SYNOPSIS

The project is an analysis on the impact of severe weather conditions on health of the population and economy. It is an exploration of U.S. National Oceanic & Atmospheric Administration’s (NOAA) storm database.

This project uses the U.S.NOAA storm database for analysing the adverse effects caused by the storm or severe weather conditions on the population health and economy, especially on crop and property. It tracks and analyzes the characteristics of major weather events in the US, including when and where they occurred and it’s impact on health and economy.

The analysis shows that tornadoes are the reason for highest fatalities and injuries in the US. It also shows that the maximum crop damage in the country is due to droughts while floods are responsible for maximum property damage.

DATA PROCESSING

1. Installing packages

knitr::opts_chunk$set(echo = TRUE)
## Install packages and Load the following libraries
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.0.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(rmarkdown)
library(knitr)
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.2
library(R.utils)
## Warning: package 'R.utils' was built under R version 4.0.2
## Loading required package: R.oo
## Loading required package: R.methodsS3
## R.methodsS3 v1.8.0 (2020-02-14 07:10:20 UTC) successfully loaded. See ?R.methodsS3 for help.
## R.oo v1.23.0 successfully loaded. See ?R.oo for help.
## 
## Attaching package: 'R.oo'
## The following object is masked from 'package:R.methodsS3':
## 
##     throw
## The following objects are masked from 'package:methods':
## 
##     getClasses, getMethods
## The following objects are masked from 'package:base':
## 
##     attach, detach, load, save
## R.utils v2.9.2 successfully loaded. See ?R.utils for help.
## 
## Attaching package: 'R.utils'
## The following object is masked from 'package:utils':
## 
##     timestamp
## The following objects are masked from 'package:base':
## 
##     cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
##     warnings
## Sets the system time
Sys.setlocale("LC_TIME", "English")
## [1] "English_United States.1252"

2. Download the storm data in the working directory and read the file into Rstudio

## Download the file using the link: "https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2" and unzip it in the working directory.Use 'download.file()' for downloading and bunzip2() function to uncompress. Read the .csv file into Rstudio as follows.
storm<- read.csv("StormData.csv", header=TRUE, sep=",")
## Look at the data using summary() function to get an idea of the entire data
summary(storm)
##     STATE__       BGN_DATE           BGN_TIME          TIME_ZONE        
##  Min.   : 1.0   Length:902297      Length:902297      Length:902297     
##  1st Qu.:19.0   Class :character   Class :character   Class :character  
##  Median :30.0   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :31.2                                                           
##  3rd Qu.:45.0                                                           
##  Max.   :95.0                                                           
##                                                                         
##      COUNTY       COUNTYNAME           STATE              EVTYPE         
##  Min.   :  0.0   Length:902297      Length:902297      Length:902297     
##  1st Qu.: 31.0   Class :character   Class :character   Class :character  
##  Median : 75.0   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :100.6                                                           
##  3rd Qu.:131.0                                                           
##  Max.   :873.0                                                           
##                                                                          
##    BGN_RANGE          BGN_AZI           BGN_LOCATI          END_DATE        
##  Min.   :   0.000   Length:902297      Length:902297      Length:902297     
##  1st Qu.:   0.000   Class :character   Class :character   Class :character  
##  Median :   0.000   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :   1.484                                                           
##  3rd Qu.:   1.000                                                           
##  Max.   :3749.000                                                           
##                                                                             
##    END_TIME           COUNTY_END COUNTYENDN       END_RANGE       
##  Length:902297      Min.   :0    Mode:logical   Min.   :  0.0000  
##  Class :character   1st Qu.:0    NA's:902297    1st Qu.:  0.0000  
##  Mode  :character   Median :0                   Median :  0.0000  
##                     Mean   :0                   Mean   :  0.9862  
##                     3rd Qu.:0                   3rd Qu.:  0.0000  
##                     Max.   :0                   Max.   :925.0000  
##                                                                   
##    END_AZI           END_LOCATI            LENGTH              WIDTH         
##  Length:902297      Length:902297      Min.   :   0.0000   Min.   :   0.000  
##  Class :character   Class :character   1st Qu.:   0.0000   1st Qu.:   0.000  
##  Mode  :character   Mode  :character   Median :   0.0000   Median :   0.000  
##                                        Mean   :   0.2301   Mean   :   7.503  
##                                        3rd Qu.:   0.0000   3rd Qu.:   0.000  
##                                        Max.   :2315.0000   Max.   :4400.000  
##                                                                              
##        F               MAG            FATALITIES          INJURIES        
##  Min.   :0.0      Min.   :    0.0   Min.   :  0.0000   Min.   :   0.0000  
##  1st Qu.:0.0      1st Qu.:    0.0   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  Median :1.0      Median :   50.0   Median :  0.0000   Median :   0.0000  
##  Mean   :0.9      Mean   :   46.9   Mean   :  0.0168   Mean   :   0.1557  
##  3rd Qu.:1.0      3rd Qu.:   75.0   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  Max.   :5.0      Max.   :22000.0   Max.   :583.0000   Max.   :1700.0000  
##  NA's   :843563                                                           
##     PROPDMG         PROPDMGEXP           CROPDMG         CROPDMGEXP       
##  Min.   :   0.00   Length:902297      Min.   :  0.000   Length:902297     
##  1st Qu.:   0.00   Class :character   1st Qu.:  0.000   Class :character  
##  Median :   0.00   Mode  :character   Median :  0.000   Mode  :character  
##  Mean   :  12.06                      Mean   :  1.527                     
##  3rd Qu.:   0.50                      3rd Qu.:  0.000                     
##  Max.   :5000.00                      Max.   :990.000                     
##                                                                           
##      WFO             STATEOFFIC         ZONENAMES            LATITUDE   
##  Length:902297      Length:902297      Length:902297      Min.   :   0  
##  Class :character   Class :character   Class :character   1st Qu.:2802  
##  Mode  :character   Mode  :character   Mode  :character   Median :3540  
##                                                           Mean   :2875  
##                                                           3rd Qu.:4019  
##                                                           Max.   :9706  
##                                                           NA's   :47    
##    LONGITUDE        LATITUDE_E     LONGITUDE_       REMARKS         
##  Min.   :-14451   Min.   :   0   Min.   :-14455   Length:902297     
##  1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0   Class :character  
##  Median :  8707   Median :   0   Median :     0   Mode  :character  
##  Mean   :  6940   Mean   :1452   Mean   :  3509                     
##  3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735                     
##  Max.   : 17124   Max.   :9706   Max.   :106220                     
##                   NA's   :40                                        
##      REFNUM      
##  Min.   :     1  
##  1st Qu.:225575  
##  Median :451149  
##  Mean   :451149  
##  3rd Qu.:676723  
##  Max.   :902297  
## 
## Look at the names of the columns in the data
names(storm)
##  [1] "STATE__"    "BGN_DATE"   "BGN_TIME"   "TIME_ZONE"  "COUNTY"    
##  [6] "COUNTYNAME" "STATE"      "EVTYPE"     "BGN_RANGE"  "BGN_AZI"   
## [11] "BGN_LOCATI" "END_DATE"   "END_TIME"   "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE"  "END_AZI"    "END_LOCATI" "LENGTH"     "WIDTH"     
## [21] "F"          "MAG"        "FATALITIES" "INJURIES"   "PROPDMG"   
## [26] "PROPDMGEXP" "CROPDMG"    "CROPDMGEXP" "WFO"        "STATEOFFIC"
## [31] "ZONENAMES"  "LATITUDE"   "LONGITUDE"  "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS"    "REFNUM"

3. Reducing the data to the columns needed for analysis

To perform the analysis, the data has to be processed by taking into account only those columns and rows that will be required and assist in finding out the answers to the questions asked in the project. The following code subsets the columns necessary to find the losses in population health and economy sorted by the events.

