During ANLY 512 we will be studying the theory and practice of data visualization. We will be using R and the packages within R to assemble data and construct many different types of visualizations. We begin by studying some of the theoretical aspects of visualization. To do that we must appreciate the basic steps in the process of making a visualization.
The objective of this assignment is to introduce you to R markdown and to complete and explain basic plots before moving on to more complicated ways to graph data.
A couple of tips, remember that there may be preprocessing involved in your graphics so you may have to do summaries or calculations to prepare, those should be included in your work.
To ensure accuracy pay close attention to axes and labels, you will be evaluated based on the accuracy and expository nature of your graphics. Make sure your axis labels are easy to understand and are comprised of full words with units if necessary.
The final product of your homework (this file) should include a short summary of each graphic.
To submit this homework you will create the document in Rstudio, using the knitr package (button included in Rstudio) and then submit the document to your Rpubs account. Once uploaded you will submit the link to that document on Canvas. Please make sure that this link is hyperlinked and that I can see the visualization and the code required to create it.
Find the mtcars data in R. This is the dataset that you will use to create your graphics.
mtcars <- datasets::mtcars
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
mtcars$vs <- as.factor(mtcars$vs) # change to factor
mtcars$am <- as.factor(mtcars$am) # change to factor
mtcars data set.library(ggplot2)
library(ggthemes)
boxplot <- ggplot(data = mtcars, aes(x=am, y=qsec)) +
geom_boxplot()+
xlab("Engine")+
ylab("1/4 Mile Time") +
ggtitle("Mile Time By Engine")
boxplot
# Straight engine has relatively small qsec than V-shaped engine.
carb type in mtcars.carb <- ggplot(data = mtcars,aes(x = factor(mtcars$carb))) +
geom_bar()+
xlab("Carb")+
ylab("Count") +
ggtitle("Number of Each Carb")
carb
## Warning: Use of `mtcars$carb` is discouraged. Use `carb` instead.
# among all the cars, there are small number of cars that have larger carburetors. 2 and 3 carburetors are the most common ones.
gear type and how they are further divided out by cyl.library(ggplot2)
gear_cyl<- ggplot(data = mtcars,mapping = aes(x = factor(cyl), fill = factor(gear))) +
geom_bar()+
xlab("Cyl")+
ylab("Geary Type") +
ggtitle("Number of Gear By Cyl")
gear_cyl
wt and mpg.wt_mpg <- ggplot(data=mtcars, mapping = aes(x=wt, y=mpg)) +
geom_point() +
xlab("Weight")+
ylab("Miles/Gallon") +
ggtitle("Relationship between Weight and Miles/Gallon") +
theme_classic()
wt_mpg # there seems to be a negative relationship between weight and miles/gallon.
am_mpg <- ggplot(data = mtcars, mapping = aes(x=am, y=mpg)) +
geom_col(add = "mean")+
xlab("Types of Transmission") +
ylab("Avg Miles/Gallon") +
ggtitle("Transmission VS mpg")
## Warning: Ignoring unknown parameters: add
am_mpg # Manual transmission has lower miles/gallon than automaic car.
