Texto
Italicas y Negritas
- La palabra hola esta en negritas
- La palabra mundo esta en italicas
Sub y Supra indices
- La formula quimica del agua es H2O y la del carbonato de sodio ess Na2CO3
H~2~O = H2O
Na~2~CO~3~= Na2CO3
- Tambien podemos escribir exponentes x2
- Costopor_dia
links
- utilizamos la estructura
[texto](link)
imagenes
Para agregar imagenes usam 

Para este taller usamos como referencia R Markdown: The definitive guide
listas
listas no ordenadas
Podemos usar +, - o *
+ item 1
+ item 1.1
+ item 1.2
+ item 2
+ item 2.1
listas ordenadas
- Item 1
- Item 1.1
- Item 1.2
- Item 2
Citas
" In God we trust, all others bring data."
— W Edwars Deming
“Keep away from people who try to belittle your ambitions. Small people always do that, but the really great make you feel that you, too, can become great.”
— Mark Twain
Chunk de codigo
SELECT *
FROM schema.table
WHERE product_id > 125
AND process_date >= '2020-07-29'
Expresiones Matematicas
Esta integral \(\int_a^b e^x \, dx = e^b-e^a\) es sumamente dificil de realizar.
\[\int_a^b e^x \, dx = e^b-e^a\]
\[
X =
\begin{bmatrix}
1 & x_1 \\
1 & x_2 \\
1 & x_3
\end{bmatrix}
\]
\[\Theta = \begin{pmatrix}\alpha & \beta\\
\gamma & \delta
\end{pmatrix}\]
Todas las ecuaciones se escriben usando Latex. Es de mucha utilidad este generador de latex.
Generador de Latex
plot(mtcars)

head(mtcars,10)
library(ggplot2)
library(dplyr)
diamonds %>%
ggplot(aes(x=carat,y=price,color=color))+
geom_point()

sequencia <- sample(1:10)
sequencia
[1] 3 5 4 10 2 9 6 1 8 7
Este es nuestro vector: 3, 5, 4, 10, 2, 9, 6, 1, 8, 7
Python
Usa la libreria reticulate
library(reticulate)
use_condaenv('r-reticulate')
Instalamos Pandas conda_install('r-reticulate','pandas')
py_intall('pandas')
sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
py$iris_setosa %>%
ggplot(aes(x=sepal_width,y=sepal_length, color=species))+
geom_point()

head(diamonds) -> sm_diamonds
carat cut color clarity depth table price x y z
0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
chunks de SQL
library(RMySQL)
dbcon <- dbConnect(MySQL(),
host = ,
user = ,
password = ,
dbname = 'datasets')
SELECT *
FROM datasets.iris
WHERE sepal_length BETWEEN 1 AND 4
limit 10
