1: Introducción

La información disponible es: Base lecherías: 4.158 registros Base Comunas: 349 registros. Base quincenas(principal): 371.852 registros. Entrega variable producción(Kilos Leche) y externas(Urea, KgProt, Kgmg,Rcs, entre otras). Pronóstico con horizonte a 6 meses y 5 años.

La base consta de 246 registros, ya segmentados según objetivo. Serie agregada por mes y año. Variable respuesta: Produccion Kilos.

Se transformará a serie para aplicar herramientas de predicción. 1.- Estadísticas Descriptivas. 2.- Análisis de la serie. 3.- Descomposición de la serie. 4.- Ajustes de modelos clasicos (Tiempo, Cuadratica, Logaritmica). 5.- Análisis de tendencia y estacionariedad. 6.- Modelos SARIMA o Arima Integrado. 7.- Selección de modelos 8.- Validación de modelos. 9.- Comparación entre modelos.

## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## [1] 246  10
##  [1] "llave"           "mes"             "año"             "Suma_KILOSLECHE"
##  [5] "media_GRASA"     "media_PROTEINA"  "media_RCS"       "media_KGMG"     
##  [9] "media_KGPROT"    "media_UREA"
Resumen Base
llave mes año Suma_KILOSLECHE media_GRASA media_PROTEINA media_RCS media_KGMG media_KGPROT media_UREA
20001 1 2000 20245052 3.178212 3.127264 432.9200 286.8114 250.6642 NA
20002 2 2000 16029405 3.409251 3.155854 477.0588 238.2175 201.7098 NA
20003 3 2000 18143081 3.531100 3.323293 443.7678 280.7360 241.8668 NA
20004 4 2000 17397830 3.571439 3.374508 458.5125 265.6883 232.4377 NA
20005 5 2000 17214109 3.826723 3.409630 490.6395 278.7805 234.6323 NA
20006 6 2000 15357363 3.883996 3.409363 552.6963 258.1912 215.3959 NA
20007 7 2000 15394975 3.851616 3.298371 570.8281 266.9118 219.4741 NA
20008 8 2000 16351537 3.559430 3.160922 545.4745 280.0647 231.8310 NA
20009 9 2000 18480841 3.325882 3.155527 513.6636 314.4971 263.4790 NA
200010 10 2000 24347562 3.077707 3.270157 462.3720 378.2846 347.4466 NA
200011 11 2000 26549262 3.047855 3.287485 412.3590 400.1748 371.0210 NA
200012 12 2000 26625862 3.147532 3.176890 458.0547 402.7566 359.3114 NA
20011 1 2001 23749375 3.262135 3.150360 479.8234 389.5148 343.0869 NA
20012 2 2001 19835413 3.365938 3.251127 420.6889 339.6162 300.2436 NA
20013 3 2001 21431655 3.580635 3.391088 410.8162 395.3470 347.5356 NA
20014 4 2001 20590163 3.705926 3.355461 418.7464 383.5839 326.1964 NA
20015 5 2001 19619234 3.893726 3.356777 474.5875 378.1028 310.5156 NA
20016 6 2001 17653944 4.013913 3.365928 529.3903 353.0496 287.8837 NA
20017 7 2001 17887091 3.816634 3.213812 549.2344 362.6025 293.1603 NA
20018 8 2001 19128329 3.561738 3.135919 543.9470 377.4764 312.9266 NA
20019 9 2001 22182074 3.317547 3.131997 515.9269 419.0466 357.1701 NA
200110 10 2001 28265012 3.082759 3.180960 448.4923 488.1399 445.5022 NA
200111 11 2001 29851910 3.079663 3.202653 369.6252 510.0835 466.4128 NA
200112 12 2001 30319511 3.077776 3.088767 345.6830 515.9168 462.6696 NA
llave mes año Suma_KILOSLECHE media_GRASA media_PROTEINA media_RCS media_KGMG media_KGPROT media_UREA
Min. : 20001 Min. : 1.000 Min. :2000 Min. :15357363 Min. :3.048 Min. :2.948 Min. :212.8 Min. : 238.2 Min. : 201.7 Min. :214.2
1st Qu.: 20068 1st Qu.: 3.000 1st Qu.:2005 1st Qu.:27022210 1st Qu.:3.408 1st Qu.:3.281 1st Qu.:276.0 1st Qu.: 574.3 1st Qu.: 513.9 1st Qu.:278.9
Median : 20137 Median : 6.000 Median :2010 Median :36575623 Median :3.668 Median :3.362 Median :319.8 Median : 992.4 Median : 905.8 Median :296.2
Mean : 64215 Mean : 6.427 Mean :2010 Mean :36861384 Mean :3.654 Mean :3.349 Mean :342.4 Mean :1010.3 Mean : 905.1 Mean :300.8
3rd Qu.: 20205 3rd Qu.: 9.000 3rd Qu.:2015 3rd Qu.:44804974 3rd Qu.:3.872 3rd Qu.:3.427 3rd Qu.:400.5 3rd Qu.:1379.4 3rd Qu.:1249.0 3rd Qu.:324.8
Max. :201912 Max. :12.000 Max. :2020 Max. :68061032 Max. :4.322 Max. :3.607 Max. :579.4 Max. :2101.4 Max. :1943.0 Max. :423.6
NA NA NA NA NA NA NA NA NA NA’s :158