anscombe data that is part of the library(datasets) in R. And assign that data to a new object called data.library(datasets)
data <- datasets::anscombe
fBasics() package!)library("fBasics")
## Loading required package: timeDate
## Loading required package: timeSeries
##
## Attaching package: 'timeSeries'
## The following objects are masked from 'package:matrixStats':
##
## colCummaxs, colCummins, colCumprods, colCumsums, colMaxs, colMins,
## colProds, colQuantiles, colSds, colVars, rowCumsums
##
## Attaching package: 'fBasics'
## The following objects are masked from 'package:matrixStats':
##
## rowMaxs, rowMins, rowProds, rowQuantiles, rowSds, rowVars
colStats(data, FUN = mean)
## x1 x2 x3 x4 y1 y2 y3 y4
## 9.000000 9.000000 9.000000 9.000000 7.500909 7.500909 7.500000 7.500909
colStats(data, FUN = var)
## x1 x2 x3 x4 y1 y2 y3 y4
## 11.000000 11.000000 11.000000 11.000000 4.127269 4.127629 4.122620 4.123249
correlationTest(data$x1,data$y1,"pearson")
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8164
## STATISTIC:
## t: 4.2415
## P VALUE:
## Alternative Two-Sided: 0.00217
## Alternative Less: 0.9989
## Alternative Greater: 0.001085
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4244, 0.9507
## Less: -1, 0.9388
## Greater: 0.5113, 1
##
## Description:
## Mon Aug 3 12:57:42 2020
correlationTest(data$x2,data$y2,"pearson")
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8162
## STATISTIC:
## t: 4.2386
## P VALUE:
## Alternative Two-Sided: 0.002179
## Alternative Less: 0.9989
## Alternative Greater: 0.001089
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4239, 0.9506
## Less: -1, 0.9387
## Greater: 0.5109, 1
##
## Description:
## Mon Aug 3 12:57:42 2020
correlationTest(data$x3,data$y3,"pearson")
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8163
## STATISTIC:
## t: 4.2394
## P VALUE:
## Alternative Two-Sided: 0.002176
## Alternative Less: 0.9989
## Alternative Greater: 0.001088
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4241, 0.9507
## Less: -1, 0.9387
## Greater: 0.511, 1
##
## Description:
## Mon Aug 3 12:57:42 2020
correlationTest(data$x4,data$y4,"pearson")
##
## Title:
## Pearson's Correlation Test
##
## Test Results:
## PARAMETER:
## Degrees of Freedom: 9
## SAMPLE ESTIMATES:
## Correlation: 0.8165
## STATISTIC:
## t: 4.243
## P VALUE:
## Alternative Two-Sided: 0.002165
## Alternative Less: 0.9989
## Alternative Greater: 0.001082
## CONFIDENCE INTERVAL:
## Two-Sided: 0.4246, 0.9507
## Less: -1, 0.9388
## Greater: 0.5115, 1
##
## Description:
## Mon Aug 3 12:57:42 2020
xy1 <- ggplot(data=data, mapping = aes(x=x1, y=y1)) +
geom_point() +
xlab("x1")+
ylab("y1") +
ggtitle("Scatter plots for x1 and y1") +
theme_classic()
xy1
xy2 <-ggplot(data=data, mapping = aes(x=x2, y=y2)) +
geom_point() +
xlab("x2")+
ylab("y2") +
ggtitle("Scatter plots for x2 and y2") +
theme_classic()
xy2
xy3 <-ggplot(data=data, mapping = aes(x=x3, y=y3)) +
geom_point() +
xlab("x3")+
ylab("y3") +
ggtitle("Scatter plots for x3 and y3") +
theme_classic()
xy3
xy4 <-ggplot(data=data, mapping = aes(x=x4, y=y4)) +
geom_point() +
xlab("x4")+
ylab("y4") +
ggtitle("Scatter plots for x4 and y4") +
theme_classic()
xy4
#if(!require(devtools)) install.packages("devtools")
#devtools::install_github("kassambara/ggpubr")
library(ggpubr)
library(gridExtra)
library(cowplot)
##
## ********************************************************
## Note: As of version 1.0.0, cowplot does not change the
## default ggplot2 theme anymore. To recover the previous
## behavior, execute:
## theme_set(theme_cowplot())
## ********************************************************
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggpubr':
##
## get_legend
## The following object is masked from 'package:ggthemes':
##
## theme_map
ggarrange(xy1, xy2, xy3, xy4,ncol = 2, nrow = 2)
lm() function.lm1 <- lm(data$y1 ~ data$x1, data = data)
summary(lm1)
##
## Call:
## lm(formula = data$y1 ~ data$x1, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.92127 -0.45577 -0.04136 0.70941 1.83882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0001 1.1247 2.667 0.02573 *
## data$x1 0.5001 0.1179 4.241 0.00217 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295
## F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
lm2 <- lm(data$y2 ~ data$x2, data = data)
