library(tidyverse)
library(ggplot2)
library(ggpubr)
library(plyr)
Set the R working drectory to the main experiment directory.
setwd("/Users/adambarnas/Box/Predicting_IB")
Read in the individual subject files.
Get a count of the number of subjects.
nrow(tbl_all %>% distinct(ID,.keep_all = FALSE))
## [1] 127
tbl_all_simple = subset(tbl_all, select = -c(rowNo,responseWindow,presTime,ISI,ITI,stimFormat,button1,keyboard,key,responseType,randomPick,responseOptions,pageBreak,required,if.,then,ITI_ms,ITI_f,ITI_fDuration,presTime_ms,presTime_f,presTime_fDuration,timestamp,responseCode,correct))
tbl_all_simple <- tbl_all_simple %>%
separate(response,into=c('response'))
tbl_all_simple <- tbl_all_simple %>%
separate(RTkeys,into=c('RTkeys'))
tbl_all_simple[tbl_all_simple==""]<-NA
tbl_all_simple$rt<- tbl_all_simple$RTkeys
tbl_all_simple$rt[is.na(tbl_all_simple$rt)] <- tbl_all_simple$RT[is.na(tbl_all_simple$rt)]
tbl_all_simple$rt <- as.numeric(tbl_all_simple$rt)
tbl_all_simple$ID <- as.character(tbl_all_simple$ID)
tbl_all_simple$stim1 <- as.character(tbl_all_simple$stim1)
tbl_all_blank_removed <- tbl_all_simple %>%
filter(stim1 != "blank")
tbl_all_matching <- tbl_all_blank_removed %>%
filter(grepl('matching', stim1))
tbl_all_matching[tbl_all_matching== "matching_prompt" ] <- NA
tbl_all_matching[tbl_all_matching== "timeout" ] <- NA
tbl_all_matching <- tbl_all_matching %>%
group_by(ID) %>%
fill(stim1) %>% #default direction down
fill(stim1, .direction = "up")
tbl_all_matching_condensed <- tbl_all_matching %>%
group_by(ID, stim1) %>%
dplyr::summarise(RT = sum(rt), response = first(na.omit(response)))
Split up stim1 nomenclature to task, answer, and number.
tbl_all_matching_condensed <- tbl_all_matching_condensed %>%
separate(stim1,into=c('task', 'answer', 'number'))
In the matching figures task, subjects were instructed to press ‘F’ if the two complex shapes were the same and ‘J’ if the two complex shapes were different. Trials will be labeled 1 for correct responses (‘F’ for same objects and ‘J’ for different objects) and 0 for incorrect responses (‘F’ for different objects and ‘J’ for same objects).
tbl_all_matching_condensed$acc = "filler"
for (i in 1:length(tbl_all_matching_condensed$ID)){
if (tbl_all_matching_condensed$task[i] == "matching"){
if (tbl_all_matching_condensed$answer[i] == "same"){
if (tbl_all_matching_condensed$response[i] == "f"){
tbl_all_matching_condensed$acc[i] = 1
} else {
tbl_all_matching_condensed$acc[i] = 0
}
} else {
if (tbl_all_matching_condensed$response[i] == "j"){
tbl_all_matching_condensed$acc[i] = 1
} else {
tbl_all_matching_condensed$acc[i] = 0
}
}
}
}
write.csv(tbl_all_matching_condensed,'matching_v3.csv', row.names=FALSE)
tbl_all_matching_condensed_acc <- tbl_all_matching_condensed %>%
group_by(ID,task,acc) %>%
dplyr::summarize(counts = n()) %>%
spread(acc,counts) %>%
mutate(total = rowSums(.[3:4], na.rm = TRUE))
colnames(tbl_all_matching_condensed_acc) <- c("ID", "task", "inacc", "acc", "total")
tbl_all_matching_condensed_acc[is.na(tbl_all_matching_condensed_acc)] <- 0
tbl_all_matching_condensed_acc$rate <- tbl_all_matching_condensed_acc$acc / tbl_all_matching_condensed_acc$total
tbl_all_matching_condensed_acc %>%
ggbarplot("ID", "rate", fill = "task", color = "task", palette = c("#0d2240", "#00a8e1"), font.xtickslab = 4, ylab = "Accuracy", ylim = c(0, 1), position = position_dodge(0.8)) + rotate_x_text() + geom_hline(yintercept = .5, linetype = 2) + theme(legend.position = "none")
tbl_all_matching_condensed_acc %>%
