ISLR Chapter 9: Tree-Based Methods

Problem 5.

We have seen that we can fit an SVM with a non-linear kernel in order to perform classification using a non-linear decision boundary. We will now see that we can also obtain a non-linear decision boundary by performing logistic regression using non-linear transformations of the features.

(a) Generate a data set with n = 500 and p = 2, such that the observations belong to two classes with a quadratic decision boundary between them. For instance, you can do this as follows:

set.seed(1)
x1 = runif(500)-0.5
x2 = runif(500)-0.5
y = 1 * (x1^2 - x2^2 > 0)

(b) Plot the observations, colored according to their class labels. Your plot should display X1 on the x-axis, and X2 on the y-axis.

plot(x1[y==0], x2[y==0], col = 'green', xlab =  'X1', ylab = 'X2')
points(x1[y==1], x2[y==1], col = 'blue')

(c) Fit a logistic regression model to the data, using X1 and X2 as predictors.

glm.fit <- glm(y ~ x1 +x2, family = 'binomial')
summary(glm.fit)
## 
## Call:
## glm(formula = y ~ x1 + x2, family = "binomial")
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.179  -1.139  -1.112   1.206   1.257  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.087260   0.089579  -0.974    0.330
## x1           0.196199   0.316864   0.619    0.536
## x2          -0.002854   0.305712  -0.009    0.993
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 692.18  on 499  degrees of freedom
## Residual deviance: 691.79  on 497  degrees of freedom
## AIC: 697.79
## 
## Number of Fisher Scoring iterations: 3

Based on the results, neither x1 or x2 are significant in predicting y.

(d) Apply this model to the training data in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the predicted class labels. The decision boundary should be linear.

df <- data.frame(x1 = x1, x2 = x2, y = as.factor(y))
glm.prob <- predict(glm.fit, df, type = "response")
glm.pred = rep(0,500)
glm.pred[glm.prob>0.47] = 1
plot(df[glm.pred ==1,]$x1, df[glm.pred ==1,]$x2, col = "green", xlab = "X1", ylab = "X2")
points(df[glm.pred ==0,]$x1, df[glm.pred ==0,]$x2, col = "blue")

Based on the plot, the decision boundary is on barely shown on the left hand side.

(e) Now fit a logistic regression model to the data using non-linear functions of \(X_1\) and \(X_2\) as predictors (e.g. \(X^2_{1}\), \(X^1\) × \(X^2\), \(log(X_2)\), and so forth).

log.fit <- glm(y ~ poly(x1, 2) + log(x2) + I(x1 * x2), family = 'binomial')
summary(log.fit)
## 
## Call:
## glm(formula = y ~ poly(x1, 2) + log(x2) + I(x1 * x2), family = "binomial")
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -3.07660  -0.30318  -0.07824   0.26039   1.78835  
## 
## Coefficients:
##              Estimate Std. Error z value Pr(>|z|)    
## (Intercept)   -5.0989     0.7937  -6.424 1.33e-10 ***
## poly(x1, 2)1  22.0302    15.1692   1.452    0.146    
## poly(x1, 2)2  70.5508     9.7403   7.243 4.38e-13 ***
## log(x2)       -3.1893     0.4915  -6.489 8.63e-11 ***
## I(x1 * x2)    -7.6014     7.2496  -1.049    0.294    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 344.97  on 249  degrees of freedom
## Residual deviance: 123.09  on 245  degrees of freedom
##   (250 observations deleted due to missingness)
## AIC: 133.09
## 
## Number of Fisher Scoring iterations: 7

(f) Apply this model to the training data in order to obtain a predicted class label for each training observation. Plot the observations, colored according to the predicted class labels. The decision boundary should be obviously non-linear. If it is not, then repeat (a)-(e) until you come up with an example in which the predicted class labels are obviously non-linear.

log.prob <- predict(log.fit, df, type = 'response')
log.pred <- rep(0,500)
log.pred[log.prob>0.47] = 1
plot(df[log.pred==1,]$x1, df[log.pred==1,]$x2, col = 'blue', xlab = 'X1', ylab = 'X2')
points(df[log.pred==0,]$x1, df[log.pred==0,]$x2, col = 'green')

Based on the plot, the non-linear decision boundary is shown.

