moderator

m_RV <- rma.mv(d_calc ~ n_repetitions_video, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_RV)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -61.7841  123.5683  129.5683  134.6349  130.2350   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3524  0.5936     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 180.4276, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.3773, p-val = 0.5390
## 
## Model Results:
## 
##                      estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                0.7031  0.3084   2.2801  0.0226   0.0987  1.3074  * 
## n_repetitions_video   -0.0445  0.0724  -0.6143  0.5390  -0.1863  0.0974    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma_data %>% ggplot(aes(x = n_repetitions_video)) +
  geom_histogram() 

Testing Procedure

test_method (point vs look)

single moderator

m_TM <- rma.mv(d_calc ~ test_method, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_TM)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -60.1775  120.3549  126.3549  131.4215  127.0216   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2610  0.5108     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 157.2610, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 3.6764, p-val = 0.0552
## 
## Model Results:
## 
##                   estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt             0.4472  0.1682  2.6582  0.0079   0.1175  0.7769  ** 
## test_methodpoint    1.1379  0.5935  1.9174  0.0552  -0.0253  2.3010   . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma_data %>% count(test_method)
## # A tibble: 2 x 2
##   test_method     n
##   <chr>       <int>
## 1 look           40
## 2 point           2

presentation_type

single moderator

m_PT <- rma.mv(d_calc ~ presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_PT)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -60.7455  121.4909  129.4909  136.1452  130.6674   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3708  0.6089     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 177.8636, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.3235, p-val = 0.5159
## 
## Model Results:
## 
##                                   estimate      se     zval    pval    ci.lb 
## intrcpt                             0.6694  0.2168   3.0874  0.0020   0.2445 
## presentation_typeimmediate_after   -0.0732  0.2118  -0.3456  0.7296  -0.4884 
## presentation_typesimultaneous      -0.5711  0.5039  -1.1334  0.2570  -1.5586 
##                                    ci.ub 
## intrcpt                           1.0944  ** 
## presentation_typeimmediate_after  0.3419     
## presentation_typesimultaneous     0.4165     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma_data %>% count(presentation_type)
## # A tibble: 3 x 2
##   presentation_type     n
##   <chr>             <int>
## 1 asynchronous         28
## 2 immediate_after      11
## 3 simultaneous          3

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1,  color = presentation_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by presentation type") 

m_age_pt <- rma.mv(d_calc ~ mean_age + presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_age_pt)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.5458  115.0916  125.0916  133.2795  126.9666   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3624  0.6020     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 169.6358, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 8.2545, p-val = 0.0410
## 
## Model Results:
## 
##                                   estimate      se     zval    pval    ci.lb 
## intrcpt                             1.1687  0.2870   4.0720  <.0001   0.6062 
## mean_age                           -0.0007  0.0003  -2.6291  0.0086  -0.0012 
## presentation_typeimmediate_after   -0.0435  0.2117  -0.2055  0.8372  -0.4585 
## presentation_typesimultaneous      -0.5648  0.4988  -1.1324  0.2574  -1.5424 
##                                     ci.ub 
## intrcpt                            1.7311  *** 
## mean_age                          -0.0002   ** 
## presentation_typeimmediate_after   0.3714      
## presentation_typesimultaneous      0.4128      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pt_interaction <- rma.mv(d_calc ~ mean_age * presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_pt_interaction)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -55.5329  111.0658  125.0658  136.1504  129.0658   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4239  0.6511     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 164.5657, p-val < .0001
## 
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 9.6221, p-val = 0.0867
## 
## Model Results:
## 
##                                            estimate      se     zval    pval 
## intrcpt                                      1.2567  0.3057   4.1104  <.0001 
## mean_age                                    -0.0007  0.0003  -2.6184  0.0088 
## presentation_typeimmediate_after             2.1246  1.9965   1.0642  0.2873 
## presentation_typesimultaneous               -2.3283  2.9907  -0.7785  0.4363 
## mean_age:presentation_typeimmediate_after   -0.0033  0.0030  -1.0927  0.2745 
## mean_age:presentation_typesimultaneous       0.0022  0.0039   0.5691  0.5693 
##                                              ci.lb    ci.ub 
## intrcpt                                     0.6575   1.8559  *** 
## mean_age                                   -0.0012  -0.0002   ** 
## presentation_typeimmediate_after           -1.7885   6.0378      
## presentation_typesimultaneous              -8.1899   3.5334      
## mean_age:presentation_typeimmediate_after  -0.0092   0.0026      
## mean_age:presentation_typesimultaneous     -0.0054   0.0099      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36, young

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1,  color = presentation_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by presentation type, young only") 

m_data_pt_young <- rma.mv(d_calc ~ mean_age + presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)