ggbarplot("task", "rate", add = "mean_se",fill = "task", color = "task", palette = c("#0d2240", "#00a8e1"), ylab = "Accuracy", ylim = c(0, 1), position = position_dodge(0.8), label = TRUE, lab.vjust = -1, lab.nb.digits = 2) + geom_hline(yintercept = .5, linetype = 2) + theme(legend.position = "none")
matching_chance <- tbl_all_matching_condensed_acc %>%
filter(task =="matching")
matching_chance <-t.test(matching_chance$rate, mu = .50, alternative="greater")
matching_chance
##
## One Sample t-test
##
## data: matching_chance$rate
## t = 19.425, df = 126, p-value < 2.2e-16
## alternative hypothesis: true mean is greater than 0.5
## 95 percent confidence interval:
## 0.7209316 Inf
## sample estimates:
## mean of x
## 0.7415354
tbl_all_matching_condensed_acc <- subset(tbl_all_matching_condensed_acc, select = c(ID, task, rate))
tbl_all_matching_condensed_acc_wide <- tbl_all_matching_condensed_acc %>%
spread(task,rate)
tbl_all_matching_condensed_acc <- tbl_all_matching_condensed_acc_wide %>%
filter(matching > 0.5)
tbl_all_matching_condensed_acc <- gather(tbl_all_matching_condensed_acc, task, rate, matching, factor_key=TRUE)
tbl_all_matching_condensed_acc %>%
ggbarplot("ID", "rate", fill = "task", color = "task", palette = c("#0d2240", "#00a8e1"), font.xtickslab = 4, ylab = "Accuracy", ylim = c(0, 1), position = position_dodge(0.8)) + rotate_x_text() + geom_hline(yintercept = .5, linetype = 2) + theme(legend.position = "none")
tbl_all_matching_condensed_acc %>%
ggbarplot("task", "rate", add = "mean_se",fill = "task", color = "task", palette = c("#0d2240", "#00a8e1"), ylab = "Accuracy", ylim = c(0, 1), position = position_dodge(0.8), label = TRUE, lab.vjust = -1, lab.nb.digits = 2) + geom_hline(yintercept = .5, linetype = 2) + theme(legend.position = "none")
matching_chance <- tbl_all_matching_condensed_acc %>%
filter(task =="matching")
matching_chance <-t.test(matching_chance$rate, mu = .50, alternative="greater")
matching_chance
##
## One Sample t-test
##
## data: matching_chance$rate
## t = 24.103, df = 117, p-value < 2.2e-16
## alternative hypothesis: true mean is greater than 0.5
## 95 percent confidence interval:
## 0.7454295 Inf
## sample estimates:
## mean of x
## 0.7635593
nrow(tbl_all_matching_condensed_acc %>% distinct(ID,.keep_all = FALSE))
## [1] 118
tbl_all_matching_condensed_rts <- tbl_all_matching_condensed[(tbl_all_matching_condensed$ID %in% tbl_all_matching_condensed_acc$ID),] %>%
filter(acc == 1)
tbl_all_matching_condensed_rts %>%
ggbarplot("ID", "RT", fill = "task", color = "task", palette = c("#0d2240", "#00a8e1"), font.xtickslab = 4, add = "median", position = position_dodge(0.8), ylab = "Median RT (ms)", ylim = c(0,7000)) + rotate_x_text() + theme(legend.position = "none") + geom_hline(yintercept = 200, linetype = 2)
tbl_all_matching_condensed_rts %>%
ggbarplot("task", "RT", add = "median",fill = "task", color = "task", palette = c("#0d2240", "#00a8e1"), position = position_dodge(0.8), order = c("embedded", "matching"), ylab = "Median RT (ms)", ylim = c(0,4000), label = TRUE, lab.vjust = -1, lab.nb.digits = 2) + theme(legend.position = "none")
tbl_all_matching_condensed_rts_median <- tbl_all_matching_condensed_rts %>%
group_by(ID,task) %>%
dplyr::summarize(median_rt = median(RT, na.rm=TRUE))
tbl_all_matching_condensed_rts_median_200ms_removed <- tbl_all_matching_condensed_rts_median %>%
filter(median_rt > 200)
tbl_all_matching_condensed_rts_200ms_removed <- tbl_all_matching_condensed_rts[(tbl_all_matching_condensed_rts$ID %in% tbl_all_matching_condensed_rts_median_200ms_removed$ID),]
