Texto

Italicas y Negritas

  • La palabra hola esta en negritas
    • Utilizamos **hola**
  • La palabra mundo esta en italicas
    • Utilizamos *mundo*

Sub y Supra indices

  • La formula quimica del agua es H2O y la del carbonato de sodio ess Na2CO3
    • H~2~O = H2O
    • Na~2~CO~3~= Na2CO3
  • Tambien podemos escribir exponentes x2
    • x^2^ = x2
  • Costopor_dia

inline code

imagenes

Para agregar imagenes usam ![caption](imagen)

Dilbert on data quality

Dilbert on data quality 1

Para este taller usamos como referencia R Markdown: The definitive guide2

listas

listas no ordenadas

Podemos usar +, - o *

  • item 1
    • item 1.1
    • item 1.2
  • item 2
    • item 2.1
+ item 1
  + item 1.1
  + item 1.2
+ item 2
  + item 2.1

listas ordenadas

  1. Item 1
    1. Item 1.1
    2. Item 1.2
  2. Item 2
    • Item 2.1

Citas

" In God we trust, all others bring data."

— W Edwars Deming

“Keep away from people who try to belittle your ambitions. Small people always do that, but the really great make you feel that you, too, can become great.”

— Mark Twain

Chunk de codigo

SELECT *
FROM schema.table
WHERE product_id > 125
  AND process_date >= '2020-07-29'

Expresiones Matematicas

Esta integral \(\int_a^b e^x \, dx = e^b-e^a\) es sumamente dificil de realizar.

\[\int_a^b e^x \, dx = e^b-e^a\]

\[ X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \end{bmatrix} \]

\[\Theta = \begin{pmatrix}\alpha & \beta\\ \gamma & \delta \end{pmatrix}\]

Todas las ecuaciones se escriben usando Latex. Es de mucha utilidad este generador de latex.

Generador de Latex

plot(mtcars)

head(mtcars,10)
library(ggplot2)
library(dplyr)
diamonds %>% 
  ggplot(aes(x=carat,y=price,color=color))+
  geom_point()

sequencia <- sample(1:10)
sequencia
 [1]  3  5  4 10  2  9  6  1  8  7

Este es nuestro vector: 3, 5, 4, 10, 2, 9, 6, 1, 8, 7

Python

Usa la libreria reticulate

library(reticulate)
use_condaenv('r-reticulate')

Instalamos Pandas conda_install('r-reticulate','pandas')

py_intall('pandas')

   sepal_length  sepal_width  petal_length  petal_width species
0           5.1          3.5           1.4          0.2  setosa
1           4.9          3.0           1.4          0.2  setosa
2           4.7          3.2           1.3          0.2  setosa
3           4.6          3.1           1.5          0.2  setosa
4           5.0          3.6           1.4          0.2  setosa
py$iris_setosa %>% 
  ggplot(aes(x=sepal_width,y=sepal_length, color=species))+
  geom_point()

head(diamonds) -> sm_diamonds
   carat      cut color clarity  depth  table  price     x     y     z
0   0.23    Ideal     E     SI2   61.5   55.0    326  3.95  3.98  2.43
1   0.21  Premium     E     SI1   59.8   61.0    326  3.89  3.84  2.31
2   0.23     Good     E     VS1   56.9   65.0    327  4.05  4.07  2.31
3   0.29  Premium     I     VS2   62.4   58.0    334  4.20  4.23  2.63
4   0.31     Good     J     SI2   63.3   58.0    335  4.34  4.35  2.75

chunks de SQL

library(RMySQL)
dbcon <- dbConnect(MySQL(),
                   host = ,
                   user = ,
                   password = ,
                   dbname = 'datasets')
SELECT * 
FROM datasets.iris
WHERE sepal_length BETWEEN 1 AND 4
limit 10