(g) Fit a support vector classifier to the data with X1 and X2 as predictors. Obtain a class prediction for each training observation. Plot the observations, colored according to the predicted class labels.

library(e1071)
svm.fit <- svm(as.factor(y)~ x1 + x2, df, kernel = 'linear', cost = 0.1)
svm.pred <- predict(svm.fit, df)
plot(df[svm.pred==0,]$x1, df[svm.pred==0,]$x2, col = "blue", xlab = "X1", ylab = "X2")
points(df[svm.pred==1,]$x1, df[svm.pred==1,]$x2, col = "green")

(h) Fit a SVM using a non-linear kernel to the data. Obtain a class prediction for each training observation. Plot the observations, colored according to the predicted class labels.

svm.fit2 <- svm(as.factor(y)~ x1 + x2, df, kernel = 'radial', gamma = 1)
svm.pred2 <- predict(svm.fit2, df)
plot(df[svm.pred2==0,]$x1, df[svm.pred2==0,]$x2, col = "red", xlab = "X1", ylab = "X2")
points(df[svm.pred2==1,]$x1, df[svm.pred2==1,]$x2, col = 'black')

(i) Comment on your results. Based on the plots, the SVMs with the non-linear kernels performed better at finding the non-linear boundary between the classes. The linear and non-linear logistic regressions poorly predicted the dataset.

Problem 7.

In this problem, you will use support vector approaches in order to predict whether a given car gets high or low gas mileage based on the Auto data set.

library(ISLR)
attach(Auto)
summary(Auto)
##       mpg          cylinders      displacement     horsepower        weight    
##  Min.   : 9.00   Min.   :3.000   Min.   : 68.0   Min.   : 46.0   Min.   :1613  
##  1st Qu.:17.00   1st Qu.:4.000   1st Qu.:105.0   1st Qu.: 75.0   1st Qu.:2225  
##  Median :22.75   Median :4.000   Median :151.0   Median : 93.5   Median :2804  
##  Mean   :23.45   Mean   :5.472   Mean   :194.4   Mean   :104.5   Mean   :2978  
##  3rd Qu.:29.00   3rd Qu.:8.000   3rd Qu.:275.8   3rd Qu.:126.0   3rd Qu.:3615  
##  Max.   :46.60   Max.   :8.000   Max.   :455.0   Max.   :230.0   Max.   :5140  
##                                                                                
##   acceleration        year           origin                      name    
##  Min.   : 8.00   Min.   :70.00   Min.   :1.000   amc matador       :  5  
##  1st Qu.:13.78   1st Qu.:73.00   1st Qu.:1.000   ford pinto        :  5  
##  Median :15.50   Median :76.00   Median :1.000   toyota corolla    :  5  
##  Mean   :15.54   Mean   :75.98   Mean   :1.577   amc gremlin       :  4  
##  3rd Qu.:17.02   3rd Qu.:79.00   3rd Qu.:2.000   amc hornet        :  4  
##  Max.   :24.80   Max.   :82.00   Max.   :3.000   chevrolet chevette:  4  
##                                                  (Other)           :365

(a) Create a binary variable that takes on a 1 for cars with gas mileage above the median, and a 0 for cars with gas mileage below the median.

gas.var <- ifelse(Auto$mpg > median(Auto$mpg), 1, 0)
Auto$mpglevel <- as.factor(gas.var)
str(Auto$mpglevel)
##  Factor w/ 2 levels "0","1": 1 1 1 1 1 1 1 1 1 1 ...

(b) Fit a support vector classifier to the data with various values of cost, in order to predict whether a car gets high or low gas mileage. Report the cross-validation errors associated with different values of this parameter. Comment on your results.

set.seed(1)
tune.out <- tune(svm, mpglevel~., data = Auto, kernel = "linear", ranges = list(cost = c(0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost
##     1
## 
## - best performance: 0.01025641 
## 
## - Detailed performance results:
##    cost      error dispersion
## 1 1e-02 0.07653846 0.03617137
## 2 1e-01 0.04596154 0.03378238
## 3 1e+00 0.01025641 0.01792836
## 4 5e+00 0.02051282 0.02648194
## 5 1e+01 0.02051282 0.02648194
## 6 1e+02 0.03076923 0.03151981
tune.out$best.parameters
##   cost
## 3    1

Based on the results of the linear SVM, cross-validation error is minimized for cost = 1.