tbl_all_matching_condensed_rts_200ms_removed %>%
ggbarplot("ID", "RT", fill = "task", color = "task", palette = c("#0d2240", "#00a8e1"), font.xtickslab = 4, add = "median", position = position_dodge(0.8), ylab = "Median RT (ms)", ylim = c(0,7000)) + rotate_x_text() + theme(legend.position = "none") + geom_hline(yintercept = 200, linetype = 2)
tbl_all_matching_condensed_rts_200ms_removed %>%
ggbarplot("task", "RT", add = "median",fill = "task", color = "task", palette = c("#0d2240", "#00a8e1"), position = position_dodge(0.8), order = c("embedded", "matching"), ylab = "Median RT (ms)", ylim = c(0,4000), label = TRUE, lab.vjust = -1, lab.nb.digits = 2) + theme(legend.position = "none")
nrow(tbl_all_matching_condensed_rts_200ms_removed %>% distinct(ID,.keep_all = FALSE))
## [1] 113
tbl_all <- tbl_all[(tbl_all$ID %in% tbl_all_matching_condensed_rts_median_200ms_removed$ID),]
tbl_all_IB <- tbl_all %>%
filter(grepl('Did you notice|item', head))
tbl_all_IB = subset(tbl_all_IB, select = -c(stim1,stim2,stim3,stim4,stim5,stim6,stim7,ITI,ISI,presTime,if.,then,presTime_ms,presTime_f,presTime_fDuration,RTkeys,correct,stimFormat,button1,keyboard,key,responseWindow,randomBlock,responseType,randomPick,responseOptions,pageBreak,required,ITI_ms,ITI_f,ITI_fDuration,responseCode))
tbl_all_IB <- tbl_all_IB[(tbl_all_IB$ID %in% tbl_all_matching_condensed_rts_median$ID),]
nrow(tbl_all_IB %>% distinct(ID,.keep_all = FALSE))
## [1] 113
tbl_all_line <- tbl_all %>%
filter(rowNo >= 205 & rowNo <= 220)
tbl_all_line = subset(tbl_all_line, select = -c(rowNo,type,stim1,stim2,stim3,stim4,stim6,stim7,timestamp,RT,correct,ISI,ITI,stimFormat,button1,keyboard,key,responseWindow,randomBlock,presTime,head,responseType,randomPick,responseOptions,pageBreak,required,if.,then,ITI_ms,ITI_f,ITI_fDuration,presTime_ms,presTime_f,presTime_fDuration,RTkeys,responseCode,responseOptionsRandom))
tbl_all_line <- tbl_all_line[(tbl_all_line$ID %in% tbl_all_matching_condensed_rts_median$ID),]
tbl_all_line <- tbl_all_line %>%
separate(stim5,into=c('longer_line', 'type', 'per_similar'),sep = "([\\_])")
tbl_all_line$acc = "filler"
for (i in 1:length(tbl_all_line$ID)){
if (tbl_all_line$longer_line[i] == "vertical"){
if (tbl_all_line$response[i] == "v"){
tbl_all_line$acc[i] = 1
} else {
tbl_all_line$acc[i] = 0
}
} else {
if (tbl_all_line$response[i] == "h"){
tbl_all_line$acc[i] = 1
} else {
tbl_all_line$acc[i] = 0
}
}
}
tbl_all_line_acc <- tbl_all_line %>%
group_by(ID,acc) %>%
dplyr::summarize(counts = n()) %>%
spread(acc,counts) %>%
mutate(total = rowSums(.[2:3], na.rm = TRUE))
colnames(tbl_all_line_acc) <- c("ID", "inacc", "acc", "total")
tbl_all_line_acc[is.na(tbl_all_line_acc)] <- 0
tbl_all_line_acc$rate <- tbl_all_line_acc$acc / tbl_all_line_acc$total
tbl_all_line_acc %>%
ggbarplot("ID", "rate", fill = "#0d2240", color = "#0d2240", font.xtickslab = 4, ylab = "Accuracy", ylim = c(0, 1), position = position_dodge(0.8)) + rotate_x_text() + geom_hline(yintercept = .5, linetype = 2)
tbl_all_line_acc %>%
ggbarplot(y = "rate", add = "mean_se",fill = "#0d2240", color = "#0d2240", ylab = "Accuracy", ylim = c(0, 1), position = position_dodge(0.8), label = TRUE, lab.vjust = -1.5, lab.nb.digits = 2) + geom_hline(yintercept = .5, linetype = 2)
all_line_chance <-t.test(tbl_all_line_acc$rate, mu = .50, alternative="greater")
all_line_chance