summary(m_data_pt_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.8145  115.6289  125.6289  133.5465  127.6289   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3641  0.6034     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 168.9109, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 2.1418, p-val = 0.5435
## 
## Model Results:
## 
##                                   estimate      se     zval    pval    ci.lb 
## intrcpt                             1.0018  0.4308   2.3251  0.0201   0.1573 
## mean_age                           -0.0004  0.0005  -0.8535  0.3934  -0.0014 
## presentation_typeimmediate_after   -0.0556  0.2131  -0.2608  0.7943  -0.4731 
## presentation_typesimultaneous      -0.5729  0.5001  -1.1456  0.2520  -1.5530 
##                                    ci.ub 
## intrcpt                           1.8462  * 
## mean_age                          0.0006    
## presentation_typeimmediate_after  0.3620    
## presentation_typesimultaneous     0.4072    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pt_interaction_young <- rma.mv(d_calc ~ mean_age * presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_pt_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -55.8108  111.6216  125.6216  136.3061  129.9293   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4287  0.6548     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 34) = 164.0161, p-val < .0001
## 
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 3.5293, p-val = 0.6190
## 
## Model Results:
## 
##                                            estimate      se     zval    pval 
## intrcpt                                      1.0844  0.4453   2.4350  0.0149 
## mean_age                                    -0.0004  0.0005  -0.8137  0.4158 
## presentation_typeimmediate_after             2.1965  2.0062   1.0948  0.2736 
## presentation_typesimultaneous               -2.1559  3.0230  -0.7132  0.4757 
## mean_age:presentation_typeimmediate_after   -0.0034  0.0030  -1.1290  0.2589 
## mean_age:presentation_typesimultaneous       0.0020  0.0039   0.5005  0.6167 
##                                              ci.lb   ci.ub 
## intrcpt                                     0.2115  1.9572  * 
## mean_age                                   -0.0014  0.0006    
## presentation_typeimmediate_after           -1.7356  6.1287    
## presentation_typesimultaneous              -8.0810  3.7691    
## mean_age:presentation_typeimmediate_after  -0.0093  0.0025    
## mean_age:presentation_typesimultaneous     -0.0058  0.0097    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1,  color = presentation_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by presentation type, young only") 

vocab

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1,  color = presentation_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median vocab, breakdown by presentation type") 

m_pt_vocab <- rma.mv(d_calc ~ productive_vocab_median + presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_pt_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.6960   91.3921   99.3921  104.4244  101.2968   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2835  0.5325      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 101.3938, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 5.5859, p-val = 0.0612
## 
## Model Results:
## 
##                                   estimate      se     zval    pval    ci.lb 
## intrcpt                             1.1307  0.2914   3.8805  0.0001   0.5596 
## productive_vocab_median            -0.0067  0.0028  -2.3534  0.0186  -0.0122 
## presentation_typeimmediate_after    0.0568  0.2315   0.2453  0.8062  -0.3969 
##                                     ci.ub 
## intrcpt                            1.7018  *** 
## productive_vocab_median           -0.0011    * 
## presentation_typeimmediate_after   0.5104      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_pt_vocab_interaction <- rma.mv(d_calc ~ productive_vocab_median * presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_pt_vocab_interaction)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.6015   91.2030  101.2030  107.2973  104.3608   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2955  0.5436      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 101.3912, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 5.7505, p-val = 0.1244
## 
## Model Results:
## 
##                                                           estimate      se 
## intrcpt                                                     1.1477  0.2976 
## productive_vocab_median                                    -0.0070  0.0029 
## presentation_typeimmediate_after                           -0.1292  0.5193 
## productive_vocab_median:presentation_typeimmediate_after    0.0053  0.0132 
##                                                              zval    pval 
## intrcpt                                                    3.8568  0.0001 
## productive_vocab_median                                   -2.3826  0.0172 
## presentation_typeimmediate_after                          -0.2488  0.8035 
## productive_vocab_median:presentation_typeimmediate_after   0.3992  0.6898 
##                                                             ci.lb    ci.ub 
## intrcpt                                                    0.5645   1.7310  *** 
## productive_vocab_median                                   -0.0127  -0.0012    * 
## presentation_typeimmediate_after                          -1.1469   0.8886      
## productive_vocab_median:presentation_typeimmediate_after  -0.0206   0.0312      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab age comparsion

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = mean_age, y = d_calc, size = n_1,  color = presentation_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("mean age ") +
  ggtitle("Syntactical Bootstrapping effect size vs. mean age, breakdown by presentation type") 

m_pt_vocab_a <- rma.mv(d_calc ~ mean_age + presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_pt_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.4452   90.8903   98.8903  103.9227  100.7951   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2591  0.5091      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 98.8716, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.5411, p-val = 0.0380
## 
## Model Results:
## 
##                                   estimate      se     zval    pval    ci.lb 
## intrcpt                             1.3225  0.3159   4.1869  <.0001   0.7034 
## mean_age                           -0.0007  0.0003  -2.5492  0.0108  -0.0012 
## presentation_typeimmediate_after   -0.0171  0.2268  -0.0755  0.9398  -0.4617 
##                                     ci.ub 
## intrcpt                            1.9416  *** 
## mean_age                          -0.0002    * 
## presentation_typeimmediate_after   0.4275      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_pt_vocab_a_interaction <- rma.mv(d_calc ~ mean_age * presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_pt_vocab_a_interaction)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.3403   90.6805  100.6805  106.7749  103.8384   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2689  0.5186      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 98.4911, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 6.5525, p-val = 0.0876
## 
## Model Results:
## 
##                                            estimate       se     zval    pval 
## intrcpt                                      1.3279   0.3199   4.1512  <.0001 
## mean_age                                    -0.0007   0.0003  -2.5507  0.0108 
## presentation_typeimmediate_after            -1.2504  11.1334  -0.1123  0.9106 
## mean_age:presentation_typeimmediate_after    0.0019   0.0174   0.1107  0.9118 
##                                               ci.lb    ci.ub 
## intrcpt                                      0.7010   1.9549  *** 
## mean_age                                    -0.0012  -0.0002    * 
## presentation_typeimmediate_after           -23.0715  20.5707      
## mean_age:presentation_typeimmediate_after   -0.0321   0.0360      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

character_identification

single moderator

m_CI <- rma.mv(d_calc ~ character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_CI)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -61.4733  122.9467  128.9467  134.0133  129.6133   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3999  0.6324     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 181.0760, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.2315, p-val = 0.6304
## 
## Model Results:
## 
##                              estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                        0.4910  0.2362  2.0788  0.0376   0.0281  0.9539 
## character_identificationyes    0.1998  0.4153  0.4811  0.6304  -0.6142  1.0139 
##  
## intrcpt                      * 
## character_identificationyes 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma_data %>% count(character_identification)
## # A tibble: 2 x 2
##   character_identification     n
##   <chr>                    <int>
## 1 no                          34
## 2 yes                          8

