library(readr)
d <- read_csv("Provisional_COVID-19_Death_Counts_by_Sex__Age__and_Week.csv")
d<- read_csv("https://data.cdc.gov/api/views/vsak-wrfu/rows.csv?accessType=DOWNLOAD")
library(lubridate)
d$date<-mdy(d$`End Week`)
separate(d, `Age Group`, into =c("Start", "End")) -> d
gsub("years", "100", d$End) -> d$End
gsub("Under", "0", d$Start) -> d$Start
d$End<-as.numeric(as.character(d$End))
d$Start<-as.numeric(as.character(d$Start))
gsub(" ", "_", names(d)) -> names(d)
gsub("-", "_", names(d)) -> names(d)
tolower(names(d))->names(d)
d %>% filter(date < max(date)-20) -> d ## Take out data at the end due to long reporting delay
d$non_covid<-d$total_deaths-d$covid_19_deaths
d %>% filter(d$sex == "All Sex") -> d
Covid deaths and non covid deaths per age group
Free axes
d %>% pivot_longer(c(9,11)) %>% filter(!is.na(end)) %>%
ggplot(aes(x=date,y=value,col=name)) + geom_col(show.legend = FALSE) +facet_wrap(~start, scales="free") + theme(axis.text.x=element_text(angle=45, hjust=1)) + ggtitle("Age class lower limit: Covid related deaths in red") + ylab("Weekly total number of deaths")

Same scale
d %>% pivot_longer(c(9,11)) %>% filter(!is.na(end)) %>%
ggplot(aes(x=date,y=value,col=name)) + geom_col(show.legend = FALSE) +facet_wrap(~start) + theme(axis.text.x=element_text(angle=45, hjust=1)) + ggtitle("Age class lower limit: Covid related deaths in red") + ylab("Weekly total number of deaths")

All ages
d %>% pivot_longer(c(9,11)) %>% filter(is.na(end)) %>%
ggplot(aes(x=date,y=value,fill=name)) + geom_col(show.legend = TRUE) + theme(axis.text.x=element_text(angle=45, hjust=1)) + ggtitle("Age class lower limit: Covid related deaths in red") + ylab("Weekly total number of deaths")

Mean age at death
ages %>% filter(date > min(date)+20) -> ages
library(xts)
dd<-xts(x = ages[,c(3,5,7)], order.by = ages$date)
dygraph(dd)