##
## One Sample t-test
##
## data: tbl_all_line_acc$rate
## t = 7.9518, df = 112, p-value = 8.018e-13
## alternative hypothesis: true mean is greater than 0.5
## 95 percent confidence interval:
## 0.6505804 Inf
## sample estimates:
## mean of x
## 0.6902655
write.csv(tbl_all_line,'line_judgment_v3.csv', row.names=FALSE)
tbl_all_line_good_catch <- tbl_all_line %>%
group_by(ID) %>%
filter(!any(type == "catch" & acc == 0))
tbl_all_line_acc_good_catch <- tbl_all_line_good_catch %>%
group_by(ID,acc) %>%
dplyr::summarize(counts = n()) %>%
spread(acc,counts) %>%
mutate(total = rowSums(.[2:3], na.rm = TRUE))
colnames(tbl_all_line_acc_good_catch) <- c("ID", "inacc", "acc", "total")
tbl_all_line_acc_good_catch[is.na(tbl_all_line_acc_good_catch)] <- 0
tbl_all_line_acc_good_catch$rate <- tbl_all_line_acc_good_catch$acc / tbl_all_line_acc_good_catch$total
tbl_all_line_acc_good_catch %>%
ggbarplot("ID", "rate", fill = "#0d2240", color = "#0d2240", font.xtickslab = 4, ylab = "Accuracy", ylim = c(0, 1), position = position_dodge(0.8)) + rotate_x_text() + geom_hline(yintercept = .5, linetype = 2)
tbl_all_line_acc_good_catch %>%
ggbarplot(y = "rate", add = "mean_se",fill = "#0d2240", color = "#0d2240", ylab = "Accuracy", ylim = c(0, 1), position = position_dodge(0.8), label = TRUE, lab.vjust = -1.5, lab.nb.digits = 2) + geom_hline(yintercept = .5, linetype = 2)
all_line_chance <-t.test(tbl_all_line_acc_good_catch$rate, mu = .50, alternative="greater")
all_line_chance
##
## One Sample t-test
##
## data: tbl_all_line_acc_good_catch$rate
## t = 18.028, df = 64, p-value < 2.2e-16
## alternative hypothesis: true mean is greater than 0.5
## 95 percent confidence interval:
## 0.8110053 Inf
## sample estimates:
## mean of x
## 0.842735
nrow(tbl_all_line_acc_good_catch %>% distinct(ID,.keep_all = FALSE))
## [1] 65
tbl_all_IB <- tbl_all_IB[(tbl_all_IB$ID %in% tbl_all_line_acc_good_catch$ID),]
tbl_all_notice <- tbl_all_IB %>%
filter(grepl('shapes', head))
tbl_all_notice = subset(tbl_all_notice, select = -c(rowNo,type,head,timestamp,RT,responseOptionsRandom))
tbl_all_notice$notice_shape = "filler"
for (i in 1:length(tbl_all_notice$ID)){
if (tbl_all_notice$response[i] == "Square" | tbl_all_notice$response[i] == "Circle" | tbl_all_notice$response[i] == "Triangle"){
tbl_all_notice$notice_shape[i] = 1
}
else {
tbl_all_notice$notice_shape[i] = 0
}
}
tbl_all_notice$notice_square = "filler"
for (i in 1:length(tbl_all_notice$ID)){
if (tbl_all_notice$response[i] == "Square"){
tbl_all_notice$notice_square[i] = 1
}
else {
tbl_all_notice$notice_square[i] = 0
}
}
table(tbl_all_notice$response)
##
## Circle I did not notice any of these shapes
## 7 42
## Square Triangle
## 10 6
table(tbl_all_notice$notice_shape)
##
## 0 1
## 42 23
table(tbl_all_notice$notice_square)
##
## 0 1
## 55 10
tbl_all_line_unexpected <- tbl_all_line %>%
filter(type == "UR" | type == "UL" | type == "LL" | type == "LR")
tbl_all_line_unexpected <- tbl_all_line_unexpected[(tbl_all_line_unexpected$ID %in% tbl_all_notice$ID),]
tbl_all_notice<- cbind.data.frame(tbl_all_notice, tbl_all_line_unexpected[3])
tbl_all <- tbl_all[(tbl_all$ID %in% tbl_all_notice$ID),]
tbl_all_location <- tbl_all %>%
filter(grepl('located', head))
tbl_all_location = subset(tbl_all_location, select = c(ID,response))
tbl_all_notice <- merge(tbl_all_notice, tbl_all_location, by = "ID", all.x = TRUE, all.y = TRUE)
colnames(tbl_all_notice) <- c("ID", "notice_response", "notice_shape", "notice_square", "square_location", "location_response")
tbl_all_notice <- tbl_all_notice %>% mutate(location_response = recode_factor(location_response, `Upper left`="UL", `Upper right`="UR", `Lower left`="LL", `Lower right`="LR"))
