Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.
This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.
To perform this analysis, it is necessary to load some libraries:
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.2
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(statsr)
Loading the data obtained from NOAA:
noaa <- read.csv("repdata-data-StormData.csv")
To start the analysis noaa raw dataset, we are going to summarize the information:
## STATE__ BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE EVTYPE
## 1 1 4/18/1950 0:00:00 0130 CST 97 MOBILE AL TORNADO
## 2 1 4/18/1950 0:00:00 0145 CST 3 BALDWIN AL TORNADO
## 3 1 2/20/1951 0:00:00 1600 CST 57 FAYETTE AL TORNADO
## 4 1 6/8/1951 0:00:00 0900 CST 89 MADISON AL TORNADO
## 5 1 11/15/1951 0:00:00 1500 CST 43 CULLMAN AL TORNADO
## 6 1 11/15/1951 0:00:00 2000 CST 77 LAUDERDALE AL TORNADO
## BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END COUNTYENDN
## 1 0 0 NA
## 2 0 0 NA
## 3 0 0 NA
## 4 0 0 NA
## 5 0 0 NA
## 6 0 0 NA
## END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES INJURIES PROPDMG
## 1 0 14.0 100 3 0 0 15 25.0
## 2 0 2.0 150 2 0 0 0 2.5
## 3 0 0.1 123 2 0 0 2 25.0
## 4 0 0.0 100 2 0 0 2 2.5
## 5 0 0.0 150 2 0 0 2 2.5
## 6 0 1.5 177 2 0 0 6 2.5
## PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES LATITUDE LONGITUDE
## 1 K 0 3040 8812
## 2 K 0 3042 8755
## 3 K 0 3340 8742
## 4 K 0 3458 8626
## 5 K 0 3412 8642
## 6 K 0 3450 8748
## LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1 3051 8806 1
## 2 0 0 2
## 3 0 0 3
## 4 0 0 4
## 5 0 0 5
## 6 0 0 6
This dataset has 37 variables and 902,297 data. Our interest here is to analyze the relationship between the storm event (EVTYPE) and public health (FATALITIES and INJURIES) and economic problems (PROPDMG and CROPDMG). We are going to create a subset from noaa dataset:
noaa_sub <- subset(noaa, select = c("STATE", "EVTYPE", "FATALITIES", "INJURIES","PROPDMG","CROPDMG"))
##Results
working with the noaa_sub dataset, let’s see the 15 weather events that are harmful to people’s life:
top15 <- noaa_sub %>% group_by(EVTYPE) %>% summarise(total = sum(FATALITIES,INJURIES)) %>% filter(total != 0) %>% arrange(desc(total))
## `summarise()` ungrouping output (override with `.groups` argument)
top15 <- head(top15,15)
rownames(top15) <- c(1:15)
## Warning: Setting row names on a tibble is deprecated.
top15
## # A tibble: 15 x 2
## EVTYPE total
## * <chr> <dbl>
## 1 TORNADO 96979
## 2 EXCESSIVE HEAT 8428
## 3 TSTM WIND 7461
## 4 FLOOD 7259
## 5 LIGHTNING 6046
## 6 HEAT 3037
## 7 FLASH FLOOD 2755
## 8 ICE STORM 2064
## 9 THUNDERSTORM WIND 1621
## 10 WINTER STORM 1527
## 11 HIGH WIND 1385
## 12 HAIL 1376
## 13 HURRICANE/TYPHOON 1339
## 14 HEAVY SNOW 1148
## 15 WILDFIRE 986
Plotting this values in a barplot:
ggplot(data = top15, aes(x = EVTYPE, y = total, fill=EVTYPE)) + geom_bar(stat = "identity") + coord_flip()
We can see that Tornado is the weather event that bring more danger for health people.
Let’s see now the 15 weather events that bring economic problems:
topeco <- noaa_sub %>% group_by(EVTYPE) %>% summarise(total = sum(PROPDMG,CROPDMG)) %>% filter(total != 0) %>% arrange(desc(total))
## `summarise()` ungrouping output (override with `.groups` argument)
topeco <- head(topeco,15)
rownames(topeco) <- c(1:15)
## Warning: Setting row names on a tibble is deprecated.
topeco
## # A tibble: 15 x 2
## EVTYPE total
## * <chr> <dbl>
## 1 TORNADO 3312277.
## 2 FLASH FLOOD 1599325.
## 3 TSTM WIND 1445168.
## 4 HAIL 1268290.
## 5 FLOOD 1067976.
## 6 THUNDERSTORM WIND 943636.
## 7 LIGHTNING 606932.
## 8 THUNDERSTORM WINDS 464978.
## 9 HIGH WIND 342015.
## 10 WINTER STORM 134700.
## 11 HEAVY SNOW 124418.
## 12 WILDFIRE 88824.
## 13 ICE STORM 67690.
## 14 STRONG WIND 64611.
## 15 HEAVY RAIN 61965.
Plotting in a barplot:
ggplot(data = topeco, aes(x = EVTYPE, y = total, fill = EVTYPE)) + geom_bar(stat="identity") + coord_flip()
In agreement with the prior plot, Tornado brings the highest economic problems for governments.