PREPROCESSING AND RESAMPLING USING TIDYTUESDAY COLLEGE DATA
I’ve been publishing screencasts demonstrating how to use the tidymodels framework, from first getting started to how to tune machine learning models. Today, I’m using this week;s TidyTuesday datasets on college tuition and diversity at US colleges to show some data preprocessing steps and how to use resampling!
Our modeling goal here is to predict which US colleges have higher proportions of minority students based on college data such as tuition from the TidyTuesday dataset. There are several related datasets this week, and this modling analysis uses 2 of them.
library(tidyverse)
## -- Attaching packages --------
## v ggplot2 3.3.2 v purrr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.0
## v tidyr 1.1.0 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
## -- Conflicts -----------------
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(tidymodels)
## -- Attaching packages --------
## v broom 0.7.0 v recipes 0.1.13
## v dials 0.0.8 v rsample 0.0.7
## v infer 0.5.3 v tune 0.1.1
## v modeldata 0.0.2 v workflows 0.1.2
## v parsnip 0.1.2 v yardstick 0.0.7
## -- Conflicts -----------------
## x scales::discard() masks purrr::discard()
## x dplyr::filter() masks stats::filter()
## x recipes::fixed() masks stringr::fixed()
## x dplyr::lag() masks stats::lag()
## x yardstick::spec() masks readr::spec()
## x recipes::step() masks stats::step()
library(ggthemes)
theme_set(theme_light())
tuition_cost <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-03-10/tuition_cost.csv")
## Parsed with column specification:
## cols(
## name = col_character(),
## state = col_character(),
## state_code = col_character(),
## type = col_character(),
## degree_length = col_character(),
## room_and_board = col_double(),
## in_state_tuition = col_double(),
## in_state_total = col_double(),
## out_of_state_tuition = col_double(),
## out_of_state_total = col_double()
## )
diversity_raw <- readr::read_csv("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-03-10/diversity_school.csv") %>%
filter(category == "Total Minority") %>%
mutate(TotalMinority = enrollment / total_enrollment)
## Parsed with column specification:
## cols(
## name = col_character(),
## total_enrollment = col_double(),
## state = col_character(),
## category = col_character(),
## enrollment = col_double()
## )
What is the distribution of total minority student population?
diversity_school <- diversity_raw %>%
filter(category == 'Total Minority') %>%
mutate(TotalMinority = enrollment/ total_enrollment)
diversity_school %>%
ggplot(aes(TotalMinority)) +
geom_histogram(alpha = 0.7, fill = 'midnightblue') +
scale_x_continuous(labels = scales::percent_format()) +
labs( x ='% of student population who identifies as any minority')
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
The median proportion of minority students for this dataset is 30%
Let’s build a dataset for modeling, joining the two dataframes we have. Let’s also move from individual states in the US to US regions, as found in state.region
university_df <- diversity_school %>%
filter(category == 'Total Minority') %>%
mutate( TotalMinority = enrollment/ total_enrollment) %>%
transmute(
diversity = case_when(
TotalMinority > 0.3 ~ 'high',
TRUE ~ 'low'
),
name, state, total_enrollment
) %>%
inner_join(tuition_cost %>%
select(
name, type, degree_length, in_state_tuition:out_of_state_total
)) %>%
left_join(tibble(state = state.name, region = state.region)) %>%
select(-state, -name) %>%
mutate_if(is.character, factor)
## Joining, by = "name"
## Joining, by = "state"
skimr:: skim(university_df)
| Name | university_df |
| Number of rows | 2159 |
| Number of columns | 9 |
| _______________________ | |
| Column type frequency: | |
| factor | 4 |
| numeric | 5 |
| ________________________ | |
| Group variables | None |
Variable type: factor
| skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
|---|---|---|---|---|---|
| diversity | 0 | 1 | FALSE | 2 | low: 1241, hig: 918 |
| type | 0 | 1 | FALSE | 3 | Pub: 1145, Pri: 955, For: 59 |
| degree_length | 0 | 1 | FALSE | 2 | 4 Y: 1296, 2 Y: 863 |
| region | 0 | 1 | FALSE | 4 | Sou: 774, Nor: 543, Nor: 443, Wes: 399 |
Variable type: numeric
| skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
|---|---|---|---|---|---|---|---|---|---|---|
| total_enrollment | 0 | 1 | 6183.76 | 8263.64 | 15 | 1352 | 3133 | 7644.5 | 81459 | ▇▁▁▁▁ |
| in_state_tuition | 0 | 1 | 17044.02 | 15460.76 | 480 | 4695 | 10161 | 28780.0 | 59985 | ▇▂▂▁▁ |
| in_state_total | 0 | 1 | 23544.64 | 19782.17 | 962 | 5552 | 17749 | 38519.0 | 75003 | ▇▅▂▂▁ |
| out_of_state_tuition | 0 | 1 | 20797.98 | 13725.29 | 480 | 9298 | 17045 | 29865.0 | 59985 | ▇▆▅▂▁ |
| out_of_state_total | 0 | 1 | 27298.60 | 18220.62 | 1376 | 11018 | 23036 | 40154.0 | 75003 | ▇▅▅▂▁ |
How are some of these quantities related to the proportion of minority students at a college?