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = character_identification)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by character_identification") 

m_age_ci <- rma.mv(d_calc ~ mean_age + character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_age_ci)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.2226  116.4451  124.4451  131.0994  125.6216   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3898  0.6243     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 171.0139, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.2531, p-val = 0.0266
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb 
## intrcpt                        0.9951  0.3013   3.3025  0.0010   0.4045 
## mean_age                      -0.0007  0.0003  -2.6493  0.0081  -0.0012 
## character_identificationyes    0.2228  0.4108   0.5423  0.5876  -0.5823 
##                                ci.ub 
## intrcpt                       1.5857  *** 
## mean_age                     -0.0002   ** 
## character_identificationyes   1.0279      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_stimuli_ci_interaction <- rma.mv(d_calc ~ mean_age * character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_stimuli_ci_interaction)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -55.2000  110.4001  120.4001  128.5880  122.2751   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3124  0.5589     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 160.5083, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 12.2078, p-val = 0.0067
## 
## Model Results:
## 
##                                       estimate      se     zval    pval 
## intrcpt                                 0.9553  0.2849   3.3531  0.0008 
## mean_age                               -0.0006  0.0003  -2.4627  0.0138 
## character_identificationyes             5.4901  2.4152   2.2731  0.0230 
## mean_age:character_identificationyes   -0.0067  0.0030  -2.2110  0.0270 
##                                         ci.lb    ci.ub 
## intrcpt                                0.3969   1.5137  *** 
## mean_age                              -0.0011  -0.0001    * 
## character_identificationyes            0.7564  10.2239    * 
## mean_age:character_identificationyes  -0.0127  -0.0008    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36, young

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = character_identification)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by character_identification, young only") 

m_age_ci_young <- rma.mv(d_calc ~ mean_age + character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_age_ci_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.5412  117.0824  125.0824  131.5260  126.3324   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3936  0.6274     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 170.9711, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.0718, p-val = 0.5852
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                        0.8547  0.4398   1.9432  0.0520  -0.0074  1.7167 
## mean_age                      -0.0005  0.0005  -0.9353  0.3497  -0.0015  0.0005 
## character_identificationyes    0.2105  0.4135   0.5091  0.6107  -0.6000  1.0211 
##  
## intrcpt                      . 
## mean_age 
## character_identificationyes 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_ci_interaction_young <- rma.mv(d_calc ~ mean_age * character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_ci_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -55.3377  110.6753  120.6753  128.5929  122.6753   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3054  0.5527     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 159.9117, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 6.4630, p-val = 0.0911
## 
## Model Results:
## 
##                                       estimate      se     zval    pval 
## intrcpt                                 0.7066  0.4283   1.6498  0.0990 
## mean_age                               -0.0003  0.0005  -0.5496  0.5826 
## character_identificationyes             5.7332  2.4227   2.3664  0.0180 
## mean_age:character_identificationyes   -0.0071  0.0031  -2.3109  0.0208 
##                                         ci.lb    ci.ub 
## intrcpt                               -0.1328   1.5461  . 
## mean_age                              -0.0013   0.0007    
## character_identificationyes            0.9847  10.4817  * 
## mean_age:character_identificationyes  -0.0130  -0.0011  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = character_identification)) +
  geom_point() +
   geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by character_identification, old only") 

vocab

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = character_identification)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median voca, breakdown by character_identification, old only") 

m_age_ci_vocab <- rma.mv(d_calc ~ productive_vocab_median + character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_ci_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -43.4223   86.8447   94.8447   99.8771   96.7494   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.1053  0.3245      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 90.8078, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 10.1358, p-val = 0.0063
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb 
## intrcpt                        0.8765  0.2245   3.9045  <.0001   0.4365 
## productive_vocab_median       -0.0059  0.0027  -2.1387  0.0325  -0.0113 
## character_identificationyes    1.2784  0.5772   2.2147  0.0268   0.1470 
##                                ci.ub 
## intrcpt                       1.3165  *** 
## productive_vocab_median      -0.0005    * 
## character_identificationyes   2.4098    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_ci_interaction_vocab <- rma.mv(d_calc ~ productive_vocab_median * character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_ci_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.6415   85.2830   95.2830  101.3774   98.4409   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.1054  0.3247      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 90.1698, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 10.7738, p-val = 0.0130
## 
## Model Results:
## 
##                                                      estimate       se     zval 
## intrcpt                                                0.8770   0.2246   3.9056 
## productive_vocab_median                               -0.0059   0.0027  -2.1425 
## character_identificationyes                          -12.3557  17.0514  -0.7246 
## productive_vocab_median:character_identificationyes    0.4771   0.5963   0.8000 
##                                                        pval     ci.lb    ci.ub 
## intrcpt                                              <.0001    0.4369   1.3171 
## productive_vocab_median                              0.0322   -0.0113  -0.0005 
## character_identificationyes                          0.4687  -45.7758  21.0644 
## productive_vocab_median:character_identificationyes  0.4237   -0.6917   1.6458 
##  
## intrcpt                                              *** 
## productive_vocab_median                                * 
## character_identificationyes 
## productive_vocab_median:character_identificationyes 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

age w/ vocab comparison

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = mean_age, y = d_calc, size = n_1, color = character_identification)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by character_identification, old only") 