tbl_all_notice$notice_square_and_location = "filler"
for (i in 1:length(tbl_all_notice$ID)){
if (tbl_all_notice$notice_response[i] == "Square"){
if (tbl_all_notice$square_location[i] == "UL"){
if (tbl_all_notice$location_response[i] == "UL"){
tbl_all_notice$notice_square_and_location[i] = 1
} else {
tbl_all_notice$notice_square_and_location[i] = 0
}
} else if (tbl_all_notice$square_location[i] == "UR"){
if (tbl_all_notice$location_response[i] == "UR"){
tbl_all_notice$notice_square_and_location[i] = 1
} else {
tbl_all_notice$notice_square_and_location[i] = 0
}
} else if (tbl_all_notice$square_location[i] == "LL"){
if (tbl_all_notice$location_response[i] == "LL"){
tbl_all_notice$notice_square_and_location[i] = 1
} else {
tbl_all_notice$notice_square_and_location[i] = 0
}
} else if (tbl_all_notice$square_location[i] == "LR"){
if (tbl_all_notice$location_response[i] == "LR"){
tbl_all_notice$notice_square_and_location[i] = 1
} else {
tbl_all_notice$notice_square_and_location[i] = 0
}
}
}
}
tbl_all_notice$notice_location = "filler"
for (i in 1:length(tbl_all_notice$ID)){
if (tbl_all_notice$notice_response[i] == "Square" | tbl_all_notice$notice_response[i] == "Circle" | tbl_all_notice$notice_response[i] == "Triangle"){
if (tbl_all_notice$square_location[i] == "UL"){
if (tbl_all_notice$location_response[i] == "UL"){
tbl_all_notice$notice_location[i] = 1
} else {
tbl_all_notice$notice_location[i] = 0
}
} else if (tbl_all_notice$square_location[i] == "UR"){
if (tbl_all_notice$location_response[i] == "UR"){
tbl_all_notice$notice_location[i] = 1
} else {
tbl_all_notice$notice_location[i] = 0
}
} else if (tbl_all_notice$square_location[i] == "LL"){
if (tbl_all_notice$location_response[i] == "LL"){
tbl_all_notice$notice_location[i] = 1
} else {
tbl_all_notice$notice_location[i] = 0
}
} else if (tbl_all_notice$square_location[i] == "LR"){
if (tbl_all_notice$location_response[i] == "LR"){
tbl_all_notice$notice_location[i] = 1
} else {
tbl_all_notice$notice_location[i] = 0
}
}
}
}
tbl_all_notice[tbl_all_notice == "filler"] <- 0
write.csv(tbl_all_notice,'IB_v3.csv', row.names=FALSE)
tbl_all <- tbl_all[(tbl_all$ID %in% tbl_all_IB$ID),]
tbl_all_expecting <- tbl_all %>%
filter(grepl('Before', head))
tbl_all_expecting = subset(tbl_all_expecting, select = -c(stim1,ITI,ISI,presTime,if.,then,presTime_ms,presTime_f,presTime_fDuration,RTkeys,correct,stimFormat,button1,keyboard,key,responseWindow,randomBlock,responseType,randomPick,responseOptions,pageBreak,required,ITI_ms,ITI_f,ITI_fDuration,responseCode))
tbl_all_expecting <- tbl_all_expecting[(tbl_all_expecting$ID %in% tbl_all_matching_condensed_rts_median$ID),]
table(tbl_all_expecting$response)
##
## No Yes
## 58 7
tbl_all_familiarity <- tbl_all %>%
filter(grepl('gorilla', head))
tbl_all_familiarity = subset(tbl_all_familiarity, select = -c(stim1,ITI,ISI,presTime,if.,then,presTime_ms,presTime_f,presTime_fDuration,RTkeys,correct,stimFormat,button1,keyboard,key,responseWindow,randomBlock,responseType,randomPick,responseOptions,pageBreak,required,ITI_ms,ITI_f,ITI_fDuration,responseCode))
tbl_all_familiarity <- tbl_all_familiarity[(tbl_all_familiarity$ID %in% tbl_all_matching_condensed_rts_median$ID),]
table(tbl_all_familiarity$response)
##
## No Yes
## 44 21
tbl_median_rts <- tbl_all_matching_condensed_rts_median_200ms_removed[(tbl_all_matching_condensed_rts_median_200ms_removed$ID %in% tbl_all_notice$ID),]
tbl_acc <- tbl_all_matching_condensed_acc[(tbl_all_matching_condensed_acc$ID %in% tbl_all_notice$ID),]