university_df %>%
ggplot(aes( x = type, y = in_state_tuition, fill = diversity)) +
geom_boxplot(alpha = 0.8) +
scale_y_continuous(labels = scales::dollar_format()) + labs(x = NULL, y = 'In-State Tuition', fill = 'Diversity')
Now it is time for modeling! First, we split our data into training and testing sets. Then, we build a recipe for data preprocessing.
recipe() what our model is going to be (using a formula here) and what our training data isprep() and recipe(). This means we actually do something with the steps and our training data, we estimate the required parameters from uni_train to implement these steps so this whole sequence can be applied later to another dataset.library(tidymodels)
set.seed(1234)
uni_split <- initial_split(university_df, strata = diversity)
uni_train <- training(uni_split)
uni_test <- testing(uni_split)
uni_rec<- recipe( diversity ~., data = uni_train) %>%
step_corr(all_numeric()) %>%
step_dummy(all_nominal(), - all_outcomes()) %>%
step_zv(all_numeric()) %>%
step_normalize(all_numeric())
uni_prep <- uni_rec %>%
prep()
uni_prep
## Data Recipe
##
## Inputs:
##
## role #variables
## outcome 1
## predictor 8
##
## Training data contained 1620 data points and no missing data.
##
## Operations:
##
## Correlation filter removed in_state_tuition, ... [trained]
## Dummy variables from type, degree_length, region [trained]
## Zero variance filter removed no terms [trained]
## Centering and scaling for total_enrollment, ... [trained]
Now it’s time to specify and then fit our models. Here, we specify and fit three models:
Check out what data we are training these models on: juice(uni_rec). The recipe contains all our tranformations for data preprocessing and feature engineering, as well as the data these transformations were estimated from. When we juice() the recipe, we squeeze that training data back out, transformed in all the ways we specified
uni_juiced <- juice(uni_prep)
glm_spec <- logistic_reg() %>%
set_engine('glm')
glm_fit <- glm_spec %>%
fit(diversity ~., data = uni_juiced)
glm_fit
## parsnip model object
##
## Fit time: 0ms
##
## Call: stats::glm(formula = diversity ~ ., family = stats::binomial,
## data = data)
##
## Coefficients:
## (Intercept) total_enrollment out_of_state_total
## 0.3704 -0.4581 0.5074
## type_Private type_Public degree_length_X4.Year
## -0.1656 0.2058 0.2082
## region_South region_North.Central region_West
## -0.5175 0.3004 -0.5363
##
## Degrees of Freedom: 1619 Total (i.e. Null); 1611 Residual
## Null Deviance: 2210
## Residual Deviance: 1859 AIC: 1877
knn_spec <- nearest_neighbor() %>%
set_engine('kknn') %>%
set_mode('classification')
knn_fit <- knn_spec %>%
fit(diversity ~ ., data =uni_juiced)
knn_fit
## parsnip model object
##
## Fit time: 91ms
##
## Call:
## kknn::train.kknn(formula = diversity ~ ., data = data, ks = 5)
##
## Type of response variable: nominal
## Minimal misclassification: 0.3277778
## Best kernel: optimal
## Best k: 5
tree_spec <- decision_tree() %>%
set_engine('rpart') %>%
set_mode('classification')
tree_fit <- tree_spec %>% fit(diversity ~., data = uni_juiced)
tree_fit <- tree_spec %>% fit(diversity ~., data = uni_juiced)
tree_fit
## parsnip model object
##
## Fit time: 31ms
## n= 1620
##
## node), split, n, loss, yval, (yprob)
## * denotes terminal node
##
## 1) root 1620 689 low (0.4253086 0.5746914)
## 2) region_North.Central< 0.5346496 1192 586 high (0.5083893 0.4916107)
## 4) out_of_state_total< -0.7087237 418 130 high (0.6889952 0.3110048) *
## 5) out_of_state_total>=-0.7087237 774 318 low (0.4108527 0.5891473)
## 10) out_of_state_total< 0.35164 362 180 low (0.4972376 0.5027624)
## 20) region_South>=0.3002561 212 86 high (0.5943396 0.4056604)
## 40) degree_length_X4.Year>=-0.2001293 172 62 high (0.6395349 0.3604651) *
## 41) degree_length_X4.Year< -0.2001293 40 16 low (0.4000000 0.6000000) *
## 21) region_South< 0.3002561 150 54 low (0.3600000 0.6400000)
## 42) region_West>=0.8128302 64 28 high (0.5625000 0.4375000) *
## 43) region_West< 0.8128302 86 18 low (0.2093023 0.7906977) *
## 11) out_of_state_total>=0.35164 412 138 low (0.3349515 0.6650485)
## 22) region_West>=0.8128302 88 38 high (0.5681818 0.4318182)
## 44) out_of_state_total>=1.547681 30 5 high (0.8333333 0.1666667) *
## 45) out_of_state_total< 1.547681 58 25 low (0.4310345 0.5689655) *
## 23) region_West< 0.8128302 324 88 low (0.2716049 0.7283951) *
## 3) region_North.Central>=0.5346496 428 83 low (0.1939252 0.8060748)
## 6) out_of_state_total< -1.19287 17 5 high (0.7058824 0.2941176) *
## 7) out_of_state_total>=-1.19287 411 71 low (0.1727494 0.8272506) *
Models!
