Exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database for its Health and Economic Impacts

Synopsis

Storms and other severe weather events can cause both public health and economic problems for communities and municipalities. Many severe events can result in fatalities, injuries, and property damage, and preventing such outcomes to the extent possible is a key concern.

This project involves exploring the U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database. This database tracks characteristics of major storms and weather events in the United States, including when and where they occur, as well as estimates of any fatalities, injuries, and property damage.

The analysis of the data shows that tornadoes, by far, have the greatest health impact as measured by the number of injuries and fatalities The analysis also shows that floods cause the greatest economic impact as measured by property damage and crop damage.

Data Processing

The data for this assignment come in the form of a comma-separated-value file compressed via the bzip2 algorithm to reduce its size. You can download the file from the course web site:

Storm Data (47Mb)

There is also some documentation of the database available. Here you will find how some of the variables are constructed/defined.

The events in the database start in the year 1950 and end in November 2011. In the earlier years of the database there are generally fewer events recorded, most likely due to a lack of good records. More recent years should be considered more complete.

The data was downloaded via the above link and was then loaded to our R working directory. Then we unzip the contents of the file and load it into a new variable storm_data using the read.csv command. If object storm_data is already loaded, use that cached object insted of loading it each time the Rmd file is knitted.

if(!exists("storm_data")) {
    storm_data <- read.csv(bzfile("repdata_data_StormData.csv.bz2"),header = TRUE)
  }

Now that the data is stored we analyze its contents.

dim(storm_data)
## [1] 902297     37
str(storm_data)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : chr  "4/18/1950 0:00:00" "4/18/1950 0:00:00" "2/20/1951 0:00:00" "6/8/1951 0:00:00" ...
##  $ BGN_TIME  : chr  "0130" "0145" "1600" "0900" ...
##  $ TIME_ZONE : chr  "CST" "CST" "CST" "CST" ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: chr  "MOBILE" "BALDWIN" "FAYETTE" "MADISON" ...
##  $ STATE     : chr  "AL" "AL" "AL" "AL" ...
##  $ EVTYPE    : chr  "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : chr  "" "" "" "" ...
##  $ BGN_LOCATI: chr  "" "" "" "" ...
##  $ END_DATE  : chr  "" "" "" "" ...
##  $ END_TIME  : chr  "" "" "" "" ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : chr  "" "" "" "" ...
##  $ END_LOCATI: chr  "" "" "" "" ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: chr  "K" "K" "K" "K" ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: chr  "" "" "" "" ...
##  $ WFO       : chr  "" "" "" "" ...
##  $ STATEOFFIC: chr  "" "" "" "" ...
##  $ ZONENAMES : chr  "" "" "" "" ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : chr  "" "" "" "" ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...

Relevant variables

From a list of variables in storm_data, these are columns of interest:

  • Health variables:
  1. FATALITIES: approx. number of deaths
  2. INJURIES: approx. number of injuries
  • Economic variables:
  1. PROPDMG: approx. property damags
  2. PROPDMGEXP: the units for property damage value
  3. CROPDMG: approx. crop damages
  4. CROPDMGEXP: the units for crop damage value
  • Events target variable:
  1. EVTYPE: weather event (Tornados, Wind, Snow, Flood, etc..)

Health Impact

To evaluate the health impact, the total fatalities and the total injuries for each event type (EVTYPE) are calculated.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
storm_data.fatalities <- storm_data %>% select(EVTYPE, FATALITIES) %>% group_by(EVTYPE) %>% summarise(total.fatalities = sum(FATALITIES)) %>% arrange(-total.fatalities)
## `summarise()` ungrouping output (override with `.groups` argument)
head(storm_data.fatalities, 10) 
## # A tibble: 10 x 2
##    EVTYPE         total.fatalities
##    <chr>                     <dbl>
##  1 TORNADO                    5633
##  2 EXCESSIVE HEAT             1903
##  3 FLASH FLOOD                 978
##  4 HEAT                        937
##  5 LIGHTNING                   816
##  6 TSTM WIND                   504
##  7 FLOOD                       470
##  8 RIP CURRENT                 368
##  9 HIGH WIND                   248
## 10 AVALANCHE                   224
storm_data.injuries <- storm_data %>% select(EVTYPE, INJURIES) %>% group_by(EVTYPE) %>% summarise(total.injuries = sum(INJURIES)) %>% arrange(-total.injuries)
## `summarise()` ungrouping output (override with `.groups` argument)
head(storm_data.injuries, 10)
## # A tibble: 10 x 2
##    EVTYPE            total.injuries
##    <chr>                      <dbl>
##  1 TORNADO                    91346
##  2 TSTM WIND                   6957
##  3 FLOOD                       6789
##  4 EXCESSIVE HEAT              6525
##  5 LIGHTNING                   5230
##  6 HEAT                        2100
##  7 ICE STORM                   1975
##  8 FLASH FLOOD                 1777
##  9 THUNDERSTORM WIND           1488
## 10 HAIL                        1361