##                 Suma_KILOSLECHE media_GRASA media_PROTEINA   media_RCS
## Suma_KILOSLECHE       1.0000000  -0.6630257     0.06361620 -0.72057924
## media_GRASA          -0.6630257   1.0000000     0.53978824  0.75988948
## media_PROTEINA        0.0636162   0.5397882     1.00000000  0.11757548
## media_RCS            -0.7205792   0.7598895     0.11757548  1.00000000
## media_KGMG            0.8147580  -0.1687875     0.42083602 -0.33789279
## media_KGPROT          0.9336910  -0.4157727     0.28847511 -0.53494173
## media_UREA           -0.0749687  -0.1018025     0.06493708  0.05079846
##                 media_KGMG media_KGPROT  media_UREA
## Suma_KILOSLECHE  0.8147580    0.9336910 -0.07496870
## media_GRASA     -0.1687875   -0.4157727 -0.10180248
## media_PROTEINA   0.4208360    0.2884751  0.06493708
## media_RCS       -0.3378928   -0.5349417  0.05079846
## media_KGMG       1.0000000    0.9634626 -0.15857097
## media_KGPROT     0.9634626    1.0000000 -0.10794483
## media_UREA      -0.1585710   -0.1079448  1.00000000
## 
##  Pearson's product-moment correlation
## 
## data:  urea$media_UREA and urea$Suma_KILOSLECHE
## t = -0.63793, df = 72, p-value = 0.5255
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2983565  0.1562059
## sample estimates:
##        cor 
## -0.0749687

1.2: Correlación variable UREA vs Kilos

1.3: Impacto de variable UREA en Kilos Producción

## 
## Call:
## lm(formula = urea$Suma_KILOSLECHE ~ urea$media_UREA)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -13430344  -7335977  -2642842   9863382  19613347 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     54087343    9310888   5.809 1.58e-07 ***
## urea$media_UREA   -19171      30053  -0.638    0.526    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9559000 on 72 degrees of freedom
## Multiple R-squared:  0.00562,    Adjusted R-squared:  -0.008191 
## F-statistic: 0.4069 on 1 and 72 DF,  p-value: 0.5255

R-cuadrado: -0.008. El p-valor para cada término comprueba la hipótesis nula de que el coeficiente es igual a cero (no tiene efecto). Un p-valor bajo (< 0.05) indica que se rechaza la hipótesis nula. El p-valor para este caso es (0.5255)lo que indica que es estadísticamente No significativo.

2: Analizando los datos como series de tiempo

##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2000 20245052 16029405 18143081 17397830 17214109 15357363 15394975 16351537
## 2001 23749375 19835413 21431655 20590163 19619234 17653944 17887091 19128329
## 2002 24895852 17809560 19009404 21483428 21504806 19346055 19371622 20883881
## 2003 26293072 20944012 21270059 20297168 20141566 18723700 20257042 22024221
## 2004 29382059 23206328 23459317 22656277 23551298 21900521 22116971 24400017
## 2005 30924056 23802417 24201236 24824711 24794606 23180394 24182569 25083772
## 2006 34993588 28647154 29585898 29249697 28797796 25706759 26033841 26584173
## 2007 36702973 29737047 31686455 28945789 28288791 26726538 26798090 27700348
## 2008 42118581 32228275 31780636 32171007 31930258 29337668 28863041 30468988
## 2009 33894035 26519202 29046303 27846291 28363772 25445202 25112004 27007602
## 2010 40846376 33415513 36027989 33975568 32083570 28238139 27650232 29295633
## 2011 45130021 37357643 38560276 36448273 35404827 31708361 30719600 32592592
## 2012 43426156 37433991 40802950 40082315 37831547 32899677 31910752 34617108
## 2013 50565839 40680959 44406917 42466763 41000509 36435807 35738594 38839169
## 2014 50756539 43321122 45099702 41934604 41747869 36957420 37025913 41152734
## 2015 52649508 39642436 39729938 38418840 41729017 37683077 36270634 40266918
## 2016 52988607 41126314 41853139 38850246 40056076 37254735 36717018 41267090
## 2017 53190888 43003994 46788831 44973129 43046060 37561448 37907959 42006926
## 2018 56124608 44894673 46760478 47233135 46848296 41188930 40135079 44832583
## 2019 59423009 46472295 48108843 45084504 44434465 39733056 38960044 45202489
## 2020 60348396 50808543 51199925 48325135 47516326 42143068                  
##           Sep      Oct      Nov      Dec
## 2000 18480841 24347562 26549262 26625862
## 2001 22182074 28265012 29851910 30319511
## 2002 24019519 27904478 29521250 29632057
## 2003 24901384 30619228 32004914 31847282
## 2004 27066034 33783150 33984572 34257221
## 2005 28603358 36159307 37978500 37751162
## 2006 29950046 37036275 39486415 39935410
## 2007 31487619 40824841 43976913 46020877
## 2008 34497135 43130075 43712398 40755716
## 2009 32435428 40579331 41701336 44130576
## 2010 34922789 44883551 47028624 48415245
## 2011 37204032 46883774 49764919 49254785
## 2012 41449785 52495216 55047056 53439527
## 2013 44722145 56762372 58745294 58035786
## 2014 48891551 58820549 60962665 60787900
## 2015 48640277 59022831 61007316 59472310
## 2016 49636290 59062052 59824556 58693629
## 2017 49503420 60453306 62653021 61990738
## 2018 54334824 64235929 64761722 64918935
## 2019 54730734 67333822 68061032 67111668
## 2020

Se observa que las funciones de acf y pacf estimadas validan los periodos estacionales, porque los coeficientes de la acf para retardos múltiplos del período estacional de la serie, son significativamente distintos de cero. Además la gráfica sirve para obtener candidatos a modelos a probar. Se analiza la existencia de correlaciones significativas, donde los que excedan el IC, son posibles candidatos para el orden de los términos autoregresivos y medias móviles.

2.1: Diferenciación regular y estacional respectivamente, para modelo global.

Usualmente es posible diferenciar la serie original para obtener un proceso estacionario,diferenciando con un lag igual al periodo de estacionalidad, removiendo ambos la componente estacional y la tendencia lineal. El comando diff permite esto. Tomando dos argumentos. El primero, la serie de tiempo la cual se va a diferenciar y el segundo es el lag con el cual se va a diferenciar.