Well, we fit models, but how dow we evaluate them? We can use resampling to compute performance metrics across some set of resamples, like the cross-validation splits we create here. The function fit_resamples() fits a model such as flm_spec to the analysis subset of each resample and evaluates on the heldout bit (the assessment subset) from each resample. We can use metrics = metric_set() to specify which metrics we want to compute if we don’t want to only use the default ones; here let’s check out sensitivity and specificity.
Originally in the video, I set up the resampled folds like this:
set.seed(123)
folds <- vfold_cv(uni_juiced, strata = diversity)
But some helpful folks pointed out that this can result in overly optimistic results from resampling (i.e data leakage) because of some recipe steps. It’s better to resample the original training data
set.seed(123)
folds <- vfold_cv(uni_train, strata = diversity)
After we have these folds, we can use fit_resamples() with the recipe to estimate model metrics
set.seed(234)
glm_rs <- glm_spec %>%
fit_resamples(
uni_rec,
folds,
metrics = metric_set(roc_auc, sens, spec),
control = control_resamples(save_pred = TRUE)
)
set.seed(234)
knn_rs <- knn_spec %>%
fit_resamples(
uni_rec,
folds,
metrics = metric_set(roc_auc, sens, spec),
control = control_resamples(save_pred = TRUE)
)
set.seed(234)
tree_rs <- tree_spec %>%
fit_resamples(
uni_rec,
folds,
metrics = metric_set(roc_auc, sens, spec),
control = control_resamples(save_pred = TRUE)
)
We can use collect_metrics() to see the summarized performance metrics for each set of resamples
glm_rs %>%
collect_metrics()
## # A tibble: 3 x 5
## .metric .estimator mean n std_err
## <chr> <chr> <dbl> <int> <dbl>
## 1 roc_auc binary 0.758 10 0.00891
## 2 sens binary 0.617 10 0.0179
## 3 spec binary 0.737 10 0.00677
knn_rs %>%
collect_metrics()
## # A tibble: 3 x 5
## .metric .estimator mean n std_err
## <chr> <chr> <dbl> <int> <dbl>
## 1 roc_auc binary 0.728 10 0.00652
## 2 sens binary 0.595 10 0.00978
## 3 spec binary 0.733 10 0.0121
tree_rs %>%
collect_metrics()
## # A tibble: 3 x 5
## .metric .estimator mean n std_err
## <chr> <chr> <dbl> <int> <dbl>
## 1 roc_auc binary 0.723 10 0.00578
## 2 sens binary 0.642 10 0.0182
## 3 spec binary 0.745 10 0.00941
In realistic situations, we often care more about one of sensitivity or specificity than overall accuracy
What does the ROC curve look like for these models?
glm_rs %>%
unnest(.predictions) %>%
mutate(model = 'glm') %>%
bind_rows(knn_rs %>%
unnest(.predictions)%>% mutate (model = 'knn')) %>%
bind_rows(tree_rs %>% unnest(.predictions) %>% mutate(model = 'rpart')) %>%
group_by(model) %>%
roc_curve(diversity, .pred_high) %>%
ggplot(aes(x = 1- specificity, y =sensitivity, color = model)) + geom_line(size = 1.5) +
geom_abline(
lty =2, alpha = 0.5, color = 'gray50', size = 1.2
)