The abbreviated column names in the dataset are: EVTYPE- EVENT TYPE, PROPDMG- PROPERTY DAMAGE, CROPDMG- CROP DAMAGE, PROPDMGEXP- PROPERTY DAMAGE EXPONENT, CROPDMGEXP- CROP DAMAGE EXPONENT

## Concatenating the required columns in the variable 'reduced'.
reduced<-c("EVTYPE", "FATALITIES", "INJURIES", "PROPDMG", "PROPDMGEXP", "CROPDMG", "CROPDMGEXP")
## Subsetting the data 'storm' for the required columns and stored in the variable 'stormred'
stormred<- storm[reduced]
## Checking the dimensions of stormred.
dim(stormred)
## [1] 902297      7
## Look at the column names of stormred
names(stormred)
## [1] "EVTYPE"     "FATALITIES" "INJURIES"   "PROPDMG"    "PROPDMGEXP"
## [6] "CROPDMG"    "CROPDMGEXP"

4. Processing the data ‘storm’ for the question,‘Q1’.

Q1:- Across the United States, which types of events are most harmful with respect to population health?

## The fatalities and injuries are the loss to the population health caused by the events of severe weather conditions. These can be reviewed as follows.
## Using the aggregate function sort out the fatalities based on the event type from the data in 'stormred'
fatalities<- aggregate(FATALITIES~EVTYPE, data=stormred, FUN=sum)
## Sort out the top 10 fatalities in descending order from the data in 'fatalities'
top10fatalities<- fatalities[order(-fatalities$FATALITIES),][1:10,]

## Using the aggregate function sort out the injuries based on the event type from the data in 'stormred'
injuries<- aggregate(INJURIES~EVTYPE, data=stormred, FUN=sum)
## Sort out the top 10 injuries in descending order from the data in 'injuries'
top10injuries<- injuries[order(-injuries$INJURIES),][1:10,]

## To find out total health loss due to severe weather conditions mentioned in 'EVTYPE' bind the columns 'FATALITIES' and 'INJURIES' of the 'stormred' and sort it by 'EVTYPE' using aggregate function
pophealth<- aggregate(cbind(FATALITIES, INJURIES)~EVTYPE, data=stormred, FUN=sum, na.rm=TRUE)
## Add a column combining fatalities and injuries called 'loss'
pophealth$loss<- pophealth$FATALITIES+pophealth$INJURIES
## Sort out top 10 reasons for fatalities and injuries combined in descending order from the data in 'pophealth'
pophealth<- arrange(pophealth, desc(loss))
top10pophealth<- pophealth[1:10,]

5. Processing the data ‘storm’ for the question,‘Q2’.

Q2:- Across the United States, which types of events have the greatest economic consequences?