## [1] 1
## [1] 1

2.2: Test ADF (Dickey-Fuller).

Una vez eliminado tanto la componente de tendencia y la estacional,se observas que esta serie se parece bastante a una serie estacionaria, ya que parece ser constante en media y varianza, para asegurarnos aplicamos un test de estacionariedad como el test ADF (Dickey-Fuller) y el test de KPSS (Kwiatkowski-Phillips-Schmidt-Shin).

Contrastamos la hipótesis para un alfa=0.05 H0: La serie no es estacionaria H1: La serie es estacionaria

## Warning in adf.test(pdif): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  pdif
## Dickey-Fuller = -11.365, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
## [1] 0.01
## Warning in kpss.test(pdif): p-value greater than printed p-value
## 
##  KPSS Test for Level Stationarity
## 
## data:  pdif
## KPSS Level = 0.015355, Truncation lag parameter = 5, p-value = 0.1
## [1] 0.1

Rechazo H0, la serie no tiene raiz unitaria, es estacionaria

2.3: Modelo en función de una tendencia.

## 
## Call:
## lm(formula = quincena2$Suma_KILOSLECHE ~ quincena2$mes)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -22015660 -10291977   -479359   8444628  28681483 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   30709730    1618498  18.974  < 2e-16 ***
## quincena2$mes   957183     221867   4.314 2.33e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 12010000 on 244 degrees of freedom
## Multiple R-squared:  0.07087,    Adjusted R-squared:  0.06707 
## F-statistic: 18.61 on 1 and 244 DF,  p-value: 2.328e-05

2.4: Modelo en función de un Logaritmo

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   16.55   17.11   17.41   17.36   17.62   18.04

2.5: Modelo Cuadrático

## 
## Call:
## lm(formula = log.qam ~ +I(time(quincena2$Suma_KILOSLECHE)^2))
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5081 -0.1464 -0.0122  0.1442  0.4495 
## 
## Coefficients:
##                                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                          1.705e+01  2.045e-02  833.88   <2e-16 ***
## I(time(quincena2$Suma_KILOSLECHE)^2) 1.524e-05  7.519e-07   20.27   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2136 on 244 degrees of freedom
## Multiple R-squared:  0.6273, Adjusted R-squared:  0.6258 
## F-statistic: 410.8 on 1 and 244 DF,  p-value: < 2.2e-16

3: Análisis ARIMA y Wolt-Winters

M(t): = Media del proceso en el instante t. R(t): = Variación de la tendencia respecto de la media en el instante t. E(t):= Estimación del factor estacional en el instante t. s := Período estacional.

3.1: AIC

## Warning in AIC.default(ar1, ma1, arma11, arima010, arima111, arima011,
## arima222, : models are not all fitted to the same number of observations
##            df      AIC
## ar1         3 8243.242
## ma1         3 8471.754
## arma11      4 8190.262
## arima010    1 8212.249
## arima111    3 8158.940
## arima011    2 8164.681
## arima222    5 8134.938
## arima1      4 7221.702
## arima2      4 7222.199
## arima3      7 7199.611
## arima4      6 7220.808
## arima5      6 7200.224
## arima6      3 7220.345
## arima7      3 7245.901
## arima8      6 7199.462
## arima9      5 7219.471
## arima.spss  4 7247.235
## sarima      3 7688.982
## auto        5 7223.035

3.2: BIC

## Warning in BIC.default(ar1, ma1, arma11, arima010, arima111, arima011,
## arima222, : models are not all fitted to the same number of observations
##            df      BIC
## ar1         3 8253.758
## ma1         3 8482.270
## arma11      4 8204.283
## arima010    1 8215.750
## arima111    3 8169.444
## arima011    2 8171.683
## arima222    5 8152.424
## arima1      4 7235.506
## arima2      4 7236.003
## arima3      7 7223.768
## arima4      6 7241.514
## arima5      6 7220.930
## arima6      3 7230.698
## arima7      3 7256.254
## arima8      6 7220.168
## arima9      5 7236.726
## arima.spss  4 7261.056
## sarima      3 7699.486
## auto        5 7240.311

4: Modelos elegidos para análisis 1 (global), por criterio AIC y cálculo de p-valor a los parámetros.

4.1: Arima8

## 
## Call:
## arima(x = qamts, order = c(1, 1, 2), seasonal = list(order = c(2, 1, 0), period = 12))
## 
## Coefficients:
##          ar1      ma1      ma2     sar1     sar2
##       0.7654  -0.6583  -0.3417  -0.5801  -0.3160
## s.e.  0.0486   0.0651   0.0637   0.0651   0.0648
## 
## sigma^2 estimated as 1.4e+12:  log likelihood = -3593.73,  aic = 7199.46
##          ar1          ma1          ma2         sar1         sar2 
## 0.000000e+00 0.000000e+00 8.000808e-08 0.000000e+00 1.065768e-06

4.2: Arima3

## 
## Call:
## arima(x = qamts, order = c(1, 1, 2), seasonal = list(order = c(2, 1, 1), period = 12))
## 
## Coefficients:
##          ar1      ma1      ma2     sar1     sar2     sma1
##       0.7609  -0.6530  -0.3470  -0.3028  -0.1909  -0.3115
## s.e.  0.0496   0.0651   0.0633   0.1981   0.1182   0.1984
## 
## sigma^2 estimated as 1.386e+12:  log likelihood = -3592.81,  aic = 7199.61
##          ar1          ma1          ma2         sar1         sar2         sma1 
## 0.000000e+00 0.000000e+00 4.102716e-08 1.263478e-01 1.062604e-01 1.164830e-01

4.3: Arima5

## 
## Call:
## arima(x = qamts, order = c(1, 1, 2), seasonal = list(order = c(1, 1, 1), period = 12))
## 
## Coefficients:
##          ar1      ma1      ma2     sar1     sma1
##       0.7471  -0.6506  -0.3494  -0.0745  -0.5317
## s.e.  0.0503   0.0650   0.0630   0.1014   0.0805
## 
## sigma^2 estimated as 1.403e+12:  log likelihood = -3594.11,  aic = 7200.22
##          ar1          ma1          ma2         sar1         sma1 
## 0.000000e+00 0.000000e+00 2.858804e-08 4.628353e-01 4.075962e-11

4.4: Box Ljung-Box y Box-Pierce (Test para ruido blanco).