(c) Now repeat (b), this time using SVMs with radial and polynomial basis kernels, with different values of gamma and degree and cost. Comment on your results.

set.seed(1)
tune.out.rad <- tune(svm, mpglevel~., data = Auto, kernel = "radial", ranges = list(cost = c(0.01, 0.1, 1, 5, 10, 100), gamma = c(0.01, 0.1, 1, 5, 10, 100)))
summary(tune.out.rad)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost gamma
##   100  0.01
## 
## - best performance: 0.01282051 
## 
## - Detailed performance results:
##     cost gamma      error dispersion
## 1  1e-02 1e-02 0.55115385 0.04366593
## 2  1e-01 1e-02 0.08929487 0.04382379
## 3  1e+00 1e-02 0.07403846 0.03522110
## 4  5e+00 1e-02 0.04852564 0.03303346
## 5  1e+01 1e-02 0.02557692 0.02093679
## 6  1e+02 1e-02 0.01282051 0.01813094
## 7  1e-02 1e-01 0.21711538 0.09865227
## 8  1e-01 1e-01 0.07903846 0.03874545
## 9  1e+00 1e-01 0.05371795 0.03525162
## 10 5e+00 1e-01 0.02820513 0.03299190
## 11 1e+01 1e-01 0.03076923 0.03375798
## 12 1e+02 1e-01 0.03583333 0.02759051
## 13 1e-02 1e+00 0.55115385 0.04366593
## 14 1e-01 1e+00 0.55115385 0.04366593
## 15 1e+00 1e+00 0.06384615 0.04375618
## 16 5e+00 1e+00 0.05884615 0.04020934
## 17 1e+01 1e+00 0.05884615 0.04020934
## 18 1e+02 1e+00 0.05884615 0.04020934
## 19 1e-02 5e+00 0.55115385 0.04366593
## 20 1e-01 5e+00 0.55115385 0.04366593
## 21 1e+00 5e+00 0.49493590 0.04724924
## 22 5e+00 5e+00 0.48217949 0.05470903
## 23 1e+01 5e+00 0.48217949 0.05470903
## 24 1e+02 5e+00 0.48217949 0.05470903
## 25 1e-02 1e+01 0.55115385 0.04366593
## 26 1e-01 1e+01 0.55115385 0.04366593
## 27 1e+00 1e+01 0.51794872 0.05063697
## 28 5e+00 1e+01 0.51794872 0.04917316
## 29 1e+01 1e+01 0.51794872 0.04917316
## 30 1e+02 1e+01 0.51794872 0.04917316
## 31 1e-02 1e+02 0.55115385 0.04366593
## 32 1e-01 1e+02 0.55115385 0.04366593
## 33 1e+00 1e+02 0.55115385 0.04366593
## 34 5e+00 1e+02 0.55115385 0.04366593
## 35 1e+01 1e+02 0.55115385 0.04366593
## 36 1e+02 1e+02 0.55115385 0.04366593
tune.out.rad$best.parameters
##   cost gamma
## 6  100  0.01

Based on the results of the SVM with radial basis kernel, cross-validation error is minimized for cost = 100 and gamma = 0.01.

set.seed(1)
tune.out.poly <- tune(svm, mpglevel~., data = Auto, kernel = "polynomial", ranges = list(cost = c(0.01, 0.1, 1, 5, 10, 100), degree = c(2,3,4)))
summary(tune.out.poly)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost degree
##   100      2
## 
## - best performance: 0.3013462 
## 
## - Detailed performance results:
##     cost degree     error dispersion
## 1  1e-02      2 0.5511538 0.04366593
## 2  1e-01      2 0.5511538 0.04366593
## 3  1e+00      2 0.5511538 0.04366593
## 4  5e+00      2 0.5511538 0.04366593
## 5  1e+01      2 0.5130128 0.08963366
## 6  1e+02      2 0.3013462 0.09961961
## 7  1e-02      3 0.5511538 0.04366593
## 8  1e-01      3 0.5511538 0.04366593
## 9  1e+00      3 0.5511538 0.04366593
## 10 5e+00      3 0.5511538 0.04366593
## 11 1e+01      3 0.5511538 0.04366593
## 12 1e+02      3 0.3446154 0.09821588
## 13 1e-02      4 0.5511538 0.04366593
## 14 1e-01      4 0.5511538 0.04366593
## 15 1e+00      4 0.5511538 0.04366593
## 16 5e+00      4 0.5511538 0.04366593
## 17 1e+01      4 0.5511538 0.04366593
## 18 1e+02      4 0.5511538 0.04366593
tune.out.poly$best.parameters
##   cost degree
## 6  100      2

Based on the results of the SVM with polynimial basis kernel, cross-validation error is minimized for cost = 100 and degree = 2.