tbl_log_reg <- cbind.data.frame(tbl_all_notice, tbl_median_rts[3], tbl_acc[3])
tbl_log_reg$notice_shape <- as.numeric(tbl_log_reg$notice_shape)
tbl_log_reg$notice_square <- as.numeric(tbl_log_reg$notice_square)
tbl_log_reg$notice_square_and_location <- as.numeric(tbl_log_reg$notice_square_and_location)
tbl_log_reg$notice_location <- as.numeric(tbl_log_reg$notice_location)
log_reg_matching_median_rt <- glm(notice_shape ~ median_rt, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_median_rt)
##
## Call:
## glm(formula = notice_shape ~ median_rt, family = binomial(link = "logit"),
## data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9622 -0.9434 -0.9212 1.4272 1.5151
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.257e-01 8.555e-01 -0.498 0.619
## median_rt -5.622e-05 2.605e-04 -0.216 0.829
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 84.473 on 64 degrees of freedom
## Residual deviance: 84.427 on 63 degrees of freedom
## AIC: 88.427
##
## Number of Fisher Scoring iterations: 4
plot_matching_median_rt <- ggplot(tbl_log_reg, aes(x=median_rt, y=notice_shape)) + geom_point() + stat_smooth(method="glm", method.args=list(family="binomial"), se=TRUE, color="#f7a800") + theme_classic((base_size = 15))
suppressMessages(print(plot_matching_median_rt))
log_reg_matching_median_rt <- glm(notice_location ~ median_rt, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_median_rt)
##
## Call:
## glm(formula = notice_location ~ median_rt, family = binomial(link = "logit"),
## data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.5965 -0.5809 -0.5744 -0.5705 1.9598
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.805e+00 1.132e+00 -1.595 0.111
## median_rt 3.172e-05 3.402e-04 0.093 0.926
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 55.812 on 64 degrees of freedom
## Residual deviance: 55.803 on 63 degrees of freedom
## AIC: 59.803
##
## Number of Fisher Scoring iterations: 3
plot_matching_median_rt <- ggplot(tbl_log_reg, aes(x=median_rt, y=notice_square)) + geom_point() + stat_smooth(method="glm", method.args=list(family="binomial"), se=TRUE, color="#f7a800") + theme_classic((base_size = 15))
suppressMessages(print(plot_matching_median_rt))
log_reg_matching_median_rt <- glm(notice_square ~ median_rt, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_median_rt)
##
## Call:
## glm(formula = notice_square ~ median_rt, family = binomial(link = "logit"),
## data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.7995 -0.6311 -0.5445 -0.3956 2.2781
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.3744064 1.1900836 -0.315 0.753
## median_rt -0.0004434 0.0003972 -1.116 0.264
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 55.812 on 64 degrees of freedom
## Residual deviance: 54.420 on 63 degrees of freedom
## AIC: 58.42
##
## Number of Fisher Scoring iterations: 5
plot_matching_median_rt <- ggplot(tbl_log_reg, aes(x=median_rt, y=notice_square)) + geom_point() + stat_smooth(method="glm", method.args=list(family="binomial"), se=TRUE, color="#f7a800") + theme_classic((base_size = 15))
suppressMessages(print(plot_matching_median_rt))
log_reg_matching_median_rt <- glm(notice_square_and_location ~ median_rt, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_median_rt)
##
## Call:
## glm(formula = notice_square_and_location ~ median_rt, family = binomial(link = "logit"),
## data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.5733 -0.4080 -0.3419 -0.2591 2.4428
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8372659 1.8262761 -0.458 0.647