  1. Imagen descarcaga de https://www.pinterest.com/pin/167688786102533739↩︎

  2. https://bookdown.org/yihui/rmarkdown/↩︎

LS0tDQp0aXRsZTogIlRhbGxlciBSIE5vdGJvb2tzIEFjYWRlbWF0aWNhIg0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KIyBUZXh0bw0KIyMgSXRhbGljYXMgeSBOZWdyaXRhcw0KDQoqIExhIHBhbGFicmEgKipob2xhKiogZXN0YSBlbiBuZWdyaXRhcw0KICAqIFV0aWxpemFtb3MgYCoqaG9sYSoqYA0KKiBMYSBwYWxhYnJhICptdW5kbyogZXN0YSBlbiBpdGFsaWNhcw0KICAqIFV0aWxpemFtb3MgYCptdW5kbypgDQogIA0KIyMgU3ViIHkgU3VwcmEgaW5kaWNlcw0KDQoqIExhIGZvcm11bGEgcXVpbWljYSBkZWwgYWd1YSBlcyBIfjJ+TyB5IGxhIGRlbCBjYXJib25hdG8gZGUgc29kaW8gZXNzIE5hfjJ+Q09+M34NCiAgKiBgSH4yfk9gID0gSH4yfk8NCiAgKiBgTmF+Mn5DT34zfmA9IE5hfjJ+Q09+M34NCiogVGFtYmllbiBwb2RlbW9zIGVzY3JpYmlyIGV4cG9uZW50ZXMgeF4yXg0KICAqIGB4XjJeYCA9IHheMl4NCiogQ29zdG9+cG9yX2RpYX4NCg0KIyBpbmxpbmUgY29kZQ0KDQoqIGAgeCA8LSAzIGANCiogYHIgNSs3YCANCiogYHIgKHggPC0gNSlgDQoqIGByIHgrN2AgDQoNCiMgbGlua3MNCg0KKiB1dGlsaXphbW9zIGxhIGVzdHJ1Y3R1cmEgYFt0ZXh0b10obGluaylgDQogICogRWwgbWVqb3IgY2FuYWwgZW4geW91dHViZSBlcyBbYWNhZGVtYXRpY2FdKGh0dHA6Ly93d3cueW91dHViZS5jb20vYWNhZGVtYXRpY2EpDQoNCiMgaW1hZ2VuZXMNCg0KUGFyYSBhZ3JlZ2FyIGltYWdlbmVzIHVzYW0gYCFbY2FwdGlvbl0oaW1hZ2VuKWANCg0KIVtdKGRpbGJlcnQuanBnKQ0KDQohW0RpbGJlcnQgb24gZGF0YSBxdWFsaXR5XShkaWxiZXJ0LmpwZykNCg0KIVtEaWxiZXJ0IG9uIGRhdGEgcXVhbGl0eSBeW0ltYWdlbiBkZXNjYXJjYWdhIGRlIGh0dHBzOi8vd3d3LnBpbnRlcmVzdC5jb20vcGluLzE2NzY4ODc4NjEwMjUzMzczOV1dKGRpbGJlcnQuanBnKQ0KDQoNClBhcmEgZXN0ZSB0YWxsZXIgdXNhbW9zIGNvbW8gcmVmZXJlbmNpYSAqKlIgTWFya2Rvd246IFRoZSBkZWZpbml0aXZlIGd1aWRlKipeW2h0dHBzOi8vYm9va2Rvd24ub3JnL3lpaHVpL3JtYXJrZG93bi9dDQoNCg0KDQojIGxpc3Rhcw0KIyMgbGlzdGFzIG5vIG9yZGVuYWRhcw0KDQpQb2RlbW9zIHVzYXIgYCtgLCBgLWAgbyBgKmANCg0KKyBpdGVtIDENCiAgKyBpdGVtIDEuMQ0KICArIGl0ZW0gMS4yDQorIGl0ZW0gMg0KICArIGl0ZW0gMi4xDQoNCmBgYA0KKyBpdGVtIDENCiAgKyBpdGVtIDEuMQ0KICArIGl0ZW0gMS4yDQorIGl0ZW0gMg0KICArIGl0ZW0gMi4xDQpgYGANCg0KIyMgbGlzdGFzIG9yZGVuYWRhcw0KDQoxLiBJdGVtIDENCiAgIDEuIEl0ZW0gMS4xDQogICAyLiBJdGVtIDEuMg0KMi4gSXRlbSAyDQogICAqIEl0ZW0gMi4xDQogICANCg0KIyBDaXRhcw0KDQo+ICIgSW4gR29kIHdlIHRydXN0LCBhbGwgb3RoZXJzIGJyaW5nIGRhdGEuIg0KPg0KPiAtLS0gVyBFZHdhcnMgRGVtaW5nDQoNCg0KPuKAnEtlZXAgYXdheSBmcm9tIHBlb3BsZSB3aG8gdHJ5IHRvIGJlbGl0dGxlIHlvdXIgYW1iaXRpb25zLiBTbWFsbCBwZW9wbGUgYWx3YXlzIGRvIHRoYXQsIGJ1dCB0aGUgcmVhbGx5IGdyZWF0IG1ha2UgeW91IGZlZWwgdGhhdCB5b3UsIHRvbywgY2FuIGJlY29tZSBncmVhdC7igJ0NCj4NCj4gLS0tIE1hcmsgVHdhaW4NCg0KIyBDaHVuayBkZSBjb2RpZ28NCg0KYGBgDQpTRUxFQ1QgKg0KRlJPTSBzY2hlbWEudGFibGUNCldIRVJFIHByb2R1Y3RfaWQgPiAxMjUNCiAgQU5EIHByb2Nlc3NfZGF0ZSA+PSAnMjAyMC0wNy0yOScNCmBgYA0KDQoNCiMgRXhwcmVzaW9uZXMgTWF0ZW1hdGljYXMNCg0KRXN0YSBpbnRlZ3JhbCAkXGludF9hXmIgZV54IFwsIGR4ID0gZV5iLWVeYSQgZXMgc3VtYW1lbnRlIGRpZmljaWwgZGUgcmVhbGl6YXIuDQoNCiQkXGludF9hXmIgZV54IFwsIGR4ID0gZV5iLWVeYSQkDQoNCiQkDQpYID0NClxiZWdpbntibWF0cml4fQ0KMSAmIHhfMSBcXA0KMSAmIHhfMiBcXA0KMSAmIHhfMw0KXGVuZHtibWF0cml4fQ0KJCQNCg0KJCRcVGhldGEgPSBcYmVnaW57cG1hdHJpeH1cYWxwaGEgJiBcYmV0YVxcDQpcZ2FtbWEgJiBcZGVsdGENClxlbmR7cG1hdHJpeH0kJA0KDQoNClRvZGFzIGxhcyBlY3VhY2lvbmVzIHNlIGVzY3JpYmVuIHVzYW5kbyBMYXRleC4gRXMgZGUgbXVjaGEgdXRpbGlkYWQgZXN0ZSBnZW5lcmFkb3IgZGUgbGF0ZXguIA0KDQpbR2VuZXJhZG9yIGRlIExhdGV4XShodHRwczovL3d3dy5jb2RlY29ncy5jb20vbGF0ZXgvZXFuZWRpdG9yLnBocCkNCg0KYGBge3J9DQpwbG90KG10Y2FycykNCmBgYA0KYGBge3J9DQpoZWFkKG10Y2FycywxMCkNCmBgYA0KDQpgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShnZ3Bsb3QyKQ0KbGlicmFyeShkcGx5cikNCmBgYA0KDQpgYGB7ciBwcmltZXJhcyBmaWxhcyBkZWwgZGF0YXNldCAsd2FybmluZz1GQUxTRSxlY2hvPUZBTFNFfQ0KaGVhZChkaWFtb25kcykNCmBgYA0KDQoNCmBgYHtyfQ0KZGlhbW9uZHMgJT4lIA0KICBnZ3Bsb3QoYWVzKHg9Y2FyYXQseT1wcmljZSxjb2xvcj1jb2xvcikpKw0KICBnZW9tX3BvaW50KCkNCmBgYA0KDQpgYGB7cn0NCnNlcXVlbmNpYSA8LSBzYW1wbGUoMToxMCkNCmBgYA0KDQoNCmBgYHtyfQ0Kc2VxdWVuY2lhDQpgYGANCg0KRXN0ZSBlcyBudWVzdHJvIHZlY3RvcjogYHIgc2VxdWVuY2lhYA0KDQoNCiMgUHl0aG9uDQoNClVzYSBsYSBsaWJyZXJpYSBbcmV0aWN1bGF0ZV0oaHR0cHM6Ly9yc3R1ZGlvLmdpdGh1Yi5pby9yZXRpY3VsYXRlLykNCg0KYGBge3J9DQpsaWJyYXJ5KHJldGljdWxhdGUpDQp1c2VfY29uZGFlbnYoJ3ItcmV0aWN1bGF0ZScpDQpgYGANCg0KSW5zdGFsYW1vcyAqKlBhbmRhcyoqIGBjb25kYV9pbnN0YWxsKCdyLXJldGljdWxhdGUnLCdwYW5kYXMnKWANCg0KYHB5X2ludGFsbCgncGFuZGFzJylgDQoNCg0KYGBge3B5dGhvbiBlY2hvPVRSVUV9DQppbXBvcnQgcGFuZGFzIGFzIHBkDQoNCmlyaXNfcGFuZGFzID0gcGQucmVhZF9jc3YoImlyaXMudHh0IikNCmlyaXNfc2V0b3NhID0gaXJpc19wYW5kYXNbaXJpc19wYW5kYXNbJ3NwZWNpZXMnXT09J3NldG9zYSddDQppcmlzX3NldG9zYS5oZWFkKCkNCmBgYA0KDQoNCmBgYHtyfQ0KcHkkaXJpc19zZXRvc2EgJT4lIA0KICBnZ3Bsb3QoYWVzKHg9c2VwYWxfd2lkdGgseT1zZXBhbF9sZW5ndGgsIGNvbG9yPXNwZWNpZXMpKSsNCiAgZ2VvbV9wb2ludCgpDQpgYGANCg0KDQpgYGB7cn0NCmhlYWQoZGlhbW9uZHMpIC0+IHNtX2RpYW1vbmRzDQpgYGANCg0KDQpgYGB7cHl0aG9ufQ0Kci5zbV9kaWFtb25kcy5oZWFkKCkNCmBgYA0KDQojIGNodW5rcyBkZSBTUUwNCg0KYGBge3J9DQpsaWJyYXJ5KFJNeVNRTCkNCmRiY29uIDwtIGRiQ29ubmVjdChNeVNRTCgpLA0KICAgICAgICAgICAgICAgICAgIGhvc3QgPSAsDQogICAgICAgICAgICAgICAgICAgdXNlciA9ICwNCiAgICAgICAgICAgICAgICAgICBwYXNzd29yZCA9ICwNCiAgICAgICAgICAgICAgICAgICBkYm5hbWUgPSAnZGF0YXNldHMnKQ0KYGBgDQoNCg0KYGBge3NxbCBjb25uZWN0aW9uPWRiY29ufQ0KU0VMRUNUICogDQpGUk9NIGRhdGFzZXRzLmlyaXMNCldIRVJFIHNlcGFsX2xlbmd0aCBCRVRXRUVOIDEgQU5EIDQNCmxpbWl0IDEwDQpgYGANCg0KDQoNCg0KDQoNCg==