summary(lm2)
##
## Call:
## lm(formula = data$y2 ~ data$x2, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9009 -0.7609 0.1291 0.9491 1.2691
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.001 1.125 2.667 0.02576 *
## data$x2 0.500 0.118 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.237 on 9 degrees of freedom
## Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
lm3 <- lm(data$y3 ~ data$x3, data = data)
summary(lm3)
##
## Call:
## lm(formula = data$y3 ~ data$x3, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1586 -0.6146 -0.2303 0.1540 3.2411
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0025 1.1245 2.670 0.02562 *
## data$x3 0.4997 0.1179 4.239 0.00218 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292
## F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
lm4 <- lm(data$y4 ~ data$x4, data = data)
summary(lm4)
##
## Call:
## lm(formula = data$y4 ~ data$x4, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.751 -0.831 0.000 0.809 1.839
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.0017 1.1239 2.671 0.02559 *
## data$x4 0.4999 0.1178 4.243 0.00216 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.236 on 9 degrees of freedom
## Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297
## F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
lm_xy1 <- ggplot(data=data, mapping = aes(x=x1, y=y1)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)+
xlab("x1")+
ylab("y1") +
ggtitle("Scatter plots for x1 and y1") +
theme_classic()
lm_xy2 <-ggplot(data=data, mapping = aes(x=x2, y=y2)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)+
xlab("x2")+
ylab("y2") +
ggtitle("Scatter plots for x2 and y2") +
theme_classic()
lm_xy3 <-ggplot(data=data, mapping = aes(x=x3, y=y3)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)+
xlab("x3")+
ylab("y3") +
ggtitle("Scatter plots for x3 and y3") +
theme_classic()
lm_xy4 <-ggplot(data=data, mapping = aes(x=x4, y=y4)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE)+
xlab("x4")+
ylab("y4") +
ggtitle("Scatter plots for x4 and y4") +
theme_classic()
ggarrange(lm_xy1, lm_xy2, lm_xy3, lm_xy4,ncol = 2, nrow = 2)
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
## `geom_smooth()` using formula 'y ~ x'
# use Adjusted R^2 to compare the model fitpar
summary(lm1) # 0.6295
Call: lm(formula = data\(y1 ~ data\)x1, data = data)
Residuals: Min 1Q Median 3Q Max -1.92127 -0.45577 -0.04136 0.70941 1.83882
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0001 1.1247 2.667 0.02573 * data$x1 0.5001 0.1179 4.241 0.00217 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6665, Adjusted R-squared: 0.6295 F-statistic: 17.99 on 1 and 9 DF, p-value: 0.00217
summary(lm2) # 0.6292
Call: lm(formula = data\(y2 ~ data\)x2, data = data)
Residuals: Min 1Q Median 3Q Max -1.9009 -0.7609 0.1291 0.9491 1.2691
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.001 1.125 2.667 0.02576 * data$x2 0.500 0.118 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 1.237 on 9 degrees of freedom Multiple R-squared: 0.6662, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002179
summary(lm3) # 0.6292
Call: lm(formula = data\(y3 ~ data\)x3, data = data)
Residuals: Min 1Q Median 3Q Max -1.1586 -0.6146 -0.2303 0.1540 3.2411
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0025 1.1245 2.670 0.02562 * data$x3 0.4997 0.1179 4.239 0.00218 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6663, Adjusted R-squared: 0.6292 F-statistic: 17.97 on 1 and 9 DF, p-value: 0.002176
summary(lm4) # 0.6297
Call: lm(formula = data\(y4 ~ data\)x4, data = data)
Residuals: Min 1Q Median 3Q Max -1.751 -0.831 0.000 0.809 1.839
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.0017 1.1239 2.671 0.02559 * data$x4 0.4999 0.1178 4.243 0.00216 ** — Signif. codes: 0 ‘’ 0.001 ’’ 0.01 ’’ 0.05 ‘.’ 0.1 ’ ’ 1
Residual standard error: 1.236 on 9 degrees of freedom Multiple R-squared: 0.6667, Adjusted R-squared: 0.6297 F-statistic: 18 on 1 and 9 DF, p-value: 0.002165
# it seems that the four models have quite similar model fit.