## The economic damages caused due to events of severe weather conditions include property damages and crop damages. After reviewing the column names, the need for converting the exponential values of crop and property damages arises. This is done by assigning the numbers to exponential values. Calculating the total property and crop damage values by multiplying the damage values with exponential ones for each variable helps with the analysis that answers the above question. 
## Check the values of PROPDMGEXP column in stormred data by listing each value
unique(stormred$PROPDMGEXP)
##  [1] "K" "M" ""  "B" "m" "+" "0" "5" "6" "?" "4" "2" "3" "h" "7" "H" "-" "1" "8"
## Assigning the values for property exponent of stormred data
stormred$PROPEXP[stormred$PROPDMGEXP=="K"]<-1000
stormred$PROPEXP[stormred$PROPDMGEXP=="M"]<-1000000
stormred$PROPEXP[stormred$PROPDMGEXP==""]<-1
stormred$PROPEXP[stormred$PROPDMGEXP=="B"]<-1000000000
stormred$PROPEXP[stormred$PROPDMGEXP=="m"]<-1000000
stormred$PROPEXP[stormred$PROPDMGEXP=="0"]<-1
stormred$PROPEXP[stormred$PROPDMGEXP=="5"]<-100000
stormred$PROPEXP[stormred$PROPDMGEXP=="6"]<-1000000
stormred$PROPEXP[stormred$PROPDMGEXP=="4"]<-10000
stormred$PROPEXP[stormred$PROPDMGEXP=="2"]<-100
stormred$PROPEXP[stormred$PROPDMGEXP=="3"]<-1000
stormred$PROPEXP[stormred$PROPDMGEXP=="h"]<-100
stormred$PROPEXP[stormred$PROPDMGEXP=="7"]<-10000000
stormred$PROPEXP[stormred$PROPDMGEXP=="H"]<-100
stormred$PROPEXP[stormred$PROPDMGEXP=="1"]<-10
stormred$PROPEXP[stormred$PROPDMGEXP=="8"]<-100000000
## Assigning 0 to invalid exponents
stormred$PROPEXP[stormred$PROPDMGEXP=="+"]<-0
stormred$PROPEXP[stormred$PROPDMGEXP=="-"]<-0
stormred$PROPEXP[stormred$PROPDMGEXP=="?"]<-0
## Calculating the total property damage value by multiplying the property damage and property exponent value
stormred$PROPDMGVAL<- stormred$PROPDMG*stormred$PROPEXP
## Checking the unique values in the specified column by listing the values
unique(stormred$PROPDMGVAL)
##    [1] 2.5000e+04 2.5000e+03 2.5000e+06 2.5000e+05 0.0000e+00 3.0000e+01
##    [7] 2.5000e+02 2.5000e+07 2.5000e+08 5.0000e+09 1.0000e+08 5.0000e+04
##   [13] 5.0000e+06 5.0000e+05 4.8000e+07 2.0000e+07 5.0000e+03 2.0000e+03
##   [19] 3.5000e+04 3.0000e+03 5.0000e+02 9.0000e+05 1.0000e+03 4.0000e+03
##   [25] 1.0000e+04 1.5000e+03 2.0000e+04 4.5000e+04 2.0000e+02 1.2000e+04
##   [31] 8.0000e+03 2.2000e+04 5.5000e+04 4.0000e+04 1.4000e+04 8.5000e+04
##   [37] 4.2000e+04 1.5000e+04 1.0000e+05 3.0000e+04 5.0000e+01 3.8000e+04
##   [43] 8.0000e+04 1.8000e+04 6.5000e+05 6.0000e+03 3.0000e+02 2.4000e+04
##   [49] 3.2000e+04 7.0000e+03 2.8000e+04 7.0000e+04 9.5000e+04 1.0000e+02
##   [55] 6.5000e+04 4.0000e+02 9.0000e+04 3.7000e+04 5.0000e+07 2.0000e+05
##   [61] 1.0000e+06 2.3000e+04 5.6000e+04 4.5000e+05 1.0000e+07 7.5000e+06
##   [67] 1.5000e+02 4.7000e+04 4.1000e+06 5.5000e+03 9.8000e+04 1.6000e+06
##   [73] 1.3000e+06 3.5000e+06 7.5000e+04 6.0000e+05 5.0000e+00 3.7000e+01
##   [79] 3.0000e+05 1.5000e+05 4.8000e+06 3.3100e+08 6.1900e+08 5.5000e+06
##   [85] 6.0000e+04 6.0000e+07 7.0000e+06 4.1000e-01 5.0000e-01 1.5000e+07
##   [91] 8.4000e+05 1.1000e+04 1.0000e+00 1.7000e+05 1.5000e+00 2.0000e+01
##   [97] 4.5000e+03 4.0000e+05 2.0000e+00 4.0000e+00 2.5000e+01 1.7000e+07
##  [103] 3.0000e+06 2.4000e+05 1.0000e+01 7.0000e-01 4.0000e+06 1.5000e+01
##  [109] 1.5000e+06 2.3000e+08 2.1000e+09 1.6000e+09 1.0000e+09 8.6000e+05
##  [115] 2.0000e+06 5.7100e+05 7.0000e+02 2.8000e+06 8.0000e+05 1.2000e+05
##  [121] 7.0000e+05 2.7500e+05 1.1000e+06 3.0000e+00 1.7500e+05 1.7000e+03
##  [127] 2.0400e+05 7.5000e+01 1.2500e+05 8.0000e+01 3.5000e+05 6.5000e+03
##  [133] 1.3500e+05 7.0000e+01 7.5000e+07 4.0000e+01 6.0000e+01 4.5000e+01
##  [139] 9.0000e+03 8.0000e+02 6.0000e+02 9.0000e+02 1.4000e+03 3.4000e+03
##  [145] 2.4000e+07 1.1000e+05 6.0000e+06 1.4000e+06 1.9000e+06 3.5000e+03
##  [151] 1.2000e+07 3.3000e+03 1.2000e+06 7.7000e+03 2.6000e+07 7.6000e+03
##  [157] 4.1000e+03 1.0600e+05 5.1800e+05 8.8000e+06 6.4000e+03 1.2000e+03
##  [163] 8.2000e+03 8.3000e+03 5.4000e+03 4.4000e+03 2.7000e+05 1.8000e+06
##  [169] 4.3000e+03 1.4000e+05 1.3000e+05 1.0000e-01 3.8000e+06 2.4000e+06
##  [175] 7.5000e+05 3.5000e+01 4.9000e+06 1.0500e+05 8.5000e+05 1.6000e+04
##  [181] 3.3000e+05 3.0300e+05 3.4000e+04 1.7600e+05 2.5000e+09 1.7000e+04
##  [187] 1.6000e+03 6.7000e+03 8.5000e+03 2.4000e+03 2.2000e+03 6.3000e+05
##  [193] 1.4000e+08 4.2000e+03 1.3000e+03 5.2000e+03 7.5000e+03 8.7000e+03
##  [199] 5.5000e+01 1.5500e+05 2.7000e+03 1.9500e+05 3.2000e+03 1.8000e+05
##  [205] 8.4000e+03 1.6000e+05 8.9700e+05 1.3200e+05 1.8500e+05 1.9200e+05
##  [211] 6.1000e+04 8.1000e+05 3.7400e+05 1.3000e+04 3.4000e+07 1.1800e+05
##  [217] 6.8000e+08 4.7500e+05 4.0000e+07 6.0000e+00 7.0000e+00 9.0000e+00
##  [223] 3.6000e+06 8.0000e+00 1.4500e+05 2.6000e+05 2.1000e+05 4.1500e+05
##  [229] 2.2000e+05 1.1500e+05 3.9000e+06 3.7500e+05 8.0000e+06 4.6000e+05
##  [235] 2.2500e+05 6.2000e+04 5.2000e+05 1.7000e+06 4.6000e+06 3.2500e+05
##  [241] 3.0000e+07 2.2000e+08 3.3000e+06 6.6000e+06 1.2000e+09 1.2000e+01
##  [247] 4.3000e+01 6.7500e+05 3.5000e+02 6.4000e+05 4.7000e+01 7.8000e+04
##  [253] 2.7000e+04 6.7000e+01 6.2000e+06 3.6000e+04 5.3000e+04 3.8000e+05
##  [259] 5.9500e+05 1.2500e+06 3.2000e+05 6.3000e+04 1.5000e+08 9.0000e+06
##  [265] 2.1000e+06 7.5000e+02 2.3000e+05 4.5000e+06 1.2300e+07 3.7400e+07
##  [271] 1.2000e+08 8.7000e+06 3.1000e+04 5.2000e+06 4.7000e+05 4.4600e+07
##  [277] 4.4000e+04 1.3500e+07 4.4000e+07 1.1000e+07 4.4700e+07 4.4000e+06
##  [283] 1.4500e+07 2.1500e+04 5.3000e+05 1.8350e+05 1.2500e+04 1.8400e+06
##  [289] 9.9000e+04 3.8000e+03 5.5000e+05 3.2000e+06 5.2000e+04 2.9000e+06
##  [295] 1.2800e+07 1.0700e+06 7.2000e+06 5.4700e+06 5.9400e+05 2.3100e+05
##  [301] 5.6100e+05 5.7000e+05 2.3300e+06 1.0200e+07 1.4980e+07 1.1400e+06
##  [307] 1.0750e+07 3.2000e+07 1.4960e+07 4.1700e+04 5.4000e+06 2.2000e+06
##  [313] 6.5000e+06 5.8000e+06 8.5000e+06 1.9000e+04 1.3000e+07 2.1000e+03
##  [319] 7.3340e+05 6.8000e+05 6.2000e+05 5.8000e+04 1.8800e+07 1.4200e+07
##  [325] 1.0720e+07 3.1000e+07 2.7000e+06 4.3000e+06 7.2000e+05 1.6800e+06
##  [331] 7.3000e+04 7.9000e+06 1.7800e+07 5.7000e+06 9.3000e+06 7.6000e+06
##  [337] 1.9000e+07 6.5500e+06 1.3300e+05 2.1000e+04 2.9000e+04 8.9000e+04
##  [343] 2.6000e+04 1.1500e+07 4.1000e+04 1.4400e+07 2.3000e+07 2.0100e+06
##  [349] 