La prueba de Ljung-Box se puede definir de la siguiente manera: H0: Los datos se distribuyen de forma independiente (Los residuos se distribuyen ruido blanco), es decir, las correlaciones en la población de la que se toma la muestra son 0, de modo que cualquier correlación observada en los datos es el resultado de la aleatoriedad del proceso de muestreo. H1: Los datos no se distribuyen de forma independiente (Los residuos NO se distribuyen ruido blanco), lo que implica, que el modelo no es bueno. RECHAZO SI P-VALOR ES MENOR A 0.05

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(1,1,2)(2,1,0)[12]
## Q* = 30.481, df = 19, p-value = 0.04599
## 
## Model df: 5.   Total lags used: 24

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(1,1,2)(2,1,1)[12]
## Q* = 29.429, df = 18, p-value = 0.04339
## 
## Model df: 6.   Total lags used: 24

## 
##  Ljung-Box test
## 
## data:  Residuals from ARIMA(1,1,2)(1,1,1)[12]
## Q* = 29.728, df = 19, p-value = 0.05537
## 
## Model df: 5.   Total lags used: 24

Para 2 de los 3 modelos, rechazamos H0, con lo que nos aseguramos que los modelos son buenos, a excepción de Arima5, donde no se rechaza la hipótesis nula.

## Holt-Winters exponential smoothing with trend and multiplicative seasonal component.
## 
## Call:
## HoltWinters(x = qamts, seasonal = c("multiplicative"))
## 
## Smoothing parameters:
##  alpha: 0.7627162
##  beta : 0
##  gamma: 1
## 
## Coefficients:
##             [,1]
## a   5.386189e+07
## b   2.523507e+05
## s1  7.767417e-01
## s2  8.717921e-01
## s3  1.023973e+00
## s4  1.216356e+00
## s5  1.228655e+00
## s6  1.215152e+00
## s7  1.093123e+00
## s8  8.787320e-01
## s9  9.059761e-01
## s10 8.749589e-01
## s11 8.733907e-01
## s12 7.824283e-01
##       fit                upr                 lwr          
##  Min.   :42032785   Min.   : 44713732   Min.   :38041556  
##  1st Qu.:52016270   1st Qu.: 61469719   1st Qu.:43284901  
##  Median :59057386   Median : 70712138   Median :45763430  
##  Mean   :61432670   Mean   : 72928664   Mean   :49936677  
##  3rd Qu.:70661021   3rd Qu.: 82046773   3rd Qu.:60148170  
##  Max.   :86331036   Max.   :106998534   Max.   :65663538

##           Jan      Feb      Mar      Apr      May      Jun      Jul      Aug
## 2020                                                       42032785 47396366
## 2021 60808620 49104153 50855199 49334904 49466883 44512424 44384921 50036335
## 2022 64118825 51765136 53598684 51984462 52111693 46881781 46737057 52676304
## 2023 67429030 54426120 56342169 54634021 54756503 49251137 49089193 55316272
## 2024 70739234 57087104 59085654 57283579 57401312 51620494 51441329 57956241
## 2025 74049439 59748088 61829139 59933137 60046122 53989850 53793465 60596210
##           Sep      Oct      Nov      Dec
## 2020 55928314 66743004 67727921 67290226
## 2021 59029118 70426383 71448544 70969959
## 2022 62129921 74109762 75169167 74649692
## 2023 65230725 77793140 78889790 78329424
## 2024 68331529 81476519 82610413 82009157
## 2025 71432333 85159898 86331036 85688890

5: Nuevos modelos (Análisis 2, Análisis 3 y Análisis 4)

A1: Serie Real.

A2: 2013 al 2020.

A3: 2013 al 2019.

A4: 2013 al 2018.

6: Modelos ARIMA y Holt-Winters para análisis 2, 3 Y 4.

6.1: Análisis 2 (A2) Holt-Winters

## Holt-Winters exponential smoothing with trend and multiplicative seasonal component.
## 
## Call:
## HoltWinters(x = qamts.a2, seasonal = c("multiplicative"))
## 
## Smoothing parameters:
##  alpha: 0.7425349
##  beta : 0
##  gamma: 1
## 
## Coefficients:
##             [,1]
## a   5.282571e+07
## b   1.253443e+05
## s1  7.856328e-01
## s2  8.786094e-01
## s3  1.030330e+00
## s4  1.226823e+00
## s5  1.246804e+00
## s6  1.244252e+00
## s7  1.122081e+00
## s8  9.032953e-01
## s9  9.306736e-01
## s10 8.969330e-01
## s11 8.937573e-01
## s12 7.977757e-01
##              Length Class  Mode     
## fitted       312    mts    numeric  
## x             90    ts     numeric  
## alpha          1    -none- numeric  
## beta           1    -none- numeric  
## gamma          1    -none- numeric  
## coefficients  14    -none- numeric  
## seasonal       1    -none- character
## SSE            1    -none- numeric  
## call           3    -none- call
##  Time-Series [1:66, 1:3] from 2020 to 2026: 41600084 46633426 54815343 65422898 66644721 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : NULL
##   ..$ : chr [1:3] "fit" "upr" "lwr"
##       fit                upr                lwr          
##  Min.   :41600084   Min.   :44630257   Min.   :33046764  
##  1st Qu.:49404886   1st Qu.:59714443   1st Qu.:38470464  
##  Median :53862391   Median :66877901   Median :41727076  
##  Mean   :57207690   Mean   :69917636   Mean   :44497744  
##  3rd Qu.:66659388   3rd Qu.:79909351   3rd Qu.:53081261  
##  Max.   :76021875   Max.   :98828911   Max.   :59953741