Economic Impact

The data provides two types of economic impact, namely property damage (PROPDMG) and crop damage (CROPDMG). The actual damage in $USD is indicated by PROPDMGEXP and CROPDMGEXP parameters. According to this link, the index in the PROPDMGEXP and CROPDMGEXP can be interpreted as the following:-

  • H, h -> hundreds = x100
  • K, K -> kilos = x1,000
  • M, m -> millions = x1,000,000
  • B,b -> billions = x1,000,000,000
  • (+) -> x1
  • (-) -> x0
  • (?) -> x0
  • blank -> x0
storm_data.damage <- storm_data %>% select(EVTYPE,PROPDMG,PROPDMGEXP,CROPDMG,CROPDMGEXP)
Symbol <- sort(unique(as.character(storm_data.damage$PROPDMGEXP)))
Multiplier <- c(0,0,0,1,10,10,10,10,10,10,10,10,10,10^9,10^2,10^2,10^3,10^6,10^6)
convert.Multiplier <- data.frame(Symbol, Multiplier)
storm_data.damage$Prop.Multiplier <- convert.Multiplier$Multiplier[match(storm_data.damage$PROPDMGEXP, convert.Multiplier$Symbol)]
storm_data.damage$Crop.Multiplier <- convert.Multiplier$Multiplier[match(storm_data.damage$CROPDMGEXP, convert.Multiplier$Symbol)]

storm_data.damage <- storm_data.damage %>% mutate(PROPDMG = PROPDMG*Prop.Multiplier) %>% mutate(CROPDMG = CROPDMG*Crop.Multiplier) %>% mutate(TOTAL.DMG = PROPDMG+CROPDMG)

storm_data.damage.total <- storm_data.damage %>% group_by(EVTYPE) %>% summarize(TOTAL.DMG.EVTYPE = sum(TOTAL.DMG))%>% arrange(-TOTAL.DMG.EVTYPE) 
## `summarise()` ungrouping output (override with `.groups` argument)
head(storm_data.damage.total,10)
## # A tibble: 10 x 2
##    EVTYPE            TOTAL.DMG.EVTYPE
##    <chr>                        <dbl>
##  1 FLOOD                 150319678250
##  2 HURRICANE/TYPHOON      71913712800
##  3 TORNADO                57352117607
##  4 STORM SURGE            43323541000
##  5 FLASH FLOOD            17562132111
##  6 DROUGHT                15018672000
##  7 HURRICANE              14610229010
##  8 RIVER FLOOD            10148404500
##  9 ICE STORM               8967041810
## 10 TROPICAL STORM          8382236550

Result

Health Impact

The top 10 events with the highest total fatalities and injuries are shown graphically.

library(ggplot2)
g <- ggplot(storm_data.fatalities[1:10,], aes(x= EVTYPE, y=total.fatalities,fill=EVTYPE))+theme(axis.text.x = element_text(angle = 30, 
    hjust = 1))+geom_bar(stat="identity") +ggtitle("Top 10 Events with Highest Total Fatalities") +labs(x="EVENT TYPE", y="Total Fatalities")
g

g <- ggplot(storm_data.injuries[1:10,], aes(x= EVTYPE, y=total.injuries,fill=EVTYPE))+theme(axis.text.x = element_text(angle = 30, 
    hjust = 1))+geom_bar(stat="identity") +ggtitle("Top 10 Events with Highest Total Injuries") +labs(x="EVENT TYPE", y="Total Injuries")
g

We can see that Tornado causes the highest number of both injuries and fatalities.

Economic Impact

The top 10 events with the highest total economic damages (property and crop combined) are shown graphically.

g <- ggplot(storm_data.damage.total[1:10,], aes(x=EVTYPE, y=TOTAL.DMG.EVTYPE, fill=EVTYPE))+geom_bar(stat="identity") + theme(axis.text.x = element_text(angle=30, hjust=1))+ggtitle("Top 10 Events with Highest Economic Impact") +labs(x="EVENT TYPE", y="Total Economic Impact ($USD)")
g

We can see that Flood causes the highest economic damage.