3.1000e+05 1.4025e+08 1.8000e+07 5.1000e+05 7.9215e+08 2.0000e+08
##  [355] 1.8000e+08 1.4250e+07 3.3700e+06 1.8700e+05 3.7200e+06 5.0900e+06
##  [361] 1.2600e+06 3.4300e+06 3.5200e+05 5.2900e+05 1.2800e+05 5.2500e+06
##  [367] 2.1000e+07 2.8000e+05 1.0500e+04 1.1500e+04 7.1500e+04 1.2500e+03
##  [373] 4.0000e+08 4.2000e+07 1.8970e+07 2.1100e+07 9.9000e+06 1.7900e+07
##  [379] 1.9500e+07 2.1300e+07 2.0100e+07 1.2710e+07 9.6000e+06 4.2310e+07
##  [385] 4.3800e+06 7.1000e+04 3.0500e+06 6.7000e+05 6.9000e+04 7.8000e+05
##  [391] 4.9000e+05 6.3500e+05 1.1600e+06 4.4000e+05 3.2400e+05 2.0300e+06
##  [397] 6.3000e+03 1.1000e+02 1.2600e+07 2.8200e+06 5.6000e+05 2.7000e+07
##  [403] 7.5100e+06 7.7000e+04 2.6500e+05 7.8740e+07 3.1500e+07 9.5000e+06
##  [409] 4.5200e+06 2.4100e+06 4.1200e+06 2.1700e+04 1.6500e+07 3.3000e+04
##  [415] 5.3000e+06 4.8000e+05 3.9500e+07 3.9000e+04 3.4000e+06 5.4000e+04
##  [421] 4.1000e+05 6.4000e+04 2.3000e+06 6.0500e+07 1.7600e+06 1.7500e+03
##  [427] 3.0300e+07 3.3000e+08 1.9000e+08 1.9000e+05 1.7500e+06 3.4500e+06
##  [433] 2.1500e+05 9.4000e+05 1.7700e+07 3.1000e+06 1.1400e+05 1.2900e+07
##  [439] 1.2800e+08 5.2500e+05 2.1400e+05 1.4000e+07 2.9500e+06 1.7500e+04
##  [445] 2.7500e+06 5.3600e+05 2.2500e+03 4.9000e+04 1.0400e+06 7.8000e+03
##  [451] 1.2600e+05 2.5500e+06 2.9708e+05 8.8150e+04 5.5600e+04 2.0700e+05
##  [457] 1.5200e+04 1.8500e+06 1.1850e+07 8.4500e+06 8.5000e+07 2.4500e+06
##  [463] 3.5000e+07 5.0800e+06 5.0500e+06 2.8500e+07 9.7600e+06 1.2500e+08
##  [469] 1.3500e+04 6.9340e+05 2.0300e+05 2.5300e+05 3.7500e+04 7.9980e+04
##  [475] 1.0002e+05 9.9000e+02 4.9980e+04 4.9600e+03 1.1800e+06 1.3500e+06
##  [481] 9.0000e+07 2.2880e+04 1.6080e+05 6.0000e+08 5.7120e+04 8.8000e+04
##  [487] 5.1000e+02 7.3000e+06 7.8000e+02 2.8000e+03 9.8000e+06 2.2500e+06
##  [493] 2.6900e+05 1.0500e+06 5.6500e+07 1.0800e+05 6.4000e+08 5.4000e+07
##  [499] 1.7800e+06 2.1900e+05 4.2600e+06 8.1000e+04 1.9600e+05 7.8000e+06
##  [505] 1.0700e+05 7.2000e+04 1.8400e+05 4.2500e+05 1.6500e+05 5.5080e+07
##  [511] 6.3000e+06 6.3200e+06 3.0400e+06 9.6000e+07 4.4720e+07 1.0200e+08
##  [517] 3.0000e+09 4.6000e+04 5.4000e+05 5.5000e+02 9.5000e+03 5.1000e+03
##  [523] 7.6600e+07 7.9000e+04 9.1700e+05 4.3000e+04 2.0500e+05 2.8600e+05
##  [529] 1.4700e+05 2.4700e+04 1.0672e+05 4.7000e+06 6.6000e+02 1.2000e+02
##  [535] 9.8260e+04 1.1000e+03 1.9790e+07 4.5000e+07 7.6000e+02 6.5500e+05
##  [541] 5.8500e+05 7.0000e+07 4.2400e+04 4.2500e+06 3.8500e+05 7.7000e+05
##  [547] 9.9000e+03 1.4900e+05 7.8700e+07 5.3800e+06 2.0400e+04 3.8850e+05
##  [553] 1.5140e+05 1.5900e+05 9.1000e+04 8.0000e+07 5.0000e+08 1.0500e+08
##  [559] 3.8200e+05 4.8000e+04 1.7416e+08 4.6800e+04 3.1000e+03 1.2500e+07
##  [565] 1.3900e+07 2.0800e+07 4.2900e+06 8.8000e+05 2.9700e+07 3.5900e+07
##  [571] 8.2000e+06 1.0300e+07 2.6200e+05 3.6500e+05 3.4800e+05 1.0600e+06
##  [577] 8.7800e+07 1.7500e+08 1.1700e+05 6.4500e+05 2.5520e+07 4.3700e+05
##  [583] 3.6700e+08 1.1300e+06 2.8400e+05 2.5500e+08 1.3500e+08 6.1980e+07
##  [589] 1.6100e+08 3.8000e+07 4.3500e+05 8.8500e+04 5.1000e+04 3.1200e+05
##  [595] 1.0200e+06 1.9500e+04 2.9960e+04 2.2990e+05 2.9988e+05 8.6500e+06
##  [601] 8.9000e+03 3.0700e+07 1.7300e+07 2.5003e+05 1.4900e+06 8.2000e+04
##  [607] 6.2500e+03 3.2500e+04 1.6500e+06 7.7500e+05 1.8000e+03 2.1800e+05
##  [613] 3.1950e+07 5.1000e+08 3.0400e+08 3.1520e+07 3.0060e+07 3.4700e+05
##  [619] 4.6300e+05 7.6600e+05 5.1500e+05 4.0200e+06 2.4210e+07 3.4630e+07
##  [625] 1.1100e+06 1.2400e+06 8.6600e+04 4.9340e+07 3.7300e+05 5.0270e+05
##  [631] 6.1000e+05 4.0500e+05 3.2500e+06 3.1500e+05 8.2500e+05 1.7000e+08
##  [637] 4.5000e+08 9.2000e+06 1.7600e+07 8.5000e+02 7.2000e+07 6.0200e+08
##  [643] 2.7800e+06 1.6600e+07 2.3300e+05 2.3700e+04 2.6870e+07 1.7030e+07
##  [649] 2.6600e+06 1.8600e+06 1.0300e+04 7.4500e+05 2.1200e+05 2.5500e+05
##  [655] 1.5400e+05 5.7500e+05 1.6100e+05 6.6000e+04 1.0003e+05 2.2180e+07
##  [661] 4.8200e+05 6.4000e+06 2.6200e+07 1.3400e+07 3.0500e+05 5.3500e+05
##  [667] 5.0500e+05 2.4500e+04 1.5500e+04 1.8500e+04 5.4100e+04 1.6500e+04
##  [673] 9.7000e+04 1.9300e+05 4.1000e+07 9.9970e+04 3.6000e+05 4.1350e+05
##  [679] 3.8300e+06 1.6600e+05 4.9992e+05 9.7000e+05 1.7200e+05 2.1000e+02
##  [685] 1.5100e+03 1.6000e+07 3.7000e+06 6.8000e+04 2.8718e+08 6.6000e+07
##  [691] 6.2000e+07 2.6800e+08 7.6000e+04 5.7500e+06 1.0100e+05 2.3550e+07
##  [697] 5.5500e+06 6.6500e+04 2.3000e+03 4.6700e+05 9.1400e+05 3.6400e+06
##  [703] 3.1300e+06 8.7500e+05 3.7100e+06 6.4200e+05 8.5700e+06 6.7000e+06
##  [709] 3.4600e+06 1.9200e+07 5.7000e+04 9.5000e+05 8.4500e+05 1.6700e+05
##  [715] 2.2140e+07 4.7400e+06 2.8500e+04 1.7200e+06 1.0360e+07 1.7000e+09
##  [721] 3.4600e+05 2.4500e+05 3.7000e+05 2.0500e+06 2.2700e+05 6.6900e+07
##  [727] 2.9000e+05 1.3300e+07 2.2200e+07 1.3800e+07 2.8000e+07 2.5130e+07
##  [733] 4.1500e+06 2.2400e+05 5.9000e+06 6.1000e+07 2.6200e+08 1.3470e+07
##  [739] 5.1000e+07 7.5800e+05 8.9000e+05 1.8600e+05 6.9000e+05 7.5500e+06
##  [745] 9.4000e+04 1.5800e+06 2.7500e+04 1.5500e+06 2.4800e+06 8.2500e+04
##  [751] 5.3000e+07 6.6800e+06 1.7840e+05 1.3860e+05 3.1500e+06 2.7800e+05
##  [757] 2.6000e+06 5.4700e+05 1.7700e+06 9.6000e+05 9.2000e+04 2.7700e+06
##  [763] 2.2500e+04 5.5000e+07 4.3172e+05 5.7045e+05 4.2000e+06 1.1500e+06
##  [769] 1.7500e+07 3.5800e+08 1.7440e+05 2.7300e+06 3.7400e+06 5.0001e+05
##  [775] 9.7500e+05 9.2000e+05 4.9996e+05 4.1062e+08 1.0900e+08 2.5800e+06
##  [781] 5.9000e+05 1.0100e+06 8.2000e+07 3.2800e+05 9.1000e+05 5.6540e+04
##  [787] 9.3200e+05 4.7100e+06 2.2000e+07 2.5200e+06 1.4700e+06 2.0020e+07
##  [793] 2.9500e+05 4.7600e+05 2.3700e+05 7.3800e+05 7.2700e+07 7.4000e+04
##  [799] 6.5100e+03 9.9000e+05 1.1100e+07 1.1500e+03 7.7200e+06 9.9390e+07
##  [805] 6.1700e+05 1.5300e+05 8.7000e+05 6.5400e+05 6.7000e+04 1.2200e+05
##  [811] 1.0200e+05 1.4800e+05 9.1000e+07 7.7000e+06 8.3000e+04 3.6000e+08
##  [817] 1.6500e+08 7.8200e+04 2.2700e+07 6.6200e+05 5.4700e+08 6.6500e+05
##  [823] 4.8020e+07 4.7300e+04 6.2500e+05 7.5300e+04 1.3002e+05 1.2700e+06
##  [829] 9.2500e+05 7.1000e+07 7.6300e+04 6.4000e+07 6.5000e+07 1.0600e+08
##  [835] 1.2700e+05 2.3500e+05 2.7100e+05 3.7800e+05 3.4300e+05 6.0700e+06
##  [841] 7.5500e+05 2.0020e+04 2.8500e+05 8.4300e+06 8.4000e+04 3.3100e+06
##  [847] 1.5000e+09 1.6650e+08 1.8300e+05 5.5700e+05 3.6300e+05 1.1100e+05
##  [853] 5.0200e+05 5.9000e+04 