Chapter 08 (page 332): 3, 8, 9

Consider the Gini index, classification error, and entropy in a simple classification setting with two classes. Create a single plot that displays each of these quantities as a function of ˆpm1. The x axis should display ˆpm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy. Hint: In a setting with two classes, ˆpm1 = 1− ˆpm2. You could make this plot by hand, but it will be much easier to make in R.

p = seq(0, 1, 0.01)
Gini = 2 * p * (1 - p)
class.err = 1 - pmax(p, 1 - p)
entropy = -(p * log(p) + (1 - p) * log(1 - p))
matplot(p, cbind(Gini, class.err, entropy), col = c("red", "green", "blue"))

In the lab, a classification tree was applied to the Carseats data set after converting Sales into a qualitative response variable. Now we will seek to predict Sales using regression trees and related approaches, treating the response as a quantitative variable.

  1. Split the data set into a training set and a test set.
library(ISLR)
## Warning: package 'ISLR' was built under R version 3.6.3
data("Carseats")
train = sample(dim(Carseats)[1], dim(Carseats)[1]/2)
traincar = Carseats[train, ]
testcar = Carseats[-train, ]
  1. Fit a regression tree to the training set. Plot the tree, and interpret the results. What test MSE do you obtain?

MSe: 1.766985

library(tree)
## Warning: package 'tree' was built under R version 3.6.3
car.tree = tree(Sales ~ ., data = traincar)
summary(car.tree)
## 
## Regression tree:
## tree(formula = Sales ~ ., data = traincar)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "Age"         "Income"      "Population" 
## [6] "Advertising" "CompPrice"  
## Number of terminal nodes:  16 
## Residual mean deviance:  2.36 = 434.3 / 184 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -4.84200 -0.88490  0.03929  0.00000  1.11400  3.94300
plot(car.tree)
text(car.tree, pretty = 0)

car.pred <- predict(car.tree, traincar)
mean((car.pred - traincar$Sales)^2)
## [1] 2.171461
  1. Use cross-validation in order to determine the optimal level of tree complexity. Does pruning the tree improve the test MSE?

Yes, the MSE has improved to 5.381467

set.seed(1)
cv.car = cv.tree(car.tree)
par(mfrow = c(1, 2))
plot(cv.car$size, cv.car$dev, type = "b")
plot(cv.car$k, cv.car$dev, type = "b")

library(tree)
prune.car <- prune.tree(car.tree, best = 11)

plot(prune.car)
text(prune.car, pretty = 0)

prune.pred = predict(prune.car, testcar)
mean((testcar$Sales - prune.pred)^2)
## [1] 4.9178
  1. Use the bagging approach in order to analyze this data. Whattest MSE do you obtain? Use the importance() function to determine which variables are most important.

The MSE is lower at 3.080276. Price and ShelveLoc are the most important variables.

library(randomForest)
## Warning: package 'randomForest' was built under R version 3.6.3
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
set.seed(1)
bag.car = randomForest(Sales ~ ., data = traincar, mtry = 10, importance = TRUE)
bag.car
## 
## Call:
##  randomForest(formula = Sales ~ ., data = traincar, mtry = 10,      importance = TRUE) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 10
## 
##           Mean of squared residuals: 2.687721
##                     % Var explained: 68.81
bag.predict = predict(bag.car, newdata = testcar)
mean((bag.predict - testcar$Sales)^2)
## [1] 2.407913
importance(bag.car)
##                %IncMSE IncNodePurity
## CompPrice   23.5369516    157.087753
## Income       6.7126892     77.661018
## Advertising 18.3777112    138.771448
## Population   1.1615591     53.900099
## Price       55.0070628    529.010544
## ShelveLoc   55.2464535    470.325180
## Age         19.7020453    181.323744
## Education    1.6094616     42.338034
## Urban        0.9951195      9.188756
## US           2.2685034      9.481156
  1. Use random forests to analyze this data. What test MSE do you obtain? Use the importance() function to determine which variables are most important. Describe the effect of m, the number of variables considered at each split, on the error rate obtained.

The MSE is even lower at 2.971218. Price and ShelveLoc are the most important variables.

set.seed(1)
rf.car = randomForest(Sales ~ ., data = traincar, mtry =5, importance = TRUE)
bag.car
## 
## Call:
##  randomForest(formula = Sales ~ ., data = traincar, mtry = 10,      importance = TRUE) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 10
## 
##           Mean of squared residuals: 2.687721
##                     % Var explained: 68.81
rf.predict = predict(rf.car, newdata = testcar)
mean((rf.predict - testcar$Sales)^2)
## [1] 2.54431
importance(rf.car)
##                %IncMSE IncNodePurity
## CompPrice   15.9608098     145.37607
## Income       4.8632695      99.63118
## Advertising 16.7668132     146.49785
## Population   1.8207667      83.73252
## Price       40.6098614     454.00011
## ShelveLoc   47.3691355     420.61094
## Age         20.2536012     219.09658
## Education   -0.0273898      57.01777
## Urban       -1.4761741      12.22659
## US           2.9978563      19.89020
  1. This problem involves the OJ data set which is part of the ISLR package.
library(ISLR)
data(OJ)
  1. Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.
set.seed(1)

train = sample(dim(OJ)[1], 800)
oj.train = OJ[train, ]
oj.test = OJ[-train, ]
  1. Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?