(d) Make some plots to back up your assertions in (b) and (c). Hint: In the lab, we used the plot() function for svm objects only in cases with p = 2. When p > 2, you can use the plot() function to create plots displaying pairs of variables at a time. Essentially, instead of typing plot(svmfit , dat) where svmfit contains your fitted model and dat is a data frame containing your data, you can type plot(svmfit , dat , x1∼x4) in order to plot just the first and fourth variables. However, you must replace x1 and x4 with the correct variable names. To find out more, type ?plot.svm.

last.linear <- svm(mpglevel~., data=Auto, kernel="linear", cost=1)
last.rad <- svm(mpglevel~., data=Auto, kernel="radial", cost=10, gamma=0.01)
last.poly <- svm(mpglevel~., data=Auto, kernel="polynomial", cost=1, degree=2)
plotpairs <- function(autofit) {
    for (name in names(Auto)[!(names(Auto) %in% c("mpg", "mpglevel", "name"))]) {
        plot(autofit, Auto, as.formula(paste("mpg~", name, sep = "")))
    }
}
plotpairs(last.linear)

plotpairs(last.rad)

plotpairs(last.poly)

detach(Auto)

Problem 8.

This problem involves the OJ data set which is part of the ISLR package.

library(ISLR)
attach(OJ)
summary(OJ)
##  Purchase WeekofPurchase     StoreID        PriceCH         PriceMM     
##  CH:653   Min.   :227.0   Min.   :1.00   Min.   :1.690   Min.   :1.690  
##  MM:417   1st Qu.:240.0   1st Qu.:2.00   1st Qu.:1.790   1st Qu.:1.990  
##           Median :257.0   Median :3.00   Median :1.860   Median :2.090  
##           Mean   :254.4   Mean   :3.96   Mean   :1.867   Mean   :2.085  
##           3rd Qu.:268.0   3rd Qu.:7.00   3rd Qu.:1.990   3rd Qu.:2.180  
##           Max.   :278.0   Max.   :7.00   Max.   :2.090   Max.   :2.290  
##      DiscCH            DiscMM         SpecialCH        SpecialMM     
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.05186   Mean   :0.1234   Mean   :0.1477   Mean   :0.1617  
##  3rd Qu.:0.00000   3rd Qu.:0.2300   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :0.50000   Max.   :0.8000   Max.   :1.0000   Max.   :1.0000  
##     LoyalCH          SalePriceMM     SalePriceCH      PriceDiff       Store7   
##  Min.   :0.000011   Min.   :1.190   Min.   :1.390   Min.   :-0.6700   No :714  
##  1st Qu.:0.325257   1st Qu.:1.690   1st Qu.:1.750   1st Qu.: 0.0000   Yes:356  
##  Median :0.600000   Median :2.090   Median :1.860   Median : 0.2300            
##  Mean   :0.565782   Mean   :1.962   Mean   :1.816   Mean   : 0.1465            
##  3rd Qu.:0.850873   3rd Qu.:2.130   3rd Qu.:1.890   3rd Qu.: 0.3200            
##  Max.   :0.999947   Max.   :2.290   Max.   :2.090   Max.   : 0.6400            
##    PctDiscMM        PctDiscCH       ListPriceDiff       STORE      
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.140   1st Qu.:0.000  
##  Median :0.0000   Median :0.00000   Median :0.240   Median :2.000  
##  Mean   :0.0593   Mean   :0.02731   Mean   :0.218   Mean   :1.631  
##  3rd Qu.:0.1127   3rd Qu.:0.00000   3rd Qu.:0.300   3rd Qu.:3.000  
##  Max.   :0.4020   Max.   :0.25269   Max.   :0.440   Max.   :4.000

(a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.

set.seed(1)
inTrain <- sample(nrow(OJ), 800)
train.oj <- OJ[inTrain,]
test.oj <- OJ[-inTrain,]

(b) Fit a support vector classifier to the training data using cost=0.01, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics, and describe the results obtained.

library(e1071)
svm.lin.oj <- svm(Purchase ~., kernel = "linear", data = train.oj, cost = 0.01)
summary(svm.lin.oj)
## 
## Call:
## svm(formula = Purchase ~ ., data = train.oj, kernel = "linear", cost = 0.01)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  linear 
##        cost:  0.01 
## 
## Number of Support Vectors:  435
## 
##  ( 219 216 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  CH MM

Based on the results of the support vector classifier, there are 435 support vectors out of 800 training points. Among those, 219 belong to level CH and remaining 216 belong to level MM.