9.6000e+04 4.6500e+07 1.5100e+05 1.0300e+05
##  [859] 1.4600e+04 4.4300e+06 7.4250e+07 1.8800e+06 5.0040e+05 5.1007e+05
##  [865] 1.1600e+05 5.0800e+05 1.2300e+08 2.2900e+05 4.6500e+05 1.4400e+04
##  [871] 2.9000e+03 4.5700e+06 1.0400e+07 3.2200e+07 4.6000e+07 9.2500e+06
##  [877] 9.6800e+04 5.8300e+05 6.0500e+06 1.5300e+06 6.8200e+06 1.7950e+05
##  [883] 1.5355e+05 7.8700e+05 5.0100e+05 5.6500e+05 7.7780e+05 6.0600e+06
##  [889] 1.4400e+05 7.0500e+06 6.1000e+06 4.9000e+07 6.0600e+05 2.7900e+05
##  [895] 1.6900e+07 1.4600e+06 3.7000e+07 9.3600e+05 3.8250e+05 1.6050e+04
##  [901] 4.6500e+06 1.9500e+06 4.2000e+05 1.7300e+05 4.3000e+07 2.2700e+06
##  [907] 1.7140e+07 5.4800e+05 2.0900e+05 1.1200e+05 8.4000e+06 3.2220e+05
##  [913] 1.3400e+05 1.5750e+04 9.5500e+05 3.0000e+08 3.5400e+05 5.0020e+04
##  [919] 1.4800e+06 1.1300e+08 3.9000e+05 8.1500e+05 5.8600e+05 6.0400e+05
##  [925] 3.5700e+06 1.7900e+06 7.6000e+05 1.0050e+05 1.4650e+05 2.5500e+04
##  [931] 1.4985e+05 3.3500e+07 1.2800e+06 7.8500e+05 2.1300e+05 1.3700e+06
##  [937] 2.6600e+05 5.1500e+09 3.7500e+06 7.1300e+05 7.2000e+03 4.7000e+07
##  [943] 8.8800e+05 1.1600e+04 6.4500e+06 7.4500e+06 4.0600e+06 1.3800e+06
##  [949] 6.5500e+04 5.6000e+06 9.8800e+05 2.1600e+06 1.0050e+07 3.6800e+06
##  [955] 8.3000e+05 3.7800e+06 1.4300e+07 4.5700e+07 1.2700e+07 1.5300e+07
##  [961] 3.9600e+06 1.5800e+05 1.1180e+07 1.1020e+07 1.4200e+05 1.1650e+07
##  [967] 4.8500e+05 3.0800e+05 5.7400e+06 3.1500e+04 5.5400e+05 7.6200e+05
##  [973] 1.5100e+06 9.5100e+06 2.0200e+05 3.8100e+05 4.5000e+02 9.3000e+04
##  [979] 2.6500e+07 5.7600e+06 5.7000e+03 1.5600e+04 1.0863e+08 1.4958e+08
##  [985] 3.6800e+08 1.1400e+08 8.2000e+05 1.8540e+07 1.3250e+04 1.3360e+07
##  [991] 1.4260e+07 1.3800e+05 4.7900e+05 5.9400e+06 6.7500e+06 9.9000e+07
##  [997] 9.7100e+05 8.8500e+06 1.6100e+06 3.5500e+06 4.5500e+07 5.8000e+05
## [1003] 6.8000e+06 1.6200e+05 3.3500e+05 2.0100e+05 2.2000e+02 1.9000e+03
## [1009] 9.6800e+05 4.5900e+05 1.8900e+05 1.6200e+04 5.7700e+05 3.4500e+05
## [1015] 5.1000e+06 2.6100e+05 4.4500e+06 1.1150e+07 1.5500e+03 3.2800e+06
## [1021] 1.5900e+06 8.2400e+05 4.6056e+05 1.5400e+06 8.0677e+05 6.9640e+08
## [1027] 1.0400e+09 5.5220e+07 2.7860e+08 1.6960e+07 2.1500e+07 3.2400e+06
## [1033] 9.7900e+05 1.6100e+07 1.7750e+07 3.3700e+05 9.1700e+06 9.3500e+05
## [1039] 1.7900e+05 2.7500e+03 2.5700e+05 4.1600e+07 6.4515e+08 3.9600e+04
## [1045] 1.1020e+04 1.5500e+07 2.4600e+05 1.3400e+06 2.6300e+07 1.9640e+07
## [1051] 2.3500e+06 5.2400e+06 2.4600e+06 5.3047e+08 1.8100e+06 1.6111e+08
## [1057] 6.5000e+02 2.1200e+07 2.7500e+07 1.4700e+07 1.3790e+05 7.2500e+05
## [1063] 1.2900e+06 1.0500e+03 4.3000e+05 2.6500e+06 2.8550e+07 1.6900e+06
## [1069] 9.5400e+05 7.1000e+05 4.3560e+08 7.2900e+06 5.3400e+05 1.3300e+06
## [1075] 6.2500e+06 2.3200e+06 5.2000e+07 4.1500e+03 2.1000e+08 1.6000e+08
## [1081] 3.5400e+06 3.2220e+07 1.8050e+07 9.5000e+02 4.9300e+05 2.0600e+05
## [1087] 1.4100e+05 1.8500e+03 2.8100e+06 3.9200e+06 1.1620e+07 5.5800e+06
## [1093] 1.3950e+07 2.3230e+07 1.6740e+07 9.3100e+06 1.1160e+07 4.2200e+06
## [1099] 8.3700e+06 2.8300e+05 2.0500e+03 3.3000e+07 1.0880e+07 1.9770e+04
## [1105] 2.1880e+07 1.4500e+06 8.8700e+06 3.0200e+06 5.0600e+08 4.5070e+07
## [1111] 5.5100e+07 1.8200e+06 1.6870e+07 4.8600e+06 4.4500e+04 8.6000e+06
## [1117] 1.3530e+07 1.2050e+07 5.1500e+04 3.4000e+05 1.0400e+05 1.9900e+07
## [1123] 1.2200e+07 1.9200e+06 8.0900e+06 1.6350e+05 1.7700e+05 1.4650e+08
## [1129] 2.6000e+03 1.4300e+05 5.4200e+09 9.2900e+08 7.8000e+07 1.3000e+09
## [1135] 6.2100e+08 4.8300e+09 2.3500e+07 1.2720e+08 1.7940e+08 1.7400e+06
## [1141] 4.0000e+09 9.0430e+07 3.7990e+08 3.2300e+08 7.0200e+08 1.3480e+08
## [1147] 2.5300e+06 2.1900e+06 6.1300e+05 5.5100e+06 1.4280e+07 3.2700e+05
## [1153] 5.4200e+06 2.2200e+06 7.5825e+05 6.6100e+05 2.4200e+05 3.5300e+06
## [1159] 1.4300e+06 9.7200e+04 1.3600e+05 1.1830e+07 3.5500e+05 1.6250e+04
## [1165] 6.6700e+06 1.2300e+06 6.6300e+06 1.0430e+07 1.0500e+07 4.5100e+06
## [1171] 4.1700e+06 3.1100e+06 1.0300e+06 2.3600e+06 1.2400e+07 8.1000e+06
## [1177] 2.5500e+07 2.4300e+05 6.0500e+05 5.4900e+07 4.5100e+05 1.9300e+07
## [1183] 1.0150e+07 3.0500e+04 4.9940e+04 2.7700e+05 5.1300e+06 6.1400e+06
## [1189] 4.7800e+05 5.9000e+03 2.3200e+07 8.1000e+02 1.0250e+04 3.5900e+05
## [1195] 2.5700e+06 7.0600e+05 4.3600e+04 8.2500e+03 5.3800e+07 4.3800e+05
## [1201] 3.6000e+07 1.4100e+06 3.5300e+05 3.5550e+07 8.7600e+05 9.1500e+05
## [1207] 3.2500e+03 6.8000e+07 1.7800e+05 3.4890e+07 2.6900e+06 2.3500e+04
## [1213] 3.8500e+04 2.0500e+07 1.9850e+05 8.6850e+05 5.5900e+07 6.0800e+07
## [1219] 1.0400e+08 1.7100e+06 1.1500e+08 1.0800e+08 7.1500e+06 6.9000e+06
## [1225] 1.0000e+10 1.0100e+08 1.3150e+07 1.4825e+05 9.7700e+06 9.3000e+05
## [1231] 3.9400e+06 2.7075e+05 1.6300e+05 2.4610e+05 5.0100e+04 9.5250e+05
## [1237] 1.6800e+05 1.2900e+04 1.1600e+07 1.1700e+07 7.4000e+05 2.5400e+06
## [1243] 4.8500e+06 2.8800e+05 4.7500e+07 1.6930e+10 3.1300e+10 4.3200e+08
## [1249] 5.9900e+06 6.4300e+05 4.4200e+05 5.4500e+05 1.3000e+08 4.4500e+05
## [1255] 7.3500e+09 1.1260e+10 5.8800e+09 1.0600e+03 7.4600e+05 7.0100e+05
## [1261] 7.6400e+06 9.7300e+05 7.2400e+05 9.4500e+05 1.6200e+07 2.5795e+05
## [1267] 1.9940e+04 1.7961e+05 7.9200e+04 1.2800e+04 4.2160e+07 8.3000e+06
## [1273] 9.3000e+07 1.2490e+08 8.9700e+06 1.7300e+06 3.6500e+06 2.2750e+04
## [1279] 1.6200e+06 3.4810e+05 1.6000e+02 8.6000e+04 1.6200e+03 1.0100e+03
## [1285] 8.7000e+04 2.0900e+09 1.5950e+08 1.3900e+05 5.1600e+06 5.9200e+05
## [1291] 4.0500e+04 3.4310e+07 1.7100e+05 4.0200e+04 7.7500e+03 4.1114e+05
## [1297] 2.8010e+05 5.3110e+05 1.7000e+02 1.1500e+11 9.7200e+06 3.5700e+05
## [1303] 1.3700e+05 2.4900e+05 1.2170e+05 4.1100e+05 1.5700e+06 3.4700e+06
## [1309] 1.8700e+06 1.4600e+05 9.9600e+05 1.3200e+06 1.0900e+05 5.5200e+05
## [1315] 2.5900e+05 1.6400e+05 5.2400e+05 6.2300e+05 5.2700e+06 1.0100e+07
## [1321] 6.3200e+05 8.8700e+05 1.1300e+05 2.9400e+05 9.0600e+06 6.6000e+05
## [1327] 9.9500e+05 2.4500e+07 3.2000e+08 8.6000e+02 6.9000e+07 1.0800e+07
## [1333] 4.9900e+07 9.4500e+04 8.9500e+04 3.6000e+03 3.6200e+07 1.8500e+07
## [1339] 2.8680e+07 5.6900e+05 1.9900e+06 4.4400e+06 4.3600e+06 2.3800e+06
## [1345] 3.1700e+06 6.3400e+06 1.2060e+04 5.4200e+05 3.1900e+04 3.1700e+04
## [1351] 3.1600e+04 1.5110e+08 1.1000e+08 2.1700e+07 7.6500e+04 2.0800e+05
## [1357] 9.8900e+05 1.2900e+05 4.3400e+05 3.7700e+05 