LS0tDQp0aXRsZTogIlRhbGxlciBSIE5vdGJvb2tzIEFjYWRlbWF0aWNhIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KIyBUZXh0bw0KIyMgSXRhbGljYXMgeSBOZWdyaXRhcw0KDQoqIExhIHBhbGFicmEgKipob2xhKiogZXN0YSBlbiBuZWdyaXRhcw0KICAqIFV0aWxpemFtb3MgYCoqaG9sYSoqYA0KKiBMYSBwYWxhYnJhICptdW5kbyogZXN0YSBlbiBpdGFsaWNhcw0KICAqIFV0aWxpemFtb3MgYCptdW5kbypgDQogIA0KIyMgU3ViIHkgU3VwcmEgaW5kaWNlcw0KDQoqIExhIGZvcm11bGEgcXVpbWljYSBkZWwgYWd1YSBlcyBIfjJ+TyB5IGxhIGRlbCBjYXJib25hdG8gZGUgc29kaW8gZXNzIE5hfjJ+Q09+M34NCiAgKiBgSH4yfk9gID0gSH4yfk8NCiAgKiBgTmF+Mn5DT34zfmA9IE5hfjJ+Q09+M34NCiogVGFtYmllbiBwb2RlbW9zIGVzY3JpYmlyIGV4cG9uZW50ZXMgeF4yXg0KICAqIGB4XjJeYCA9IHheMl4NCiogQ29zdG9+cG9yX2RpYX4NCg0KIyBpbmxpbmUgY29kZQ0KDQoqIGAgeCA8LSAzIGANCiogYHIgNSs3YCANCiogYHIgKHggPC0gNSlgDQoqIGByIHgrN2AgDQoNCiMgbGlua3MNCg0KKiB1dGlsaXphbW9zIGxhIGVzdHJ1Y3R1cmEgYFt0ZXh0b10obGluaylgDQogICogRWwgbWVqb3IgY2FuYWwgZW4geW91dHViZSBlcyBbYWNhZGVtYXRpY2FdKGh0dHA6Ly93d3cueW91dHViZS5jb20vYWNhZGVtYXRpY2EpDQoNCiMgaW1hZ2VuZXMNCg0KUGFyYSBhZ3JlZ2FyIGltYWdlbmVzIHVzYW0gYCFbY2FwdGlvbl0oaW1hZ2VuKWANCg0KIVtdKGRpbGJlcnQuanBnKQ0KDQohW0RpbGJlcnQgb24gZGF0YSBxdWFsaXR5XShkaWxiZXJ0LmpwZykNCg0KIVtEaWxiZXJ0IG9uIGRhdGEgcXVhbGl0eSBeW0ltYWdlbiBkZXNjYXJjYWdhIGRlIGh0dHBzOi8vd3d3LnBpbnRlcmVzdC5jb20vcGluLzE2NzY4ODc4NjEwMjUzMzczOV1dKGRpbGJlcnQuanBnKQ0KDQoNClBhcmEgZXN0ZSB0YWxsZXIgdXNhbW9zIGNvbW8gcmVmZXJlbmNpYSAqKlIgTWFya2Rvd246IFRoZSBkZWZpbml0aXZlIGd1aWRlKipeW2h0dHBzOi8vYm9va2Rvd24ub3JnL3lpaHVpL3JtYXJrZG93bi9dDQoNCg0KDQojIGxpc3Rhcw0KIyMgbGlzdGFzIG5vIG9yZGVuYWRhcw0KDQpQb2RlbW9zIHVzYXIgYCtgLCBgLWAgbyBgKmANCg0KKyBpdGVtIDENCiAgKyBpdGVtIDEuMQ0KICArIGl0ZW0gMS4yDQorIGl0ZW0gMg0KICArIGl0ZW0gMi4xDQoNCmBgYA0KKyBpdGVtIDENCiAgKyBpdGVtIDEuMQ0KICArIGl0ZW0gMS4yDQorIGl0ZW0gMg0KICArIGl0ZW0gMi4xDQpgYGANCg0KIyMgbGlzdGFzIG9yZGVuYWRhcw0KDQoxLiBJdGVtIDENCiAgIDEuIEl0ZW0gMS4xDQogICAyLiBJdGVtIDEuMg0KMi4gSXRlbSAyDQogICAqIEl0ZW0gMi4xDQogICANCg0KIyBDaXRhcw0KDQo+ICIgSW4gR29kIHdlIHRydXN0LCBhbGwgb3RoZXJzIGJyaW5nIGRhdGEuIg0KPg0KPiAtLS0gVyBFZHdhcnMgRGVtaW5nDQoNCg0KPuKAnEtlZXAgYXdheSBmcm9tIHBlb3BsZSB3aG8gdHJ5IHRvIGJlbGl0dGxlIHlvdXIgYW1iaXRpb25zLiBTbWFsbCBwZW9wbGUgYWx3YXlzIGRvIHRoYXQsIGJ1dCB0aGUgcmVhbGx5IGdyZWF0IG1ha2UgeW91IGZlZWwgdGhhdCB5b3UsIHRvbywgY2FuIGJlY29tZSBncmVhdC7igJ0NCj4NCj4gLS0tIE1hcmsgVHdhaW4NCg0KIyBDaHVuayBkZSBjb2RpZ28NCg0KYGBgDQpTRUxFQ1QgKg0KRlJPTSBzY2hlbWEudGFibGUNCldIRVJFIHByb2R1Y3RfaWQgPiAxMjUNCiAgQU5EIHByb2Nlc3NfZGF0ZSA+PSAnMjAyMC0wNy0yOScNCmBgYA0KDQoNCiMgRXhwcmVzaW9uZXMgTWF0ZW1hdGljYXMNCg0KRXN0YSBpbnRlZ3JhbCAkXGludF9hXmIgZV54IFwsIGR4ID0gZV5iLWVeYSQgZXMgc3VtYW1lbnRlIGRpZmljaWwgZGUgcmVhbGl6YXIuDQoNCiQkXGludF9hXmIgZV54IFwsIGR4ID0gZV5iLWVeYSQkDQoNCiQkDQpYID0NClxiZWdpbntibWF0cml4fQ0KMSAmIHhfMSBcXA0KMSAmIHhfMiBcXA0KMSAmIHhfMw0KXGVuZHtibWF0cml4fQ0KJCQNCg0KJCRcVGhldGEgPSBcYmVnaW57cG1hdHJpeH1cYWxwaGEgJiBcYmV0YVxcDQpcZ2FtbWEgJiBcZGVsdGENClxlbmR7cG1hdHJpeH0kJA0KDQoNClRvZGFzIGxhcyBlY3VhY2lvbmVzIHNlIGVzY3JpYmVuIHVzYW5kbyBMYXRleC4gRXMgZGUgbXVjaGEgdXRpbGlkYWQgZXN0ZSBnZW5lcmFkb3IgZGUgbGF0ZXguIA0KDQpbR2VuZXJhZG9yIGRlIExhdGV4XShodHRwczovL3d3dy5jb2RlY29ncy5jb20vbGF0ZXgvZXFuZWRpdG9yLnBocCkNCg0KYGBge3J9DQpwbG90KG10Y2FycykNCmBgYA0KYGBge3J9DQpoZWFkKG10Y2FycywxMCkNCmBgYA0KDQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShkcGx5cikNCmBgYA0KDQpgYGB7ciBwcmltZXJhcyBmaWxhcyBkZWwgZGF0YXNldCAsd2FybmluZz1GQUxTRSxlY2hvPUZBTFNFfQ0KaGVhZChkaWFtb25kcykNCmBgYA0KDQoNCmBgYHtyfQ0KZGlhbW9uZHMgJT4lIA0KICBnZ3Bsb3QoYWVzKHg9Y2FyYXQseT1wcmljZSxjb2xvcj1jb2xvcikpKw0KICBnZW9tX3BvaW50KCkNCmBgYA0KDQpgYGB7cn0NCnNlcXVlbmNpYSA8LSBzYW1wbGUoMToxMCkNCmBgYA0KDQoNCmBgYHtyfQ0Kc2VxdWVuY2lhDQpgYGANCg0KRXN0ZSBlcyBudWVzdHJvIHZlY3RvcjogYHIgc2VxdWVuY2lhYA0KDQoNCiMgUHl0aG9uDQoNClVzYSBsYSBsaWJyZXJpYSBbcmV0aWN1bGF0ZV0oaHR0cHM6Ly9yc3R1ZGlvLmdpdGh1Yi5pby9yZXRpY3VsYXRlLykNCg0KYGBge3J9DQpsaWJyYXJ5KHJldGljdWxhdGUpDQp1c2VfY29uZGFlbnYoJ3ItcmV0aWN1bGF0ZScpDQpgYGANCg0KSW5zdGFsYW1vcyAqKlBhbmRhcyoqIGBjb25kYV9pbnN0YWxsKCdyLXJldGljdWxhdGUnLCdwYW5kYXMnKWANCg0KYHB5X2ludGFsbCgncGFuZGFzJylgDQoNCg0KYGBge3B5dGhvbiBlY2hvPVRSVUV9DQppbXBvcnQgcGFuZGFzIGFzIHBkDQoNCmlyaXNfcGFuZGFzID0gcGQucmVhZF9jc3YoImlyaXMudHh0IikNCmlyaXNfc2V0b3NhID0gaXJpc19wYW5kYXNbaXJpc19wYW5kYXNbJ3NwZWNpZXMnXT09J3NldG9zYSddDQppcmlzX3NldG9zYS5oZWFkKCkNCmBgYA0KDQoNCmBgYHtyfQ0KcHkkaXJpc19zZXRvc2EgJT4lIA0KICBnZ3Bsb3QoYWVzKHg9c2VwYWxfd2lkdGgseT1zZXBhbF9sZW5ndGgsIGNvbG9yPXNwZWNpZXMpKSsNCiAgZ2VvbV9wb2ludCgpDQpgYGANCg0KDQpgYGB7cn0NCmhlYWQoZGlhbW9uZHMpIC0+IHNtX2RpYW1vbmRzDQpgYGANCg0KDQpgYGB7cHl0aG9ufQ0Kci5zbV9kaWFtb25kcy5oZWFkKCkNCmBgYA0KDQojIGNodW5rcyBkZSBTUUwNCg0KYGBge3J9DQpsaWJyYXJ5KFJNeVNRTCkNCmRiY29uIDwtIGRiQ29ubmVjdChNeVNRTCgpLA0KICAgICAgICAgICAgICAgICAgIGhvc3QgPSAsDQogICAgICAgICAgICAgICAgICAgdXNlciA9ICwNCiAgICAgICAgICAgICAgICAgICBwYXNzd29yZCA9ICwNCiAgICAgICAgICAgICAgICAgICBkYm5hbWUgPSAnZGF0YXNldHMnKQ0KYGBgDQoNCg0KYGBge3NxbCBjb25uZWN0aW9uPWRiY29ufQ0KU0VMRUNUICogDQpGUk9NIGRhdGFzZXRzLmlyaXMNCldIRVJFIHNlcGFsX2xlbmd0aCBCRVRXRUVOIDEgQU5EIDQNCmxpbWl0IDEwDQpgYGANCg0KDQoNCg0KDQoNCg==