6.2: Análisis 3 (A3) Holt-Winters

## Holt-Winters exponential smoothing with trend and multiplicative seasonal component.
## 
## Call:
## HoltWinters(x = qamts.a3, seasonal = c("multiplicative"))
## 
## Smoothing parameters:
##  alpha: 0.7331678
##  beta : 0
##  gamma: 1
## 
## Coefficients:
##             [,1]
## a   5.397014e+07
## b   1.253443e+05
## s1  1.124169e+00
## s2  8.897849e-01
## s3  9.374221e-01
## s4  9.033525e-01
## s5  8.980628e-01
## s6  8.001580e-01
## s7  7.858288e-01
## s8  8.795164e-01
## s9  1.031999e+00
## s10 1.228274e+00
## s11 1.246700e+00
## s12 1.243496e+00
##              Length Class  Mode     
## fitted       288    mts    numeric  
## x             84    ts     numeric  
## alpha          1    -none- numeric  
## beta           1    -none- numeric  
## gamma          1    -none- numeric  
## coefficients  14    -none- numeric  
## seasonal       1    -none- character
## SSE            1    -none- numeric  
## call           3    -none- call
##  Time-Series [1:66, 1:3] from 2020 to 2025: 60812489 48244878 50945309 49206984 49031412 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : NULL
##   ..$ : chr [1:3] "fit" "upr" "lwr"
##       fit                upr                lwr          
##  Min.   :43100787   Min.   :48684545   Min.   :33721532  
##  1st Qu.:49948650   1st Qu.:60216342   1st Qu.:38903964  
##  Median :54538330   Median :68772750   Median :41819832  
##  Mean   :57645263   Mean   :70570394   Mean   :44720133  
##  3rd Qu.:67153360   3rd Qu.:78896258   3rd Qu.:52508110  
##  Max.   :76504295   Max.   :98771631   Max.   :59264313

6.3: Análisis 4 (A4) Holt-Winters

## Holt-Winters exponential smoothing with trend and multiplicative seasonal component.
## 
## Call:
## HoltWinters(x = qamts.a4, seasonal = c("multiplicative"))
## 
## Smoothing parameters:
##  alpha: 0.7322216
##  beta : 0
##  gamma: 1
## 
## Coefficients:
##             [,1]
## a   5.194620e+07
## b   1.253443e+05
## s1  1.118081e+00
## s2  8.944295e-01
## s3  9.442257e-01
## s4  9.135629e-01
## s5  9.017087e-01
## s6  7.998536e-01
## s7  7.870382e-01
## s8  8.691730e-01
## s9  1.021526e+00
## s10 1.214947e+00
## s11 1.249586e+00
## s12 1.249734e+00
##              Length Class  Mode     
## fitted       240    mts    numeric  
## x             72    ts     numeric  
## alpha          1    -none- numeric  
## beta           1    -none- numeric  
## gamma          1    -none- numeric  
## coefficients  14    -none- numeric  
## seasonal       1    -none- character
## SSE            1    -none- numeric  
## call           3    -none- call
##  Time-Series [1:84, 1:3] from 2019 to 2026: 58220193 46686441 49404000 47914164 47405463 ...
##  - attr(*, "dimnames")=List of 2
##   ..$ : NULL
##   ..$ : chr [1:3] "fit" "upr" "lwr"
##       fit                upr                 lwr          
##  Min.   :41574203   Min.   : 47185953   Min.   :31727129  
##  1st Qu.:49156650   1st Qu.: 61067698   1st Qu.:36824013  
##  Median :54201843   Median : 69625896   Median :40158384  
##  Mean   :57137270   Mean   : 71833213   Mean   :42441328  
##  3rd Qu.:66503852   3rd Qu.: 82186914   3rd Qu.:49985644  
##  Max.   :78077288   Max.   :104487636   Max.   :56970230

6.4: Modelos seleccionados para análisis 2.

## 
## Call:
## arima(x = qamts.a2, order = c(1, 1, 2), seasonal = list(order = c(1, 1, 1), 
##     period = 12))
## 
## Coefficients:
##          ar1      ma1      ma2    sar1     sma1
##       0.5271  -0.5085  -0.3836  0.2009  -0.9954
## s.e.  0.1431   0.1374   0.1025  0.1499   0.2891
## 
## sigma^2 estimated as 1.218e+12:  log likelihood = -1191.17,  aic = 2394.33

## 
## Call:
## arima(x = qamts.a2, order = c(1, 1, 2), seasonal = list(order = c(2, 1, 1), 
##     period = 12))
## 
## Coefficients:
##          ar1      ma1      ma2    sar1     sar2     sma1
##       0.5105  -0.5223  -0.3569  0.0855  -0.2327  -0.7990
## s.e.  0.1543   0.1458   0.1154  0.3556   0.2295   0.6451
## 
## sigma^2 estimated as 1.271e+12:  log likelihood = -1190.37,  aic = 2394.75

## 
## Call:
## arima(x = qamts.a2, order = c(0, 1, 3), seasonal = list(order = c(2, 1, 0), 
##     period = 12))
## 
## Coefficients:
##          ma1      ma2     ma3     sar1     sar2
##       0.0187  -0.4167  -0.353  -0.4569  -0.3931
## s.e.  0.1203   0.0909   0.113   0.1217   0.1347
## 
## sigma^2 estimated as 1.478e+12:  log likelihood = -1191.41,  aic = 2394.82

6.5: Modelos seleccionados para análisis 3.