m_age_ci_vocab_a <- rma.mv(d_calc ~ mean_age + character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_ci_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.7953   85.5907   93.5907   98.6231   95.4955   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0689  0.2626      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 87.9091, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 12.7424, p-val = 0.0017
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb 
## intrcpt                        1.0487  0.2436   4.3040  <.0001   0.5711 
## mean_age                      -0.0006  0.0003  -2.4614  0.0138  -0.0011 
## character_identificationyes    1.3323  0.5347   2.4918  0.0127   0.2843 
##                                ci.ub 
## intrcpt                       1.5262  *** 
## mean_age                     -0.0001    * 
## character_identificationyes   2.3802    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_ci_interaction_vocab_a <- rma.mv(d_calc ~ mean_age * character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_ci_interaction_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.0190   84.0380   94.0380  100.1323   97.1959   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0689  0.2626      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 87.2777, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 13.3732, p-val = 0.0039
## 
## Model Results:
## 
##                                       estimate       se     zval    pval 
## intrcpt                                 1.0489   0.2437   4.3050  <.0001 
## mean_age                               -0.0006   0.0003  -2.4628  0.0138 
## character_identificationyes           -72.1316  92.4738  -0.7800  0.4354 
## mean_age:character_identificationyes    0.1167   0.1469   0.7944  0.4269 
##                                           ci.lb     ci.ub 
## intrcpt                                  0.5714    1.5265  *** 
## mean_age                                -0.0011   -0.0001    * 
## character_identificationyes           -253.3769  109.1137      
## mean_age:character_identificationyes    -0.1712    0.4047      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

practice_phase

single moderator

m_PP <- rma.mv(d_calc ~ practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_PP)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -61.7978  123.5957  129.5957  134.6623  130.2623   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4533  0.6733     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 172.6382, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.4533, p-val = 0.2280
## 
## Model Results:
## 
##                    estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt              0.6382  0.2155   2.9613  0.0031   0.2158  1.0606  ** 
## practice_phaseyes   -0.1665  0.1381  -1.2055  0.2280  -0.4371  0.1042     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = practice_phase)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by practice_phase") 

m_age_pp <- rma.mv(d_calc ~ mean_age + character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_age_pp)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.2226  116.4451  124.4451  131.0994  125.6216   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3898  0.6243     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 171.0139, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.2531, p-val = 0.0266
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb 
## intrcpt                        0.9951  0.3013   3.3025  0.0010   0.4045 
## mean_age                      -0.0007  0.0003  -2.6493  0.0081  -0.0012 
## character_identificationyes    0.2228  0.4108   0.5423  0.5876  -0.5823 
##                                ci.ub 
## intrcpt                       1.5857  *** 
## mean_age                     -0.0002   ** 
## character_identificationyes   1.0279      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pp_interaction <- rma.mv(d_calc ~ mean_age * character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_pp_interaction)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -55.2000  110.4001  120.4001  128.5880  122.2751   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3124  0.5589     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 160.5083, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 12.2078, p-val = 0.0067
## 
## Model Results:
## 
##                                       estimate      se     zval    pval 
## intrcpt                                 0.9553  0.2849   3.3531  0.0008 
## mean_age                               -0.0006  0.0003  -2.4627  0.0138 
## character_identificationyes             5.4901  2.4152   2.2731  0.0230 
## mean_age:character_identificationyes   -0.0067  0.0030  -2.2110  0.0270 
##                                         ci.lb    ci.ub 
## intrcpt                                0.3969   1.5137  *** 
## mean_age                              -0.0011  -0.0001    * 
## character_identificationyes            0.7564  10.2239    * 
## mean_age:character_identificationyes  -0.0127  -0.0008    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36, young

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = practice_phase)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by practice_phase, young only") 

m_age_pp_young <- rma.mv(d_calc ~ mean_age + practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_age_pp_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.8727  115.7454  123.7454  130.1891  124.9954   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2274  0.4769     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 147.0687, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 4.2355, p-val = 0.1203
## 
## Model Results:
## 
##                    estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt              1.2591  0.4495   2.8011  0.0051   0.3781  2.1401  ** 
## mean_age            -0.0012  0.0006  -1.8612  0.0627  -0.0024  0.0001   . 
## practice_phaseyes    0.3731  0.2029   1.8394  0.0659  -0.0245  0.7707   . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pp_interaction_young <- rma.mv(d_calc ~ mean_age * practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_pp_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -56.8491  113.6982  123.6982  131.6158  125.6982   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2434  0.4934     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 146.8482, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 5.0994, p-val = 0.1647
## 
## Model Results:
## 
##                             estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                       1.8415  0.7161   2.5716  0.0101   0.4380  3.2451 
## mean_age                     -0.0020  0.0010  -1.9543  0.0507  -0.0041  0.0000 
## practice_phaseyes            -0.7841  1.1023  -0.7113  0.4769  -2.9446  1.3764 
## mean_age:practice_phaseyes    0.0017  0.0016   1.0592  0.2895  -0.0014  0.0048 
##  
## intrcpt                     * 
## mean_age                    . 
## practice_phaseyes 
## mean_age:practice_phaseyes 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = practice_phase)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by practice_phase, old only") 

vocab

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = practice_phase)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("productive vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. productive vocab, breakdown by practice_phase, old only") 

m_age_pp_vocab <- rma.mv(d_calc ~ productive_vocab_median + practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_pp_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.5790   91.1579   99.1579  104.1903  101.0627   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2482  0.4982      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 96.9734, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 5.8414, p-val = 0.0539
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    1.1202  0.2771   4.0421  <.0001   0.5770  1.6634 
## productive_vocab_median   -0.0092  0.0054  -1.7139  0.0865  -0.0197  0.0013 
## practice_phaseyes          0.1607  0.2760   0.5824  0.5603  -0.3802  0.7017 
##  
## intrcpt                  *** 
## productive_vocab_median    . 
## practice_phaseyes 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pp_interaction_vocab <- rma.mv(d_calc ~ productive_vocab_median * practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_pp_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.4813   90.9626  100.9626  107.0570  104.1205   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2533  0.5033      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 96.6515, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 6.3738, p-val = 0.0948
## 
## Model Results:
## 
##                                            estimate      se     zval    pval 
## intrcpt                                      0.6983  0.6426   1.0866  0.2772 
## productive_vocab_median                      0.0143  0.0325   0.4400  0.6600 
## practice_phaseyes                            0.5680  0.6232   0.9115  0.3620 
## productive_vocab_median:practice_phaseyes   -0.0232  0.0317  -0.7320  0.4642 
##                                              ci.lb   ci.ub 
## intrcpt                                    -0.5612  1.9577    
## productive_vocab_median                    -0.0494  0.0781    
## practice_phaseyes                          -0.6534  1.7894    
## productive_vocab_median:practice_phaseyes  -0.0853  0.0389    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