1.4400e+06 1.5600e+06
## [1363] 3.3800e+05 4.8400e+06 2.1600e+07 8.1150e+07 1.8200e+07 3.7500e+07
## [1369] 3.1400e+05 2.9700e+05 4.7200e+05 4.1500e+04 6.1200e+05 9.7000e+03
## [1375] 6.2600e+07 1.2400e+05 1.8300e+07 2.0400e+07 5.5600e+05 7.7700e+06
## [1381] 1.3700e+08 8.2300e+05 7.3000e+03 1.6700e+04 1.9100e+06 1.1900e+07
## [1387] 2.8200e+07 1.3600e+06 2.6700e+06 7.7700e+05 1.5750e+07 2.2750e+07
## [1393] 2.9000e+07 2.3400e+05 2.4700e+03 1.4700e+08 3.6250e+04 4.4459e+05
## [1399] 4.3100e+05 6.7000e+07 5.7600e+05 1.8900e+06 2.0500e+04 1.2100e+05
## [1405] 1.6800e+07 2.2600e+05 6.8400e+05 7.5000e+08 9.7500e+03 1.9400e+04
## [1411] 2.6300e+06 2.0200e+07 3.7500e+03 2.2850e+04 9.4000e+06 6.7400e+06
## [1417] 3.7040e+05 3.6650e+05 7.2700e+05 4.8100e+05 2.7400e+05 9.5700e+05
## [1423] 2.4280e+05 6.3900e+05 5.8100e+05 2.9100e+05 4.9300e+06 2.8400e+07
## [1429] 1.0690e+07 7.1000e+06 5.8000e+03 2.2600e+07 4.1700e+07 2.3700e+07
## [1435] 9.6600e+07 1.6700e+07 6.3700e+07 1.2870e+08 1.8400e+07 8.9000e+06
## [1441] 1.4100e+07 1.5650e+05 4.9400e+06 6.9100e+05 6.8600e+05 1.3710e+07
## [1447] 7.9300e+06 8.7500e+06 6.5700e+06 4.2900e+05 4.6400e+06 1.0222e+08
## [1453] 6.2990e+07 1.9700e+06 7.7970e+07 1.5660e+07 4.6200e+05 2.1500e+06
## [1459] 2.2400e+07 5.2560e+05 2.8300e+03 4.6216e+05 1.3500e+03 4.0230e+05
## [1465] 1.8600e+07 1.3540e+07 4.5300e+05 1.3200e+07 1.5700e+05 4.4100e+06
## [1471] 7.4800e+05 2.6400e+05 5.5300e+05 6.0300e+05 2.6800e+05 3.4200e+05
## [1477] 5.5800e+05 1.4800e+04 1.5200e+05 6.1900e+05 1.9100e+05 1.6120e+08
## [1483] 5.5500e+05 1.2300e+05 2.1600e+05 4.8800e+05 1.6667e+05 1.7750e+05
## [1489] 8.1300e+05 6.8600e+07 4.9500e+04 7.1500e+05 5.2500e+04 9.0160e+05
## [1495] 7.0000e+08 1.6750e+05 1.3130e+07 1.2290e+07 2.5200e+05 3.8500e+03
## [1501] 3.5500e+04 1.2170e+07 2.2200e+05 3.2100e+05 3.5000e+08 9.6400e+05
## [1507] 3.9750e+05 1.3200e+03 1.1400e+07 8.1000e+07 7.4400e+06 4.5500e+05
## [1513] 4.4520e+07 5.6300e+06 3.1800e+06 2.1750e+07 8.4800e+06 1.0440e+07
## [1519] 5.8500e+06 1.1700e+06 5.5200e+06 3.6200e+05 2.4100e+05 1.7920e+07
## [1525] 3.3300e+03 1.1900e+05 1.3670e+04 3.2700e+06 1.6150e+07 1.0700e+07
## [1531] 2.6430e+07 1.1790e+07 2.3580e+07 2.5650e+07 4.0500e+06 8.0700e+06
## [1537] 7.0900e+04 2.4760e+07 2.6640e+07 5.9100e+06 3.5200e+06 8.3200e+06
## [1543] 1.6640e+07 3.4900e+05 8.8100e+06 8.6800e+05 5.9800e+05 2.3200e+05
## [1549] 9.7500e+06 8.5900e+05 1.1300e+07 7.7800e+04 2.8900e+07 3.9500e+06
## [1555] 3.3400e+03 1.1250e+05 2.9500e+04 2.5800e+05 1.6500e+03 1.5020e+05
## [1561] 5.5500e+04 2.0600e+07 4.7500e+04 2.1100e+05 2.5338e+08 8.9200e+05
## [1567] 4.3370e+05 3.2500e+07 5.6400e+06 5.7500e+03 2.4100e+07 2.7200e+05
## [1573] 2.5740e+05 5.3000e+03 2.9730e+05 9.3430e+05 2.0900e+04 4.2300e+05
## [1579] 3.0300e+06 4.5900e+06 3.2900e+06 2.1700e+08 7.6400e+03 4.0200e+05
## [1585] 1.7200e+07 1.6300e+06 1.8000e+09 9.0000e+08 6.6100e+06 4.1800e+05
## [1591] 9.7000e+07 1.9700e+07 1.1700e+04 1.9600e+06 3.0900e+05 3.8100e+06
## [1597] 1.8200e+05 2.9670e+05 2.5900e+04 6.5300e+06 1.0600e+07 2.2600e+06
## [1603] 2.6700e+05 3.7000e+03 1.1900e+06 8.5500e+05 1.5840e+06 3.3300e+05
## [1609] 2.6600e+07 5.7000e+07 2.6250e+05 7.6700e+05 4.2600e+05 1.2100e+06
## [1615] 6.8500e+05 1.6600e+06 5.5750e+05 1.0900e+07 2.4700e+06 4.7500e+03
## [1621] 4.3700e+06 6.4390e+05 6.7600e+05 1.0800e+06 3.8500e+07 3.5600e+06
## [1627] 1.1200e+07 2.8200e+05 6.8800e+06 2.9800e+06 3.9100e+06 1.2200e+08
## [1633] 5.7200e+05 4.2700e+06 2.0700e+06 1.8300e+06 8.3800e+04 7.0600e+06
## [1639] 4.5800e+04 3.4800e+06 8.8750e+04 3.7100e+05 8.6500e+05 7.3000e+05
## [1645] 1.3300e+03 4.5800e+05 6.1500e+05 1.5250e+04 3.9800e+04 1.3400e+03
## [1651] 3.9900e+06 1.4100e+04 2.2800e+06 2.8000e+09 6.8800e+05 1.5200e+07
## [1657] 7.1600e+05 1.6600e+08 7.5200e+05 2.0000e+09 3.9000e+03 2.7200e+03
## [1663] 4.8000e+03 2.7600e+05 3.1100e+05 6.6700e+05 5.3900e+04 2.2760e+08
## [1669] 5.8000e+07 4.6100e+05 9.4000e+03 3.5150e+05 2.7100e+04 4.0300e+04
## [1675] 6.9700e+04 1.6480e+08 4.2500e+03 1.8100e+05 3.0900e+08 4.3500e+07
## [1681] 1.3200e+04
##Check the values of CROPDMGEXP column in stormred data by listing the values
unique(stormred$CROPDMGEXP)
## [1] ""  "M" "K" "m" "B" "?" "0" "k" "2"
## Assigning the values for crop damage exponent of stormred data
stormred$CROPEXP[stormred$CROPDMGEXP=="M"]<-1000000
stormred$CROPEXP[stormred$CROPDMGEXP=="K"]<-1000
stormred$CROPEXP[stormred$CROPDMGEXP=="m"]<-1000000
stormred$CROPEXP[stormred$CROPDMGEXP=="B"]<-1000000000
stormred$CROPEXP[stormred$CROPDMGEXP=="0"]<-1
stormred$CROPEXP[stormred$CROPDMGEXP=="k"]<-1000
stormred$CROPEXP[stormred$CROPDMGEXP=="2"]<-100
stormred$CROPEXP[stormred$CROPDMGEXP==""]<-1
stormred$CROPEXP[stormred$CROPDMGEXP=="?"]<-0
## Calculating the total crop damage value by multiplying the crop damage and crop exponent value
stormred$CROPDMGVAL<- stormred$CROPDMG*stormred$CROPEXP
## Checking the unique values in the specified column by listing out the values
unique(stormred$CROPDMGVAL)
##   [1]          0   10000000     500000    1000000    4000000      50000
##   [7]       5000      15000        500      10000    5000000   50000000
##  [13]  400000000         50   21000000    7000000   17000000   26000000
##  [19]   22000000    3000000     800000   39000000   20000000  300000000
##  [25]     900000   48000000     200000    1500000       2500       3000
##  [31]       2000   25000000  130000000   37000000      20000    2500000
##  [37]      25000   15000000    9000000   45000000       1000         20
##  [43]     185000 5000000000      35000       2200   12000000        300
##  [49]      90000     150000       9000     100000       7000  500000000
##  [55]   66000000  142000000    1100000     700000       4000          5
##  [61]     330000     750000       6000      43000      60000    1800000
##  [67]     250000      40000      12000      22000    1300000         25
##  [73]  200000000      30000         60      70000      80000     350000
##  [79]     400000       8000      75000      45000     300000        200
##  [85]    3500000      63000      18000        280        150        100
##  [91]       1700        750        700    4700000   16000000    6000000
##  [97]    2000000       3500        800     170000     600000     125000
## [103]    6700000    2200000    2100000     675000        600  262000000
## [109]     332000     220000      56000          3   