## 
## Call:
## arima(x = qamts.a3, order = c(0, 1, 3), seasonal = list(order = c(2, 1, 0), 
##     period = 12))
## 
## Coefficients:
##          ma1      ma2      ma3     sar1     sar2
##       0.0527  -0.4389  -0.3611  -0.4037  -0.4151
## s.e.  0.1143   0.1046   0.1207   0.1337   0.1357
## 
## sigma^2 estimated as 1.429e+12:  log likelihood = -1097.73,  aic = 2207.46

## 
## Call:
## arima(x = qamts.a3, order = c(1, 1, 2), seasonal = list(order = c(2, 1, 0), 
##     period = 12))
## 
## Coefficients:
##          ar1      ma1      ma2     sar1     sar2
##       0.4782  -0.4527  -0.4229  -0.4056  -0.4385
## s.e.  0.1537   0.1442   0.1136   0.1313   0.1317
## 
## sigma^2 estimated as 1.44e+12:  log likelihood = -1098.26,  aic = 2208.53

## 
## Call:
## arima(x = qamts.a3, order = c(1, 1, 2), seasonal = list(order = c(2, 1, 1), 
##     period = 12))
## 
## Coefficients:
##          ar1      ma1      ma2     sar1     sar2     sma1
##       0.4669  -0.4548  -0.4139  -0.0583  -0.3522  -0.4733
## s.e.  0.1568   0.1478   0.1141   0.2968   0.1751   0.3493
## 
## sigma^2 estimated as 1.351e+12:  log likelihood = -1097.29,  aic = 2208.58

6.6: Modelos seleccionados para análisis 4.

## Series: qamts.a4 
## ARIMA(0,1,3)(2,1,0)[12] 
## 
## Coefficients:
##          ma1     ma2      ma3     sar1     sar2
##       0.1411  -0.469  -0.3870  -0.2797  -0.4143
## s.e.  0.1424   0.107   0.1528   0.1474   0.1672
## 
## sigma^2 estimated as 1.476e+12:  log likelihood=-910.8
## AIC=1833.59   AICc=1835.21   BIC=1846.06

## 
## Call:
## arima(x = qamts.a4, order = c(1, 1, 2), seasonal = list(order = c(2, 1, 1), 
##     period = 12))
## 
## Coefficients:
##          ar1      ma1      ma2    sar1     sar2     sma1
##       0.3032  -0.3327  -0.4672  0.0651  -0.4587  -0.6940
## s.e.  0.1922   0.1599   0.1137  0.2414   0.1800   0.4934
## 
## sigma^2 estimated as 1.09e+12:  log likelihood = -910.41,  aic = 1834.81

## 
## Call:
## arima(x = qamts.a4, order = c(1, 1, 2), seasonal = list(order = c(2, 1, 0), 
##     period = 12))
## 
## Coefficients:
##          ar1      ma1      ma2     sar1     sar2
##       0.3488  -0.3473  -0.4683  -0.3099  -0.4837
## s.e.  0.1814   0.1499   0.1096   0.1414   0.1489
## 
## sigma^2 estimated as 1.375e+12:  log likelihood = -912.18,  aic = 1836.36

7: MPE(error porcentual medio) para Análisis 3: (BackTest)

##          qamts quincena2$mes quincena2$año mpe.3.1.arimaex mpe.3.2.arima8
##  [1,] 59423009             1          2019              NA             NA
##  [2,] 46472295             2          2019              NA             NA
##  [3,] 48108843             3          2019              NA             NA
##  [4,] 45084504             4          2019              NA             NA
##  [5,] 44434465             5          2019              NA             NA
##  [6,] 39733056             6          2019              NA             NA
##  [7,] 38960044             7          2019              NA             NA
##  [8,] 45202489             8          2019              NA             NA
##  [9,] 54730734             9          2019              NA             NA
## [10,] 67333822            10          2019              NA             NA
## [11,] 68061032            11          2019              NA             NA
## [12,] 67111668            12          2019              NA             NA
## [13,] 60348396             1          2020    -0.002767392   -0.011430967
## [14,] 50808543             2          2020     0.047539849    0.041776104
## [15,] 51199925             3          2020     0.009485905    0.004085338
## [16,] 48325135             4          2020     0.003585015    0.001475838
## [17,] 47516326             5          2020     0.011522871    0.011411073
## [18,] 42143068             6          2020     0.004505633    0.005015400
##       mpe.3.3.arima3   mpe.3.4.hw
##  [1,]             NA           NA
##  [2,]             NA           NA
##  [3,]             NA           NA
##  [4,]             NA           NA
##  [5,]             NA           NA
##  [6,]             NA           NA
##  [7,]             NA           NA
##  [8,]             NA           NA
##  [9,]             NA           NA
## [10,]             NA           NA
## [11,]             NA           NA
## [12,]             NA           NA
## [13,]  -0.0051959865 -0.007690230
## [14,]   0.0494737208  0.050457367
## [15,]   0.0211557816  0.004972981
## [16,]   0.0222894225 -0.018248238
## [17,]   0.0173619456 -0.031885593
## [18,]   0.0005585556 -0.038994416
##      qamts          quincena2$mes   quincena2$año  mpe.3.1.arimaex    
##  Min.   :38960044   Min.   : 1.00   Min.   :2019   Min.   :-0.002767  
##  1st Qu.:45114000   1st Qu.: 3.00   1st Qu.:2019   1st Qu.: 0.003815  
##  Median :48216989   Median : 5.00   Median :2019   Median : 0.006996  
##  Mean   :51388742   Mean   : 5.50   Mean   :2019   Mean   : 0.012312  
##  3rd Qu.:58249940   3rd Qu.: 7.75   3rd Qu.:2020   3rd Qu.: 0.011014  
##  Max.   :68061032   Max.   :12.00   Max.   :2020   Max.   : 0.047540  
##                                                    NA's   :12         
##  mpe.3.2.arima8      mpe.3.3.arima3        mpe.3.4.hw       
##  Min.   :-0.011431   Min.   :-0.005196   Min.   :-0.038994  
##  1st Qu.: 0.002128   1st Qu.: 0.004759   1st Qu.:-0.028476  
##  Median : 0.004550   Median : 0.019259   Median :-0.012969  
##  Mean   : 0.008722   Mean   : 0.017607   Mean   :-0.006898  
##  3rd Qu.: 0.009812   3rd Qu.: 0.022006   3rd Qu.: 0.001807  
##  Max.   : 0.041776   Max.   : 0.049474   Max.   : 0.050457  
##  NA's   :12          NA's   :12          NA's   :12