age w/ vocab comparsion

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = mean_age, y = d_calc, size = n_1, color = practice_phase)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("mean age") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by practice_phase, old only") 

m_age_pp_vocab_a <- rma.mv(d_calc ~ mean_age + practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_pp_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.3154   90.6309   98.6309  103.6633  100.5357   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2027  0.4502      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 93.1252, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.9808, p-val = 0.0305
## 
## Model Results:
## 
##                    estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt              1.3456  0.3016   4.4613  <.0001   0.7544   1.9367  *** 
## mean_age            -0.0009  0.0004  -2.0607  0.0393  -0.0017  -0.0000    * 
## practice_phaseyes    0.1579  0.2385   0.6618  0.5081  -0.3097   0.6254      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pp_interaction_vocab_a <- rma.mv(d_calc ~ mean_age * practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_pp_interaction_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -45.1723   90.3445  100.3445  106.4389  103.5024   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.1842  0.4292      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 92.2011, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.3474, p-val = 0.0616
## 
## Model Results:
## 
##                             estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                       0.7675  1.0653   0.7205  0.4712  -1.3205  2.8556 
## mean_age                      0.0002  0.0019   0.0799  0.9363  -0.0036  0.0039 
## practice_phaseyes             0.8638  1.2688   0.6808  0.4960  -1.6229  3.3505 
## mean_age:practice_phaseyes   -0.0012  0.0021  -0.5596  0.5757  -0.0054  0.0030 
##  
## intrcpt 
## mean_age 
## practice_phaseyes 
## mean_age:practice_phaseyes 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

test_or_mass_distributed

single moderator

m_TMD <- rma.mv(d_calc ~ test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_TMD)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -61.2996  122.5992  128.5992  133.6659  129.2659   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3940  0.6277     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 178.6641, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.2020, p-val = 0.6531
## 
## Model Results:
## 
##                               estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                         0.4935  0.2367  2.0845  0.0371   0.0295  0.9574 
## test_mass_or_distributedmass    0.1837  0.4087  0.4494  0.6531  -0.6174  0.9848 
##  
## intrcpt                       * 
## test_mass_or_distributedmass 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = test_mass_or_distributed)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by test type") 

m_age_tt <- rma.mv(d_calc ~ mean_age + test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_age_tt)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.1412  116.2823  124.2823  130.9366  125.4588   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3920  0.6261     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 39) = 171.5749, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.0816, p-val = 0.0290
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         1.0143  0.3087   3.2862  0.0010   0.4094 
## mean_age                       -0.0007  0.0003  -2.6227  0.0087  -0.0012 
## test_mass_or_distributedmass    0.1433  0.4081   0.3511  0.7255  -0.6566 
##                                 ci.ub 
## intrcpt                        1.6193  ** 
## mean_age                      -0.0002  ** 
## test_mass_or_distributedmass   0.9432     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_tt_interaction <- rma.mv(d_calc ~ mean_age * test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_tt_interaction)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.0026  114.0051  124.0051  132.1930  125.8801   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4486  0.6697     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 38) = 171.5736, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.9704, p-val = 0.0466
## 
## Model Results:
## 
##                                        estimate      se     zval    pval 
## intrcpt                                  2.9486  2.0323   1.4509  0.1468 
## mean_age                                -0.0031  0.0026  -1.2147  0.2245 
## test_mass_or_distributedmass            -1.8049  2.0710  -0.8715  0.3835 
## mean_age:test_mass_or_distributedmass    0.0025  0.0026   0.9611  0.3365 
##                                          ci.lb   ci.ub 
## intrcpt                                -1.0346  6.9317    
## mean_age                               -0.0082  0.0019    
## test_mass_or_distributedmass           -5.8639  2.2541    
## mean_age:test_mass_or_distributedmass  -0.0026  0.0076    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36, young

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = test_mass_or_distributed)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by test_mass_or_distributed, young only") 

m_age_tt_young <- rma.mv(d_calc ~ mean_age + test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_age_tt_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -58.4923  116.9846  124.9846  131.4283  126.2346   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3903  0.6247     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 37) = 168.6961, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.9872, p-val = 0.6104
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.8303  0.4659   1.7823  0.0747  -0.0828 
## mean_age                       -0.0004  0.0005  -0.8393  0.4013  -0.0014 
## test_mass_or_distributedmass    0.1714  0.4108   0.4172  0.6765  -0.6337 
##                                ci.ub 
## intrcpt                       1.7434  . 
## mean_age                      0.0006    
## test_mass_or_distributedmass  0.9765    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_tt_interaction_young <- rma.mv(d_calc ~ mean_age * test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_tt_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 40; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -57.2803  114.5607  124.5607  132.4782  126.5607   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4407  0.6638     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 36) = 168.2898, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 2.0943, p-val = 0.5531
## 
## Model Results:
## 
##                                        estimate      se     zval    pval 
## intrcpt                                  2.9321  2.0203   1.4513  0.1467 
## mean_age                                -0.0031  0.0026  -1.2140  0.2247 
## test_mass_or_distributedmass            -2.0022  2.0813  -0.9620  0.3361 
## mean_age:test_mass_or_distributedmass    0.0028  0.0026   1.0665  0.2862 
##                                          ci.lb   ci.ub 
## intrcpt                                -1.0276  6.8918    
## mean_age                               -0.0082  0.0019    
## test_mass_or_distributedmass           -6.0815  2.0771    
## mean_age:test_mass_or_distributedmass  -0.0023  0.0079    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = test_mass_or_distributed)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by test_mass_or_distributed, old only") 