30000000   18000000
## [115]          4       1500     353000     177000   36000000    1700000
## [121]     373000     430000     160000     123000   13000000     140000
## [127]      38000   52000000        240     320000    7700000    3700000
## [133]    6800000    1200000     380000    6500000       5600   74900000
## [139]   34100000   15300000   24000000    5100000    8000000   27000000
## [145]   42000000     650000     130000     230000   10500000      55000
## [151]    1580000    5990000    1250000    3600000    5200000       3250
## [157]    5250000    3220000     204000    2400000  127000000    7500000
## [163]   46000000   33000000     120000    2250000   19800000    4500000
## [169]   40000000  189680000    1050000      81000     225000      37500
## [175]    5400000    7550000    1400000   26840000    5700000     500100
## [181]     950000   56000000   15700000   11000000   17500000     110000
## [187]    1120000   55700000    1600000   12900000   20040000   46500000
## [193]   65000000       4800    1480000   43680000     613000   14000000
## [199]      19000    3400000     850000     450000     240000      36000
## [205]    1270000      17000      16000    2800000      34480   13400000
## [211]      11000      14000      23000   17960000      26000   63770000
## [217]    9380000   12400000       9900    1210000      12500      24000
## [223]  100000000    7800000     159000     242000     280000   14100000
## [229]    4200000    6900000    4970000     540000     713000    7200000
## [235]    5900000   73600000    7100000   10200000    5300000   17100000
## [241]  596000000   74300000     470000      27000   35000000     655000
## [247]     460000     180000        400       2900       1600       1300
## [253]     260100     145000    5500000    3800000    1750000     978000
## [259]  137900000   77480000      17500      28000      41500     190000
## [265]        900       2800        250    6210000      68000      21000
## [271]      11700      65000      85000  117000000   64000000    6100000
## [277]    2600000       4500      97000    3750000  150000000  150200000
## [283]  167900000  135000000    1550000  450000000  250000000      11500
## [289]    3110000   38800000     550000   80000000     310000     186000
## [295]      13000      33000      66000      88000     105000    1770000
## [301]     149700  301000000    4660000      39000      22700    3390000
## [307]   15650000  131010000    8800000   29100000     475000  338000000
## [313]   12300000    8300000   11800000     875000    2700000     465000
## [319]  109920000       7500  154000000     575000     660000   39850000
## [325]  413600000   63400000   12500000   20300000    4910000     640000
## [331]   22600000   83000000       6700   41660000   42300000     420000
## [337]      61000     865000  306720000     210000      13500     325000
## [343]     975000  150080000  160960000   60000000    1850000  169600000
## [349]   80850000       8500   29000000      52000  240000000     605000
## [355]  399840000      44000      32000      29000   85000000     175000
## [361]    1900000  102300000  515000000    1560000    8400000     151000
## [367]   31900000   10450000   19000000    3250000    1960000    6030000
## [373]    6850000   78000000    1650000  578850000   25010000  420000000
## [379]   70000000         10   24270000     256000       6630   53000000
## [385]     115000    4400000     510000  168000000  480000000   25200000
## [391]   65050000      24500    4430000     275000   28000000    8900000
## [397]   13200000    9600000    7810000   10800000    8500000    1930000
## [403]   43000000  312480000     261000     270000    4810000    8550000
## [409]     156500     335000   14250000   10920000    7140000    1330000
## [415]   11960000       5500     290000       1250   31000000       1800
## [421]  285000000  175000000   90000000   93200000   82500000    8700000
## [427]   48400000   26500000   15200000      21600    4600000   21600000
## [433]     500800     990000    2850000   11500000     576000     920000
## [439]     890000  216000000  101500000      49000      47000  190000000
## [445]   21940000     671000    8600000   32500000  423000000   66500000
## [451]   26360000  180110000   48460000   10190000    1350000  154690000
## [457]     630000   42650000    1470000     415000   49000000    5800000
## [463]    2150000 1510000000    2330000    2650000    8490000   11680000
## [469]   34500000     113900      83000   22320000  230000000  120000000
## [475]     193900   11940000     112500   16600000    9100000  492400000
## [481]   77000000   15100000    2300000      76500   22200000     985000
## [487]  151000000 1000000000   45400000       2400    9400000    4160000
## [493]   26320000    5920000    2470000   73000000  155000000  344000000
## [499]     620000     390000     316000     153000     523000      67000
## [505]     387000     243000     213000     610000      99000     155000
## [511]     625000     133000     169000     588000     512000     375000
## [517]      31000  105000000     480000   55000000     112000     425000
## [523]  286000000      42000     281000     165000     107000      91000
## [529]   41000000
## Aggregating the property damage value by event type and sorting out in a descending order
prop<- aggregate(PROPDMGVAL~EVTYPE, data=stormred, FUN=sum, na.rm=TRUE)
prop<- prop[with(prop,order(-PROPDMGVAL)),]
## Limiting the data to the top 10 rows of the property damage value
prop<- head(prop,10)
## Aggregating the crop damage value by event type and sorting out in a descending order
crop<- aggregate(CROPDMGVAL~EVTYPE, data=stormred, FUN=sum, na.rm=TRUE)
crop<- crop[with(crop,order(-CROPDMGVAL)),]
## Limiting the data to the top 10 rows of the crop damage value
crop<- head(crop,10)
## Aggregating the total economic damage by binding the columns of property and crop damage values
Economicdata<- aggregate(cbind(PROPDMGVAL, CROPDMGVAL)~EVTYPE, data=stormred, FUN=sum, na.rm=TRUE)
## Adding the values of both the columns and storing the values in the new column called ecoloss
Economicdata$ecoloss<- Economicdata$PROPDMGVAL+Economicdata$CROPDMGVAL
## Sorting the columns in descending order based on the event type
Economicdata<- Economicdata[order(Economicdata$ecoloss, decreasing=TRUE),]
## Subsetting the top 10 rows of the total economic damage
top10ecodmg<- Economicdata[1:10,]