Observar las medias de cada modelo y notar que el MPE que más se acerca a Cero es Arima8

8: MPE(error porcentual medio) para Análisis 4: (BackTest)

##          qamts quincena2$mes quincena2$año mpe.4.1.arima.auto mpe.4.2.arima3
##  [1,] 59423009             1          2019       -0.001931389   0.0202082172
##  [2,] 46472295             2          2019       -0.020187429  -0.0003219129
##  [3,] 48108843             3          2019        0.002434561   0.0183495509
##  [4,] 45084504             4          2019       -0.049863434  -0.0162261936
##  [5,] 44434465             5          2019       -0.076062523  -0.0597290503
##  [6,] 39733056             6          2019       -0.090159163  -0.0813192030
##  [7,] 38960044             7          2019       -0.085390027  -0.0744386261
##  [8,] 45202489             8          2019       -0.039850469  -0.0216590175
##  [9,] 54730734             9          2019       -0.028793953  -0.0008896676
## [10,] 67333822            10          2019        0.021744552   0.0392193269
## [11,] 68061032            11          2019        0.026341000   0.0348333983
## [12,] 67111668            12          2019        0.016532927   0.0303863188
## [13,] 60348396             1          2020       -0.004763473   0.0341634480
## [14,] 50808543             2          2020        0.031824065   0.0702832391
## [15,] 51199925             3          2020        0.005328340   0.0457768713
## [16,] 48325135             4          2020       -0.027136627   0.0419901292
## [17,] 47516326             5          2020       -0.036211638   0.0113820101
## [18,] 42143068             6          2020       -0.055592533  -0.0211220878
##       mpe.4.3.arima8   mpe.4.4.hw
##  [1,]    0.005791765  0.020241595
##  [2,]   -0.009630369 -0.004608029
##  [3,]    0.007517945 -0.026921399
##  [4,]   -0.039883516 -0.062763468
##  [5,]   -0.069358051 -0.066862458
##  [6,]   -0.087316751 -0.060852223
##  [7,]   -0.081944674 -0.067098463
##  [8,]   -0.037155423 -0.018125450
##  [9,]   -0.026561211  0.009390599
## [10,]    0.024660668  0.040085219
## [11,]    0.029948102  0.020964414
## [12,]    0.021045223  0.004663396
## [13,]    0.005327613  0.007398086
## [14,]    0.042281132  0.054651486
## [15,]    0.009028940  0.007337602
## [16,]   -0.017704930 -0.019930579
## [17,]   -0.026023115 -0.026210471
## [18,]   -0.046588733 -0.028733506
##      qamts          quincena2$mes   quincena2$año  mpe.4.1.arima.auto 
##  Min.   :38960044   Min.   : 1.00   Min.   :2019   Min.   :-0.090159  
##  1st Qu.:45114000   1st Qu.: 3.00   1st Qu.:2019   1st Qu.:-0.047360  
##  Median :48216989   Median : 5.00   Median :2019   Median :-0.023662  
##  Mean   :51388742   Mean   : 5.50   Mean   :2019   Mean   :-0.022874  
##  3rd Qu.:58249940   3rd Qu.: 7.75   3rd Qu.:2020   3rd Qu.: 0.004605  
##  Max.   :68061032   Max.   :12.00   Max.   :2020   Max.   : 0.031824  
##  mpe.4.2.arima3      mpe.4.3.arima8        mpe.4.4.hw       
##  Min.   :-0.081319   Min.   :-0.087317   Min.   :-0.067098  
##  1st Qu.:-0.019898   1st Qu.:-0.039201   1st Qu.:-0.028280  
##  Median : 0.014866   Median :-0.013668   Median :-0.011367  
##  Mean   : 0.003938   Mean   :-0.016476   Mean   :-0.012076  
##  3rd Qu.: 0.034666   3rd Qu.: 0.008651   3rd Qu.: 0.008892  
##  Max.   : 0.070283   Max.   : 0.042281   Max.   : 0.054651

Observar las medias de cada modelo y notar que el MPE que más se acerca a Cero es Arima3.

9: MAPE(error porcentual absoluto medio) para Análisis 3: (BackTest)