(c) What are the training and test error rates?

train.pred <- predict(svm.lin.oj, train.oj)
table(train.oj$Purchase, train.pred)
##     train.pred
##       CH  MM
##   CH 420  65
##   MM  75 240
(75 + 65)/(420 + 65 + 75 + 240)
## [1] 0.175
test.pred <- predict(svm.lin.oj, test.oj)
table(test.oj$Purchase, test.pred)
##     test.pred
##       CH  MM
##   CH 153  15
##   MM  33  69
(15 + 33)/(153 + 15 + 33 + 69)
## [1] 0.1777778

Based on the output, the training error rate is 17.5% and test error rate is about 17.8%.

(d) Use the tune() function to select an optimal cost. Consider values in the range 0.01 to 10.

set.seed(1)
tune.oj <- tune(svm, Purchase ~ ., data = train.oj, kernel = "linear", ranges = list(cost=c(0.001, 0.01, 0.1, 1, 5, 10)))
summary(tune.oj)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost
##   0.1
## 
## - best performance: 0.1725 
## 
## - Detailed performance results:
##    cost   error dispersion
## 1 1e-03 0.31250 0.04124790
## 2 1e-02 0.17625 0.02853482
## 3 1e-01 0.17250 0.03162278
## 4 1e+00 0.17500 0.02946278
## 5 5e+00 0.17250 0.03162278
## 6 1e+01 0.17375 0.03197764
tune.oj$best.parameters
##   cost
## 3  0.1

Based on the tuning, the optimal cost is 0.1.

(e) Compute the training and test error rates using this new value for cost.

svm.new.oj <- svm(Purchase ~ ., kernel = "linear", data = train.oj, cost = tune.oj$best.parameters$cost)
train.pred2 <- predict(svm.new.oj, train.oj)
table(train.oj$Purchase, train.pred2)
##     train.pred2
##       CH  MM
##   CH 422  63
##   MM  69 246
(63 + 69)/(422 + 63 + 69 + 246)
## [1] 0.165
test.pred2 <- predict(svm.new.oj, test.oj)
table(test.oj$Purchase, test.pred2)
##     test.pred2
##       CH  MM
##   CH 155  13
##   MM  31  71
(13 + 31)/(155 + 13 + 31 + 71)
## [1] 0.162963

When using the best cost, both training and test error rates decreased to 16.5% and 16.3% respectively.

(f) Repeat parts (b) through (e) using a support vector machine with a radial kernel. Use the default value for gamma.

set.seed(1)
svm.rad.oj <- svm(Purchase ~ ., data = train.oj, kernel = "radial")
summary(svm.rad.oj)
## 
## Call:
## svm(formula = Purchase ~ ., data = train.oj, kernel = "radial")
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  radial 
##        cost:  1 
## 
## Number of Support Vectors:  373
## 
##  ( 188 185 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  CH MM
train.pred3 <- predict(svm.rad.oj, train.oj)
table(train.oj$Purchase, train.pred3)
##     train.pred3
##       CH  MM
##   CH 441  44
##   MM  77 238
(44 + 77)/(441 + 44 + 77 + 238)
## [1] 0.15125
test.pred3 = predict(svm.rad.oj, test.oj)
table(test.oj$Purchase, test.pred3)
##     test.pred3
##       CH  MM
##   CH 151  17
##   MM  33  69
(17 + 33)/(151 + 17 + 33 + 69)
## [1] 0.1851852

Based on these results, the radial basis kernel with default gamma creates 373 support vectors, out of which, 188 belong to level CH and remaining 185 belong to level MM. The classifier has a training error of 15.1% and a test error of 18.5%. We now use cross validation to find optimal gamma.