RESULTS

Looking at the data and Plotting the obtained results from the data processing for Q1.

## Look at the data stored in 'top10fatalities'
top10fatalities
##             EVTYPE FATALITIES
## 834        TORNADO       5633
## 130 EXCESSIVE HEAT       1903
## 153    FLASH FLOOD        978
## 275           HEAT        937
## 464      LIGHTNING        816
## 856      TSTM WIND        504
## 170          FLOOD        470
## 585    RIP CURRENT        368
## 359      HIGH WIND        248
## 19       AVALANCHE        224
## Look at the data stored in 'top10injuries'
top10injuries
##                EVTYPE INJURIES
## 834           TORNADO    91346
## 856         TSTM WIND     6957
## 170             FLOOD     6789
## 130    EXCESSIVE HEAT     6525
## 464         LIGHTNING     5230
## 275              HEAT     2100
## 427         ICE STORM     1975
## 153       FLASH FLOOD     1777
## 760 THUNDERSTORM WIND     1488
## 244              HAIL     1361
## Look at data stored in 'top10pophealth'
top10pophealth
##               EVTYPE FATALITIES INJURIES  loss
## 1            TORNADO       5633    91346 96979
## 2     EXCESSIVE HEAT       1903     6525  8428
## 3          TSTM WIND        504     6957  7461
## 4              FLOOD        470     6789  7259
## 5          LIGHTNING        816     5230  6046
## 6               HEAT        937     2100  3037
## 7        FLASH FLOOD        978     1777  2755
## 8          ICE STORM         89     1975  2064
## 9  THUNDERSTORM WIND        133     1488  1621
## 10      WINTER STORM        206     1321  1527
## Create a panel plot showing the graphs for top 10 fatalities and injuries each.
## Set the panel plot margins as follows
par(mfrow=c(1,3), mar=c(10,6,3,1))
## Create a bar plot for top 10 fatalities
barplot(top10fatalities$FATALITIES, names.arg=top10fatalities$EVTYPE, las=2, col="red", ylab="fatalities", main="Top 10 Fatalities")
## Create a barplot for top 10 injuries
barplot(top10injuries$INJURIES, names.arg=top10injuries$EVTYPE, las=2, col="gold", ylab="injuries", main="Top 10 Injuries")
## Create a barplot for top 10 reasons for population health loss
barplot(top10pophealth$loss, names.arg=top10pophealth$EVTYPE, las=2, col=c("purple"), ylab="fatalities+injuries", main="Total population health loss")

According to the first plot, highest number of fatalities have been caused due to tornadoes. Highest number of injuries also have been caused by tornadoes. The total impact on the population health, that is, including both fatalities and injuries is also caused by tornadoes in the US.

Looking at the data and Plotting the obtained results from the data processing for Q2.

## Print the contents of prop
print(prop)
##                EVTYPE   PROPDMGVAL
## 170             FLOOD 144657709807
## 411 HURRICANE/TYPHOON  69305840000
## 834           TORNADO  56947380617
## 670       STORM SURGE  43323536000
## 153       FLASH FLOOD  16822673979
## 244              HAIL  15735267513
## 402         HURRICANE  11868319010
## 848    TROPICAL STORM   7703890550
## 972      WINTER STORM   6688497251
## 359         HIGH WIND   5270046260
## Print the contents of crop
print(crop)
##                EVTYPE  CROPDMGVAL
## 95            DROUGHT 13972566000
## 170             FLOOD  5661968450
## 590       RIVER FLOOD  5029459000
## 427         ICE STORM  5022113500
## 244              HAIL  3025954473
## 402         HURRICANE  2741910000
## 411 HURRICANE/TYPHOON  2607872800
## 153       FLASH FLOOD  1421317100
## 140      EXTREME COLD  1292973000
## 212      FROST/FREEZE  1094086000
## Print the contents of top10ecodmg (top 10 reasons for total economic damages)
print(top10ecodmg)
##                EVTYPE   PROPDMGVAL  CROPDMGVAL      ecoloss
## 170             FLOOD 144657709807  5661968450 150319678257
## 411 HURRICANE/TYPHOON  69305840000  2607872800  71913712800
## 834           TORNADO  56947380617   414953270  57362333887
## 670       STORM SURGE  43323536000        5000  43323541000
## 244              HAIL  15735267513  3025954473  18761221986
## 153       FLASH FLOOD  16822673979  1421317100  18243991079
## 95            DROUGHT   1046106000 13972566000  15018672000
## 402         HURRICANE  11868319010  2741910000  14610229010
## 590       RIVER FLOOD   5118945500  5029459000  10148404500
## 427         ICE STORM   3944927860  5022113500   8967041360
## Plot the graphs in a panel plot with specified margins
par(mfrow=c(1,3), mar=c(11,6,3,2))
## Plot the graph for property damages
barplot(prop$PROPDMGVAL/(10^9),names.arg=prop$EVTYPE,las=2,col="blue",ylab="Property damage(billions)",main="Top10 Property Damages")
## Plot the graph for crop damages
barplot(crop$CROPDMGVAL/(10^9),names.arg=crop$EVTYPE,las=2,col="green",ylab="Crop damage(billions)",main="Top10 Crop Damages")
## Plot the graph for total economic damages
barplot(top10ecodmg$ecoloss/(10^9),names.arg=top10ecodmg$EVTYPE,las=2,col="yellow",ylab="Economic damage(billions)",main="Total Economic Damages")

According to the plot, the highest amount of property damages were caused due to floods and highest amount of crop damages are due to droughts. The highest total amount of economic damage is also caused due to floods.