## median_rt -0.0006518 0.0006529 -0.998 0.318
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 30.053 on 64 degrees of freedom
## Residual deviance: 28.872 on 63 degrees of freedom
## AIC: 32.872
##
## Number of Fisher Scoring iterations: 6
plot_matching_median_rt <- ggplot(tbl_log_reg, aes(x=median_rt, y=notice_square_and_location)) + geom_point() + stat_smooth(method="glm", method.args=list(family="binomial"), se=TRUE, color="#f7a800") + theme_classic((base_size = 15))
suppressMessages(print(plot_matching_median_rt))
log_reg_matching_acc <- glm(notice_shape ~ rate, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_acc)
##
## Call:
## glm(formula = notice_shape ~ rate, family = binomial(link = "logit"),
## data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.4521 -0.8798 -0.7051 1.2781 1.8168
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 4.924 2.532 1.945 0.0518 .
## rate -6.877 3.149 -2.184 0.0290 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 84.473 on 64 degrees of freedom
## Residual deviance: 79.285 on 63 degrees of freedom
## AIC: 83.285
##
## Number of Fisher Scoring iterations: 4
plot_matching_acc<- ggplot(tbl_log_reg, aes(x=rate, y=notice_shape)) + geom_point() + stat_smooth(method="glm", method.args=list(family="binomial"), se=TRUE, color="#f7a800") + theme_classic((base_size = 15))
suppressMessages(print(plot_matching_acc))
log_reg_matching_acc <- glm(notice_location ~ rate, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_acc)
##
## Call:
## glm(formula = notice_location ~ rate, family = binomial(link = "logit"),
## data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.7716 -0.6006 -0.5373 -0.4984 2.0723
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.868 2.986 0.291 0.771
## rate -3.212 3.744 -0.858 0.391
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 55.812 on 64 degrees of freedom
## Residual deviance: 55.091 on 63 degrees of freedom
## AIC: 59.091
##
## Number of Fisher Scoring iterations: 4
plot_matching_acc <- ggplot(tbl_log_reg, aes(x=rate, y=notice_square)) + geom_point() + stat_smooth(method="glm", method.args=list(family="binomial"), se=TRUE, color="#f7a800") + theme_classic((base_size = 15))
suppressMessages(print(plot_matching_acc))
log_reg_matching_acc <- glm(notice_square ~ rate, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_acc)
##
## Call:
## glm(formula = notice_square ~ rate, family = binomial(link = "logit"),
## data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8629 -0.6058 -0.5163 -0.4632 2.1861
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.968 2.949 0.667 0.505
## rate -4.607 3.731 -1.235 0.217
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 55.812 on 64 degrees of freedom
## Residual deviance: 54.309 on 63 degrees of freedom
## AIC: 58.309
##
## Number of Fisher Scoring iterations: 4
plot_matching_acc<- ggplot(tbl_log_reg, aes(x=rate, y=notice_square)) + geom_point() + stat_smooth(method="glm", method.args=list(family="binomial"), se=TRUE, color="#f7a800") + theme_classic((base_size = 15))
suppressMessages(print(plot_matching_acc))
log_reg_matching_acc <- glm(notice_square_and_location ~ rate, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_acc)
##
## Call:
## glm(formula = notice_square_and_location ~ rate, family = binomial(link = "logit"),
## data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.5005 -0.3703 -0.3247 -0.2973 2.5065
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1522 4.3162 0.035 0.972