set.seed(1)
tune.out.rad2 = tune(svm, Purchase ~ ., data = train.oj, kernel = "radial", ranges = list(cost = c(0.001, 0.01, 0.1, 1, 5, 100)))
summary(tune.out.rad2)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost
##     1
## 
## - best performance: 0.17125 
## 
## - Detailed performance results:
##    cost   error dispersion
## 1 1e-03 0.39375 0.04007372
## 2 1e-02 0.39375 0.04007372
## 3 1e-01 0.18625 0.02853482
## 4 1e+00 0.17125 0.02128673
## 5 5e+00 0.18000 0.02220485
## 6 1e+02 0.21750 0.04048319
tune.out.rad2$best.parameters
##   cost
## 4    1
svm.rad.oj2 <- svm(Purchase ~ ., kernel = "radial", data = train.oj, cost = tune.out.rad2$best.parameters$cost)
train.pred4 <- predict(svm.rad.oj2, train.oj)
table(train.oj$Purchase, train.pred4)
##     train.pred4
##       CH  MM
##   CH 441  44
##   MM  77 238
(44+77)/(441+44+77+238)
## [1] 0.15125
test.pred4 <- predict(svm.rad.oj2, test.oj)
table(test.oj$Purchase, test.pred4)
##     test.pred4
##       CH  MM
##   CH 151  17
##   MM  33  69
(17+33)/(151+17+33+69)
## [1] 0.1851852

Based on the tuning, the training error rate decreased to 14.9%, and the test error rate decreased to 17.8%. This test error rate is still higher than the linear kernel.

(g) Repeat parts (b) through (e) using a support vector machine with a polynomial kernel. Set degree=2.

svm.poly.oj <- svm(Purchase ~ ., kernel = "poly", data = train.oj, degree=2)
summary(svm.poly.oj)
## 
## Call:
## svm(formula = Purchase ~ ., data = train.oj, kernel = "poly", degree = 2)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  polynomial 
##        cost:  1 
##      degree:  2 
##      coef.0:  0 
## 
## Number of Support Vectors:  447
## 
##  ( 225 222 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  CH MM
train.pred5 <- predict(svm.poly.oj, train.oj)
table(train.oj$Purchase, train.pred5)
##     train.pred5
##       CH  MM
##   CH 449  36
##   MM 110 205
(36+110)/(449+36+110+205)
## [1] 0.1825
test.pred5 <- predict(svm.poly.oj, test.oj)
table(test.oj$Purchase, test.pred5)
##     test.pred5
##       CH  MM
##   CH 153  15
##   MM  45  57
(15+45)/(153+15+45+57)
## [1] 0.2222222

Based on these results, the polynomial basis kernel with degree 2, creates 447 support vectors, out of which, 225 belong to level CH and remaining 222 belong to level MM. The classifier has a training error of 18.25% and a test error of 22.2%.

set.seed(1)
tune.out.poly2 <- tune(svm, Purchase ~ ., data = train.oj, kernel = "poly", degree = 2, ranges = list(cost=c(0.001, 0.01, 0.1, 1, 5, 10)))
summary(tune.out.poly2)
## 
## Parameter tuning of 'svm':
## 
## - sampling method: 10-fold cross validation 
## 
## - best parameters:
##  cost
##    10
## 
## - best performance: 0.18125 
## 
## - Detailed performance results:
##    cost   error dispersion
## 1 1e-03 0.39375 0.04007372
## 2 1e-02 0.39125 0.04210189
## 3 1e-01 0.32125 0.05001736
## 4 1e+00 0.20250 0.04116363
## 5 5e+00 0.18250 0.03496029
## 6 1e+01 0.18125 0.02779513
tune.out.poly2$best.parameters
##   cost
## 6   10
svm.poly.oj2 = svm(Purchase~., data = train.oj, kernel = "poly", cost = 10, degree = 2)
summary(svm.poly.oj2)
## 
## Call:
## svm(formula = Purchase ~ ., data = train.oj, kernel = "poly", cost = 10, 
##     degree = 2)
## 
## 
## Parameters:
##    SVM-Type:  C-classification 
##  SVM-Kernel:  polynomial 
##        cost:  10 
##      degree:  2 
##      coef.0:  0 
## 
## Number of Support Vectors:  340
## 
##  ( 171 169 )
## 
## 
## Number of Classes:  2 
## 
## Levels: 
##  CH MM
train.pred6 <- predict(svm.poly.oj2, train.oj)
table(train.oj$Purchase, train.pred6)
##     train.pred6
##       CH  MM
##   CH 447  38
##   MM  82 233
(38+82)/(447+38+82+233)
## [1] 0.15
test.pred6 <- predict(svm.poly.oj2, test.oj)
table(test.oj$Purchase, test.pred6)
##     test.pred6
##       CH  MM
##   CH 154  14
##   MM  37  65
(14+37)/(154+14+37+65)
## [1] 0.1888889

(h) Overall, which approach seems to give the best results on this data?

Based on the results, the tuned Poly SVM with Cost = 10 resulted in the lowest Test Error Rate for the OJ data set.

detach(OJ)