R Markdown
#https://rcompanion.org/handbook/F_08.html
#library
library("readxl")
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.6.3
#Open data
df<-read_excel("D:/Research/REFERENCES/Network analysis/PROJECT/FATIMA/F.xlsx",sheet = "AMY 3")
## New names:
## * `` -> ...13
## * `` -> ...14
## * `` -> ...15
## * `` -> ...16
## * `` -> ...17
## * ...
df
## # A tibble: 42 x 22
## Group Genotype Groupxgenotype D2L D2S D1 STMN1 NR3C1 Rab11 Rab4
## <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 CON VEH CON-VEH 0.857 0.269 0.782 3.24 1.73 0.935 0.644
## 2 CON VEH CON-VEH 0.211 0.315 0.928 1.29 0.524 1.03 0.870
## 3 CON VEH CON-VEH 0.153 0.311 0.782 2.63 0.792 0.960 0.973
## 4 CON VEH CON-VEH 1.17 0.526 1.35 2.15 1.19 0.845 0.645
## 5 CON VEH CON-VEH 4.32 2.55 0.860 1.57 0.753 0.946 1.14
## 6 CON VEH CON-VEH 3.91 5.39 1.24 0.0111 1.45 1.18 2.58
## 7 CON VEH CON-VEH 1.83 5.24 1.22 2.42 1.07 1.15 0.968
## 8 CON DRUG CON-DRUG 5.37 1.34 1.82 2.70 1.32 0.849 1.10
## 9 CON DRUG CON-DRUG 10.9 7.77 4.10 2.78 1.45 0.700 0.909
## 10 CON DRUG CON-DRUG 6.64 2.46 4.20 1.20 0.916 0.778 0.884
## # ... with 32 more rows, and 12 more variables: GASP1 <dbl>, ARF6 <dbl>,
## # ...13 <lgl>, ...14 <lgl>, ...15 <lgl>, ...16 <lgl>, ...17 <lgl>,
## # ...18 <lgl>, ...19 <lgl>, ...20 <chr>, ...21 <chr>, ...22 <chr>
#Plot
library("ggpubr")
## Warning: package 'ggpubr' was built under R version 3.6.2
## Loading required package: magrittr
ggline(df, x = "Groupxgenotype", y = "D2L",add = c("mean_se", "jitter"))

#Nonparametric-kruskal test
kruskal.test(D2L ~ Groupxgenotype, data = df)
##
## Kruskal-Wallis rank sum test
##
## data: D2L by Groupxgenotype
## Kruskal-Wallis chi-squared = 11.46, df = 5, p-value = 0.04298
#Posthoc
library(FSA)
## ## FSA v0.8.27. See citation('FSA') if used in publication.
## ## Run fishR() for related website and fishR('IFAR') for related book.
df$Groupxgenotype=as.factor(df$Groupxgenotype)
dunnTest(D2L ~ Groupxgenotype, data = df,
method="bh")
## Dunn (1964) Kruskal-Wallis multiple comparison
## p-values adjusted with the Benjamini-Hochberg method.
## Comparison Z P.unadj P.adj
## 1 CON-DRUG - CON-VEH 2.65783223 0.007864503 0.05898378
## 2 CON-DRUG - SUS-DRUG 0.23964061 0.810608879 0.86850951
## 3 CON-VEH - SUS-DRUG -2.41819162 0.015597861 0.07798930
## 4 CON-DRUG - SUS-VEH 1.21998856 0.222469211 0.37078202
## 5 CON-VEH - SUS-VEH -1.43784366 0.150478417 0.37619604
## 6 SUS-DRUG - SUS-VEH 0.98034795 0.326914392 0.44579235
## 7 CON-DRUG - UNS-DRUG -0.06535653 0.947890134 0.94789013
## 8 CON-VEH - UNS-DRUG -2.72318876 0.006465511 0.09698266
## 9 SUS-DRUG - UNS-DRUG -0.30499714 0.760368330 0.95046041
## 10 SUS-VEH - UNS-DRUG -1.28534509 0.198671719 0.42572511
## 11 CON-DRUG - UNS-VEH 1.50320019 0.132787428 0.39836228
## 12 CON-VEH - UNS-VEH -1.15463203 0.248241143 0.37236172
## 13 SUS-DRUG - UNS-VEH 1.26355958 0.206388148 0.38697778
## 14 SUS-VEH - UNS-VEH 0.28321163 0.777014613 0.89655532
## 15 UNS-DRUG - UNS-VEH 1.56855672 0.116751263 0.43781724