## rate -3.6103 5.4685 -0.660 0.509
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 30.053 on 64 degrees of freedom
## Residual deviance: 29.634 on 63 degrees of freedom
## AIC: 33.634
##
## Number of Fisher Scoring iterations: 5
plot_matching_acc<- ggplot(tbl_log_reg, aes(x=rate, y=notice_square_and_location)) + geom_point() + stat_smooth(method="glm", method.args=list(family="binomial"), se=TRUE, color="#f7a800") + theme_classic((base_size = 15))
suppressMessages(print(plot_matching_acc))
log_reg_matching_median_rt_and_acc <- glm(notice_shape ~ median_rt + rate, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_median_rt_and_acc)
##
## Call:
## glm(formula = notice_shape ~ median_rt + rate, family = binomial(link = "logit"),
## data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.4724 -0.8851 -0.6796 1.2357 1.8580
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.3076534 2.5839397 2.054 0.0400 *
## median_rt 0.0002977 0.0003087 0.965 0.3348
## rate -8.5237011 3.6533366 -2.333 0.0196 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 84.473 on 64 degrees of freedom
## Residual deviance: 78.350 on 62 degrees of freedom
## AIC: 84.35
##
## Number of Fisher Scoring iterations: 4
log_reg_matching_median_rt_and_acc <- glm(notice_location ~ median_rt + rate, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_median_rt_and_acc)
##
## Call:
## glm(formula = notice_location ~ median_rt + rate, family = binomial(link = "logit"),
## data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8565 -0.5998 -0.5407 -0.4624 2.1560
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.1363911 3.0425684 0.373 0.709
## median_rt 0.0002190 0.0003877 0.565 0.572
## rate -4.4118210 4.3700393 -1.010 0.313
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 55.812 on 64 degrees of freedom
## Residual deviance: 54.778 on 62 degrees of freedom
## AIC: 60.778
##
## Number of Fisher Scoring iterations: 4
log_reg_matching_median_rt_and_acc <- glm(notice_square ~ median_rt + rate, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_median_rt_and_acc)
##
## Call:
## glm(formula = notice_square ~ median_rt + rate, family = binomial(link = "logit"),
## data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.9384 -0.6133 -0.5416 -0.4101 2.3304
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.7260064 2.9732169 0.581 0.562
## median_rt -0.0002917 0.0004383 -0.665 0.506
## rate -3.2034088 4.2223005 -0.759 0.448
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 55.812 on 64 degrees of freedom
## Residual deviance: 53.843 on 62 degrees of freedom
## AIC: 59.843
##
## Number of Fisher Scoring iterations: 4
log_reg_matching_median_rt_and_acc <- glm(notice_square_and_location ~ median_rt + rate, data = tbl_log_reg, family = binomial(link = "logit"))
summary(log_reg_matching_median_rt_and_acc)
##
## Call:
## glm(formula = notice_square_and_location ~ median_rt + rate,
## family = binomial(link = "logit"), data = tbl_log_reg)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.5995 -0.4079 -0.3475 -0.2596 2.4625
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.2870951 4.2998483 -0.067 0.947
## median_rt -0.0006036 0.0007315 -0.825 0.409
## rate -0.8643979 6.1654753 -0.140 0.889
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 30.053 on 64 degrees of freedom
## Residual deviance: 28.853 on 62 degrees of freedom
## AIC: 34.853
##
## Number of Fisher Scoring iterations: 6