BY_PAIR_MEANS <- here("experiments/conceptviz_2/data/by_item_means.csv")
pair_means <- read_csv(BY_PAIR_MEANS) %>%
mutate(log_haus_sim = log(haus_sim))
pair_means %>%
ggplot(aes(x = mean, y = log_haus_sim, color = category)) +
geom_point(alpha = .5) +
geom_smooth(method = "lm")

pair_means %>%
group_by(category) %>%
nest() %>%
mutate(temp = map(data, ~tidy(cor.test(.$mean, .$log_haus_sim)))) %>%
select(-data) %>%
unnest() %>%
kable()
| bird |
0.5030590 |
8.190512 |
0.00e+00 |
198 |
0.3916534 |
0.5999281 |
Pearson’s product-moment correlation |
two.sided |
| bread |
0.3034706 |
4.481557 |
1.25e-05 |
198 |
0.1719702 |
0.4243451 |
Pearson’s product-moment correlation |
two.sided |
| chair |
0.4910711 |
7.932301 |
0.00e+00 |
198 |
0.3780900 |
0.5896390 |
Pearson’s product-moment correlation |
two.sided |
| house |
0.2638450 |
3.849018 |
1.60e-04 |
198 |
0.1298576 |
0.3883693 |
Pearson’s product-moment correlation |
two.sided |
| tree |
0.2434230 |
3.531492 |
5.14e-04 |
198 |
0.1083409 |
0.3696789 |
Pearson’s product-moment correlation |
two.sided |