vocab

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = test_mass_or_distributed)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median voca, breakdown by test_mass_or_distributed, old only") 

m_age_tt_vocab <- rma.mv(d_calc ~ productive_vocab_median + test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_tt_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -43.4223   86.8447   94.8447   99.8771   96.7494   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.1053  0.3245      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 90.8078, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 10.1358, p-val = 0.0063
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         2.1549  0.5487   3.9275  <.0001   1.0795 
## productive_vocab_median        -0.0059  0.0027  -2.1387  0.0325  -0.0113 
## test_mass_or_distributedmass   -1.2784  0.5772  -2.2147  0.0268  -2.4098 
##                                 ci.ub 
## intrcpt                        3.2303  *** 
## productive_vocab_median       -0.0005    * 
## test_mass_or_distributedmass  -0.1470    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_tt_interaction_vocab <- rma.mv(d_calc ~ productive_vocab_median * test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_tt_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.6415   85.2830   95.2830  101.3774   98.4409   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.1054  0.3247      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 90.1698, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 10.7738, p-val = 0.0130
## 
## Model Results:
## 
##                                                       estimate       se 
## intrcpt                                               -11.4787  17.0499 
## productive_vocab_median                                 0.4712   0.5963 
## test_mass_or_distributedmass                           12.3557  17.0514 
## productive_vocab_median:test_mass_or_distributedmass   -0.4771   0.5963 
##                                                          zval    pval     ci.lb 
## intrcpt                                               -0.6732  0.5008  -44.8959 
## productive_vocab_median                                0.7902  0.4294   -0.6975 
## test_mass_or_distributedmass                           0.7246  0.4687  -21.0644 
## productive_vocab_median:test_mass_or_distributedmass  -0.8000  0.4237   -1.6458 
##                                                         ci.ub 
## intrcpt                                               21.9385    
## productive_vocab_median                                1.6399    
## test_mass_or_distributedmass                          45.7758    
## productive_vocab_median:test_mass_or_distributedmass   0.6917    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

age w/ vocab comparison

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = mean_age, y = d_calc, size = n_1, color = test_mass_or_distributed)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by test_mass_or_distributed, old only") 

m_age_tt_vocab_a <- rma.mv(d_calc ~ mean_age + test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_tt_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.7953   85.5907   93.5907   98.6231   95.4955   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0689  0.2626      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 87.9091, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 12.7424, p-val = 0.0017
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         2.3810  0.5330   4.4668  <.0001   1.3362 
## mean_age                       -0.0006  0.0003  -2.4614  0.0138  -0.0011 
## test_mass_or_distributedmass   -1.3323  0.5347  -2.4918  0.0127  -2.3802 
##                                 ci.ub 
## intrcpt                        3.4257  *** 
## mean_age                      -0.0001    * 
## test_mass_or_distributedmass  -0.2843    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_tt_interaction_vocab_a <- rma.mv(d_calc ~ mean_age * test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_tt_interaction_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 29; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.0190   84.0380   94.0380  100.1323   97.1959   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0689  0.2626      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 25) = 87.2777, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 13.3732, p-val = 0.0039
## 
## Model Results:
## 
##                                        estimate       se     zval    pval 
## intrcpt                                -71.0827  92.4735  -0.7687  0.4421 
## mean_age                                 0.1161   0.1469   0.7902  0.4294 
## test_mass_or_distributedmass            72.1316  92.4738   0.7800  0.4354 
## mean_age:test_mass_or_distributedmass   -0.1167   0.1469  -0.7944  0.4269 
##                                            ci.lb     ci.ub 
## intrcpt                                -252.3274  110.1620    
## mean_age                                 -0.1719    0.4040    
## test_mass_or_distributedmass           -109.1137  253.3769    
## mean_age:test_mass_or_distributedmass    -0.4047    0.1712    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

n_train_test_pair

single moderator

m_TTP <- rma.mv(d_calc ~ n_train_test_pair, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_TTP)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -61.3100  122.6199  128.6199  133.6866  129.2866   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3927  0.6266     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 178.7744, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.3392, p-val = 0.5603
## 
## Model Results:
## 
##                    estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt              0.7673  0.4124   1.8605  0.0628  -0.0410  1.5757  . 
## n_train_test_pair   -0.0841  0.1444  -0.5824  0.5603  -0.3671  0.1989    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma_data %>% ggplot(aes(x = n_train_test_pair)) +
  geom_histogram() 

n_test_trial

single moderator

m_TeT <- rma.mv(d_calc ~ n_test_trial_per_pair, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_TeT)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -62.4460  124.8919  130.8919  135.9586  131.5586   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3589  0.5990     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 178.8760, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.1984, p-val = 0.6560
## 
## Model Results:
## 
##                        estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                  0.4696  0.2612  1.7979  0.0722  -0.0423  0.9815  . 
## n_test_trial_per_pair    0.0458  0.1028  0.4455  0.6560  -0.1557  0.2473    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ma_data %>% ggplot(aes(x = n_test_trial_per_pair)) +
  geom_histogram() 