##          qamts quincena2$mes quincena2$año mape.3.1.arimaex mape.3.2.arima8
##  [1,] 59423009             1          2019               NA              NA
##  [2,] 46472295             2          2019               NA              NA
##  [3,] 48108843             3          2019               NA              NA
##  [4,] 45084504             4          2019               NA              NA
##  [5,] 44434465             5          2019               NA              NA
##  [6,] 39733056             6          2019               NA              NA
##  [7,] 38960044             7          2019               NA              NA
##  [8,] 45202489             8          2019               NA              NA
##  [9,] 54730734             9          2019               NA              NA
## [10,] 67333822            10          2019               NA              NA
## [11,] 68061032            11          2019               NA              NA
## [12,] 67111668            12          2019               NA              NA
## [13,] 60348396             1          2020        0.2767392       1.1430967
## [14,] 50808543             2          2020        4.7539849       4.1776104
## [15,] 51199925             3          2020        0.9485905       0.4085338
## [16,] 48325135             4          2020        0.3585015       0.1475838
## [17,] 47516326             5          2020        1.1522871       1.1411073
## [18,] 42143068             6          2020        0.4505633       0.5015400
##       mape.3.3.arima3 mape.3.4.hw
##  [1,]              NA          NA
##  [2,]              NA          NA
##  [3,]              NA          NA
##  [4,]              NA          NA
##  [5,]              NA          NA
##  [6,]              NA          NA
##  [7,]              NA          NA
##  [8,]              NA          NA
##  [9,]              NA          NA
## [10,]              NA          NA
## [11,]              NA          NA
## [12,]              NA          NA
## [13,]      0.51959865   0.7690230
## [14,]      4.94737208   5.0457367
## [15,]      2.11557816   0.4972981
## [16,]      2.22894225   1.8248238
## [17,]      1.73619456   3.1885593
## [18,]      0.05585556   3.8994416
##      qamts          quincena2$mes   quincena2$año  mape.3.1.arimaex
##  Min.   :38960044   Min.   : 1.00   Min.   :2019   Min.   :0.2767  
##  1st Qu.:45114000   1st Qu.: 3.00   1st Qu.:2019   1st Qu.:0.3815  
##  Median :48216989   Median : 5.00   Median :2019   Median :0.6996  
##  Mean   :51388742   Mean   : 5.50   Mean   :2019   Mean   :1.3234  
##  3rd Qu.:58249940   3rd Qu.: 7.75   3rd Qu.:2020   3rd Qu.:1.1014  
##  Max.   :68061032   Max.   :12.00   Max.   :2020   Max.   :4.7540  
##                                                    NA's   :12      
##  mape.3.2.arima8  mape.3.3.arima3    mape.3.4.hw    
##  Min.   :0.1476   Min.   :0.05586   Min.   :0.4973  
##  1st Qu.:0.4318   1st Qu.:0.82375   1st Qu.:1.0330  
##  Median :0.8213   Median :1.92589   Median :2.5067  
##  Mean   :1.2532   Mean   :1.93392   Mean   :2.5375  
##  3rd Qu.:1.1426   3rd Qu.:2.20060   3rd Qu.:3.7217  
##  Max.   :4.1776   Max.   :4.94737   Max.   :5.0457  
##  NA's   :12       NA's   :12        NA's   :12

10: MAPE(error porcentual absoluto medio) para Análisis 4: (BackTest)

##          qamts quincena2$mes quincena2$año mape.4.1.arima.auto mape.4.2.arima3
##  [1,] 59423009             1          2019           0.1931389      2.02082172
##  [2,] 46472295             2          2019           2.0187429      0.03219129
##  [3,] 48108843             3          2019           0.2434561      1.83495509
##  [4,] 45084504             4          2019           4.9863434      1.62261936
##  [5,] 44434465             5          2019           7.6062523      5.97290503
##  [6,] 39733056             6          2019           9.0159163      8.13192030
##  [7,] 38960044             7          2019           8.5390027      7.44386261
##  [8,] 45202489             8          2019           3.9850469      2.16590175
##  [9,] 54730734             9          2019           2.8793953      0.08896676
## [10,] 67333822            10          2019           2.1744552      3.92193269
## [11,] 68061032            11          2019           2.6341000      3.48333983
## [12,] 67111668            12          2019           1.6532927      3.03863188
## [13,] 60348396             1          2020           0.4763473      3.41634480
## [14,] 50808543             2          2020           3.1824065      7.02832391
## [15,] 51199925             3          2020           0.5328340      4.57768713
## [16,] 48325135             4          2020           2.7136627      4.19901292
## [17,] 47516326             5          2020           3.6211638      1.13820101
## [18,] 42143068             6          2020           5.5592533      2.11220878
##       mape.4.3.arima8 mape.4.4.hw
##  [1,]       0.5791765   2.0241595
##  [2,]       0.9630369   0.4608029
##  [3,]       0.7517945   2.6921399
##  [4,]       3.9883516   6.2763468
##  [5,]       6.9358051   6.6862458
##  [6,]       8.7316751   6.0852223
##  [7,]       8.1944674   6.7098463
##  [8,]       3.7155423   1.8125450
##  [9,]       2.6561211   0.9390599
## [10,]       2.4660668   4.0085219
## [11,]       2.9948102   2.0964414
## [12,]       2.1045223   0.4663396
## [13,]       0.5327613   0.7398086
## [14,]       4.2281132   5.4651486
## [15,]       0.9028940   0.7337602
## [16,]       1.7704930   1.9930579
## [17,]       2.6023115   2.6210471
## [18,]       4.6588733   2.8733506
##      qamts          quincena2$mes   quincena2$año  mape.4.1.arima.auto
##  Min.   :38960044   Min.   : 1.00   Min.   :2019   Min.   :0.1931     
##  1st Qu.:45114000   1st Qu.: 3.00   1st Qu.:2019   1st Qu.:1.7447     
##  Median :48216989   Median : 5.00   Median :2019   Median :2.7965     
##  Mean   :51388742   Mean   : 5.50   Mean   :2019   Mean   :3.4453     
##  3rd Qu.:58249940   3rd Qu.: 7.75   3rd Qu.:2020   3rd Qu.:4.7360     
##  Max.   :68061032   Max.   :12.00   Max.   :2020   Max.   :9.0159     
##  mape.4.2.arima3   mape.4.3.arima8   mape.4.4.hw    
##  Min.   :0.03219   Min.   :0.5328   Min.   :0.4608  
##  1st Qu.:1.88142   1st Qu.:1.1649   1st Qu.:1.1574  
##  Median :3.22749   Median :2.6292   Median :2.3587  
##  Mean   :3.45721   Mean   :3.2654   Mean   :3.0380  
##  3rd Qu.:4.48302   3rd Qu.:4.1682   3rd Qu.:5.1010  
##  Max.   :8.13192   Max.   :8.7317   Max.   :6.7098