The error rate .1588, and there are 9 terminal nodes

oj.tree = tree(Purchase ~ ., data = oj.train)
summary(oj.tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = oj.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "SpecialCH"     "ListPriceDiff"
## [5] "PctDiscMM"    
## Number of terminal nodes:  9 
## Residual mean deviance:  0.7432 = 587.8 / 791 
## Misclassification error rate: 0.1588 = 127 / 800
  1. Type in the name of the tree object in order to get a detail et text output. Pick one of the terminal nodes, and interpret the information displayed.

Node 20 denoted by the * tells us that this is a terminal node. The split criterion isSpecialCH < 0.5

oj.tree
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1073.00 CH ( 0.60625 0.39375 )  
##    2) LoyalCH < 0.5036 365  441.60 MM ( 0.29315 0.70685 )  
##      4) LoyalCH < 0.280875 177  140.50 MM ( 0.13559 0.86441 )  
##        8) LoyalCH < 0.0356415 59   10.14 MM ( 0.01695 0.98305 ) *
##        9) LoyalCH > 0.0356415 118  116.40 MM ( 0.19492 0.80508 ) *
##      5) LoyalCH > 0.280875 188  258.00 MM ( 0.44149 0.55851 )  
##       10) PriceDiff < 0.05 79   84.79 MM ( 0.22785 0.77215 )  
##         20) SpecialCH < 0.5 64   51.98 MM ( 0.14062 0.85938 ) *
##         21) SpecialCH > 0.5 15   20.19 CH ( 0.60000 0.40000 ) *
##       11) PriceDiff > 0.05 109  147.00 CH ( 0.59633 0.40367 ) *
##    3) LoyalCH > 0.5036 435  337.90 CH ( 0.86897 0.13103 )  
##      6) LoyalCH < 0.764572 174  201.00 CH ( 0.73563 0.26437 )  
##       12) ListPriceDiff < 0.235 72   99.81 MM ( 0.50000 0.50000 )  
##         24) PctDiscMM < 0.196197 55   73.14 CH ( 0.61818 0.38182 ) *
##         25) PctDiscMM > 0.196197 17   12.32 MM ( 0.11765 0.88235 ) *
##       13) ListPriceDiff > 0.235 102   65.43 CH ( 0.90196 0.09804 ) *
##      7) LoyalCH > 0.764572 261   91.20 CH ( 0.95785 0.04215 ) *
  1. Create a plot of the tree, and interpret the results.

Loyal CH is the most important variable of the tree. If LoyalCH<0.28, the tree predicts MM. If LoyalCH>0.76, the tree predicts CH.

plot(oj.tree)
text(oj.tree, pretty = 0)

  1. Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?
pred.oj = predict(oj.tree, oj.test, type = "class")
table(oj.test$Purchase, pred.oj)
##     pred.oj
##       CH  MM
##   CH 160   8
##   MM  38  64
pred.unprune = predict(oj.tree, oj.test, type = "class")
misclass.unprune = sum(oj.test$Purchase !=pred.unprune)

misclass.unprune/length(pred.unprune)
## [1] 0.1703704
  1. Apply the cv.tree() function to the training set in order to determine the optimal tree size.
oj.cv = cv.tree(oj.tree, FUN = prune.tree)
oj.cv
## $size
## [1] 9 8 7 6 5 4 3 2 1
## 
## $dev
## [1]  685.6493  698.8799  702.8083  702.8083  714.1093  725.4734  780.2099
## [8]  790.0301 1074.2062
## 
## $k
## [1]      -Inf  12.62207  13.94616  14.35384  26.21539  35.74964  43.07317
## [8]  45.67120 293.15784
## 
## $method
## [1] "deviance"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"
  1. Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.
plot(oj.cv$size, oj.cv$dev, type = "b", xlab = "Tree size", ylab = "Deviance")

  1. Which tree size corresponds to the lowest cross-validated classification error rate?

Size of 6th gives lowest cross-validation error.

  1. Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.
oj.prune = prune.tree(oj.tree, best = 6)
  1. Compare the training error rates between the pruned and unpruned trees. Which is higher?
summary(oj.prune)
## 
## Classification tree:
## snip.tree(tree = oj.tree, nodes = c(10L, 4L, 12L))
## Variables actually used in tree construction:
## [1] "LoyalCH"       "PriceDiff"     "ListPriceDiff"
## Number of terminal nodes:  6 
## Residual mean deviance:  0.7919 = 628.8 / 794 
## Misclassification error rate: 0.1788 = 143 / 800
  1. Compare the test error rates between the pruned and unpruned trees. Which is higher?

pruned is higher.

pred.prune = predict(oj.prune, oj.test, type = "class")
misclass.prune = sum(oj.test$Purchase != pred.prune)
misclass.prune/length(pred.prune)
## [1] 0.1851852