Single Moderator

summary(m_age)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -59.3060  118.6119  124.6119  129.6785  125.2786   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3531  0.5942     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 40) = 172.5325, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 6.9726, p-val = 0.0083
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt     1.0613  0.2667   3.9788  <.0001   0.5385   1.5842  *** 
## mean_age   -0.0007  0.0003  -2.6406  0.0083  -0.0012  -0.0002   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
s_age <- coef(summary(m_age))  %>% rownames_to_column(var = "coefficient_name")
s_vocab <- coef(summary(m_vocab))  %>% rownames_to_column(var = "coefficient_name")
s_rep <- coef(summary(m_rep)) %>% rownames_to_column(var = "coefficient_name")
s_SS <- coef(summary(m_SS))  %>% rownames_to_column(var = "coefficient_name")
s_AAT <- coef(summary(m_AAT))  %>% rownames_to_column(var = "coefficient_name")
s_PAT <- coef(summary(m_PAT))  %>% rownames_to_column(var = "coefficient_name")
s_AAN <- coef(summary(m_AAN))  %>% rownames_to_column(var = "coefficient_name")
s_SM <- coef(summary(m_SM))  %>% rownames_to_column(var = "coefficient_name")
s_SA <- coef(summary(m_SA))  %>% rownames_to_column(var = "coefficient_name")
s_TE <- coef(summary(m_TE))  %>% rownames_to_column(var = "coefficient_name")
s_IE <- coef(summary(m_IE))  %>% rownames_to_column(var = "coefficient_name")
s_VSP <- coef(summary(m_VSP))  %>% rownames_to_column(var = "coefficient_name")
s_RV <- coef(summary(m_RV))  %>% rownames_to_column(var = "coefficient_name")
s_TM <- coef(summary(m_TM))  %>% rownames_to_column(var = "coefficient_name")
s_PT <- coef(summary(m_PT))  %>% rownames_to_column(var = "coefficient_name")
s_CI <- coef(summary(m_CI))  %>% rownames_to_column(var = "coefficient_name")
s_PP <- coef(summary(m_PP))  %>% rownames_to_column(var = "coefficient_name")
s_TMD <- coef(summary(m_TMD))  %>% rownames_to_column(var = "coefficient_name")
s_TTP <- coef(summary(m_TTP))  %>% rownames_to_column(var = "coefficient_name")
s_TeT <- coef(summary(m_TeT))  %>% rownames_to_column(var = "coefficient_name")


s_moderators <- bind_rows(s_age, s_vocab, s_SS,s_AAT,s_PAT,s_AAN,s_SM,s_SA,s_TE,s_IE,s_VSP,s_RV,s_TM,s_PT,s_CI,s_PP,s_TMD,s_TTP,s_TeT
) %>% filter(coefficient_name != "intrcpt") %>% 
  mutate(moderator_types = case_when(
    coefficient_name == "mean_age" ~ "Participants_Characteristics",
    coefficient_name == "productive_vocab_median" ~ "Participants_Characteristics",
    coefficient_name == "sentence_structuretransitive" ~ "Linguistic_Stimuli", 
    coefficient_name == "agent_argument_type_cleannoun_phrase" ~ "Linguistic_Stimuli", 
    coefficient_name == "agent_argument_type_cleanpronoun" ~ "Linguistic_Stimuli", 
    coefficient_name == "agent_argument_type_cleanvarying_agent" ~ "Linguistic_Stimuli", 
    coefficient_name == "patient_argument_type_cleannoun"~ "Linguistic_Stimuli", 
    coefficient_name == "patient_argument_type_cleannoun_phrase"~ "Linguistic_Stimuli", 
    coefficient_name == "patient_argument_type_cleanpronoun"~ "Linguistic_Stimuli", 
    coefficient_name == "patient_argument_type_cleanvarying_patient"~ "Linguistic_Stimuli", 
    coefficient_name == "agent_argument_number2"~ "Linguistic_Stimuli", 
    coefficient_name == "agent_argument_numbervarying"~ "Linguistic_Stimuli", 
    coefficient_name == "n_repetitions_sentence"~ "Linguistic_Stimuli", 
    coefficient_name == "patient_argument_type_cleanvarying_patient"~ "Linguistic_Stimuli",
    coefficient_name == "n_repetitions_video"~ "Visual_Stimuli",
    coefficient_name == "stimuli_modalityvideo" ~ "Visual_Stimuli",
    coefficient_name == "stimuli_actorperson" ~ "Visual_Stimuli",
    coefficient_name == "transitive_event_typeindirect_caused_action" ~ "Visual_Stimuli",
    coefficient_name == "transitive_event_typeminimal_contact" ~ "Visual_Stimuli",
    coefficient_name == "intransitive_event_typeone_action" ~ "Visual_Stimuli",
    coefficient_name == "intransitive_event_typeparallel_actions" ~ "Visual_Stimuli",
    coefficient_name == "visual_stimuli_pairdirect_caused_action_one_action" ~ "Visual_Stimuli",
    coefficient_name == "visual_stimuli_pairdirect_caused_action_parallel_actions" ~ "Visual_Stimuli",
    coefficient_name == "visual_stimuli_pairindirect_caused_action_one_action" ~ "Visual_Stimuli",
    coefficient_name == "visual_stimuli_pairindirect_caused_action_parallel_actions" ~ "Visual_Stimuli",
    coefficient_name == "visual_stimuli_pairminimal_contact_one_action" ~ "Visual_Stimuli",
    coefficient_name == "visual_stimuli_pairminimal_contact_parallel_actions" ~ "Visual_Stimuli",
    coefficient_name == "test_methodpoint" ~ "Test_Procedure",
    coefficient_name == "presentation_typeimmediate_after" ~ "Test_Procedure",
    coefficient_name == "presentation_typesimultaneous" ~ "Test_Procedure",
    coefficient_name == "character_identificationyes" ~ "Test_Procedure",
    coefficient_name == "practice_phaseyes" ~ "Test_Procedure",
    coefficient_name == "test_mass_or_distributedmass" ~ "Test_Procedure",
    coefficient_name == "n_train_test_pair" ~ "Test_Procedure",
    coefficient_name == "n_test_trial_per_pair" ~ "Test_Procedure",
  )
)
s_moderators %>% filter(moderator_types == "Participants_Characteristics") %>% 
  ggplot(aes(x = coefficient_name, y = estimate)) + 
  geom_point(size = 2) + 
  geom_linerange(aes(ymin = ci.lb, ymax = ci.ub)) + 
  geom_hline(aes(yintercept = 0), linetype = 2) + 
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

s_moderators %>% filter(moderator_types == "Linguistic_Stimuli") %>% 
  ggplot(aes(x = coefficient_name, y = estimate)) + 
  geom_point(size = 2) + 
  geom_linerange(aes(ymin = ci.lb, ymax = ci.ub)) + 
  geom_hline(aes(yintercept = 0), linetype = 2) +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

s_moderators %>% filter(moderator_types == "Visual_Stimuli") %>% 
  ggplot(aes(x = coefficient_name, y = estimate)) + 
  geom_point(size = 2) + 
  geom_linerange(aes(ymin = ci.lb, ymax = ci.ub)) + 
  geom_hline(aes(yintercept = 0), linetype = 2) + 
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

s_moderators %>% filter(moderator_types == "Test_Procedure") %>% 
  ggplot(aes(x = coefficient_name, y = estimate)) + 
  geom_point(size = 2) + 
  geom_linerange(aes(ymin = ci.lb, ymax = ci.ub)) + 
  geom_hline(aes(yintercept = 0), linetype = 2) + 
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

s_moderators %>% 
  ggplot(aes(x = coefficient_name, y = estimate, color = moderator_types)) + 
  geom_point(size = 2) + 
  geom_linerange(aes(ymin = ci.lb, ymax = ci.ub)) + 
  geom_hline(aes(yintercept = 0), linetype = 2) + 
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) 

Reasonalbe Moderators (??)

null <- rma.mv(d_calc~1, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(null)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -62.5424  125.0848  129.0848  132.5119  129.4006   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3591  0.5992     12     no  short_cite 
## 
## Test for Heterogeneity:
## Q(df = 41) = 181.5424, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.5517  0.1852  2.9783  0.0029  0.1886  0.9147  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_sink <- rma.mv(d_calc ~ mean_age + sentence_structure + agent_argument_type_clean + agent_argument_number + n_repetitions_sentence + test_method + character_identification + practice_phase + test_mass_or_distributed , V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_sink)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -33.7536   67.5072   89.5072  105.6303  102.7072   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 73.8636, p-val < .0001
## 
## Test of Moderators (coefficients 2:10):
## QM(df = 9) = 107.6788, p-val < .0001
## 
## Model Results:
## 
##                                         estimate      se     zval    pval 
## intrcpt                                   0.3738  0.4544   0.8226  0.4107 
## mean_age                                 -0.0018  0.0004  -4.2008  <.0001 
## sentence_structuretransitive              0.6611  0.1457   4.5380  <.0001 
## agent_argument_type_cleannoun_phrase      0.8190  0.2274   3.6009  0.0003 
## agent_argument_type_cleanpronoun          0.0975  0.3440   0.2834  0.7769 
## agent_argument_type_cleanvarying_agent    0.9092  0.1682   5.4065  <.0001 
## n_repetitions_sentence                   -0.0102  0.0130  -0.7873  0.4311 
## test_methodpoint                          0.6972  0.3098   2.2505  0.0244 
## character_identificationyes               0.7993  0.1949   4.1014  <.0001 
## practice_phaseyes                         1.0321  0.2211   4.6672  <.0001 
##                                           ci.lb    ci.ub 
## intrcpt                                 -0.5168   1.2644      
## mean_age                                -0.0027  -0.0010  *** 
## sentence_structuretransitive             0.3756   0.9467  *** 
## agent_argument_type_cleannoun_phrase     0.3732   1.2647  *** 
## agent_argument_type_cleanpronoun        -0.5767   0.7717      
## agent_argument_type_cleanvarying_agent   0.5796   1.2388  *** 
## n_repetitions_sentence                  -0.0357   0.0152      
## test_methodpoint                         0.0900   1.3045    * 
## character_identificationyes              0.4173   1.1812  *** 
## practice_phaseyes                        0.5987   1.4655  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_sink_2 <- rma.mv(d_calc ~ mean_age + sentence_structure  + n_repetitions_sentence + test_method + character_identification + practice_phase + test_mass_or_distributed , V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_sink_2)
## 
## Multivariate Meta-Analysis Model (k = 42; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.3566   84.7132  102.7132  116.4504  110.2132   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000     12     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 34) = 91.5106, p-val < .0001
## 
## Test of Moderators (coefficients 2:8):
## QM(df = 7) = 90.0317, p-val < .0001
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.0601  0.3322   0.1811  0.8563  -0.5909 
## mean_age                       -0.0012  0.0003  -3.9291  <.0001  -0.0019 
## sentence_structuretransitive    0.3267  0.1112   2.9386  0.0033   0.1088 
## n_repetitions_sentence          0.0212  0.0088   2.4108  0.0159   0.0040 
## test_methodpoint                1.6837  0.2973   5.6633  <.0001   1.1010 
## character_identificationyes     1.0917  0.1820   5.9994  <.0001   0.7350 
## practice_phaseyes               0.6209  0.1412   4.3986  <.0001   0.3442 
## test_mass_or_distributedmass    0.5828  0.1415   4.1174  <.0001   0.3054 
##                                 ci.ub 
## intrcpt                        0.7112      
## mean_age                      -0.0006  *** 
## sentence_structuretransitive   0.5446   ** 
## n_repetitions_sentence         0.0385    * 
## test_methodpoint               2.2664  *** 
## character_identificationyes    1.4483  *** 
## practice_phaseyes              0.8976  *** 
## test_mass_or_distributedmass   0.8602  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1