KNN

Column

Iris


Dataset Random


Summary

[1] 0.00 0.25 0.50 0.75 1.00

Tables


Grafico


Column

Wine


Corrplot


Normalizado


Summary


  high    low medium 
  21.6    3.7   74.6 
wine_train_labels
  high    low medium 
   796    144   2733 

 
   Cell Contents
|-------------------------|
|                       N |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  1225 

 
                 | wine_test_pred 
wine_test_labels |    medium | Row Total | 
-----------------|-----------|-----------|
            high |       264 |       264 | 
                 |     0.216 |           | 
-----------------|-----------|-----------|
             low |        39 |        39 | 
                 |     0.032 |           | 
-----------------|-----------|-----------|
          medium |       922 |       922 | 
                 |     0.753 |           | 
-----------------|-----------|-----------|
    Column Total |      1225 |      1225 | 
-----------------|-----------|-----------|

 

Random Forest

Column

Iris


Grafico


Resultados


Column

Wine


Prediccion


Matriz de Confusion1

Confusion Matrix and Statistics

          Reference
Prediction   3   4   5   6   7   8   9
         3   0   0   0   0   0   0   0
         4   0   0   0   0   0   0   0
         5   1  16 167  77   5   0   0
         6   3  15 123 336 141  28   1
         7   0   1   1  26  30   7   0
         8   0   0   0   0   0   0   0
         9   0   0   0   0   0   0   0

Overall Statistics
                                          
               Accuracy : 0.545           
                 95% CI : (0.5132, 0.5765)
    No Information Rate : 0.4489          
    P-Value [Acc > NIR] : 1.044e-09       
                                          
                  Kappa : 0.2543          
                                          
 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: 3 Class: 4 Class: 5 Class: 6 Class: 7 Class: 8
Sensitivity           0.00000  0.00000   0.5739   0.7654  0.17045  0.00000
Specificity           1.00000  1.00000   0.8559   0.4230  0.95636  1.00000
Pos Pred Value            NaN      NaN   0.6278   0.5193  0.46154      NaN
Neg Pred Value        0.99591  0.96728   0.8258   0.6888  0.84009  0.96421
Prevalence            0.00409  0.03272   0.2975   0.4489  0.17996  0.03579
Detection Rate        0.00000  0.00000   0.1708   0.3436  0.03067  0.00000
Detection Prevalence  0.00000  0.00000   0.2720   0.6616  0.06646  0.00000
Balanced Accuracy     0.50000  0.50000   0.7149   0.5942  0.56341  0.50000
                     Class: 9
Sensitivity          0.000000
Specificity          1.000000
Pos Pred Value            NaN
Neg Pred Value       0.998978
Prevalence           0.001022
Detection Rate       0.000000
Detection Prevalence 0.000000
Balanced Accuracy    0.500000

Grafico


Matriz de Confusion Resultado

Confusion Matrix and Statistics

          Reference
Prediction   3   4   5   6   7   8   9
         3   0   0   0   0   0   0   0
         4   0   9   3   0   0   0   0
         5   1  12 210  59   9   0   0
         6   3  11  77 352  72  13   1
         7   0   0   1  28  95  11   0
         8   0   0   0   0   0  11   0
         9   0   0   0   0   0   0   0

Overall Statistics
                                          
               Accuracy : 0.6922          
                 95% CI : (0.6622, 0.7211)
    No Information Rate : 0.4489          
    P-Value [Acc > NIR] : < 2.2e-16       
                                          
                  Kappa : 0.5214          
                                          
 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: 3 Class: 4 Class: 5 Class: 6 Class: 7 Class: 8
Sensitivity           0.00000 0.281250   0.7216   0.8018  0.53977  0.31429
Specificity           1.00000 0.996829   0.8821   0.6716  0.95012  1.00000
Pos Pred Value            NaN 0.750000   0.7216   0.6654  0.70370  1.00000
Neg Pred Value        0.99591 0.976190   0.8821   0.8062  0.90391  0.97518
Prevalence            0.00409 0.032720   0.2975   0.4489  0.17996  0.03579
Detection Rate        0.00000 0.009202   0.2147   0.3599  0.09714  0.01125
Detection Prevalence  0.00000 0.012270   0.2975   0.5409  0.13804  0.01125
Balanced Accuracy     0.50000 0.639039   0.8019   0.7367  0.74495  0.65714
                     Class: 9
Sensitivity          0.000000
Specificity          1.000000
Pos Pred Value            NaN
Neg Pred Value       0.998978
Prevalence           0.001022
Detection Rate       0.000000
Detection Prevalence 0.000000
Balanced Accuracy    0.500000

Naive Bayes

Column

Iris


Modelo

Naive Bayes 

150 samples
  4 predictor
  3 classes: 'setosa', 'versicolor', 'virginica' 

No pre-processing
Resampling: Cross-Validated (10 fold) 
Summary of sample sizes: 135, 135, 135, 135, 135, 135, ... 
Resampling results across tuning parameters:

  usekernel  Accuracy   Kappa
  FALSE      0.9533333  0.93 
   TRUE      0.9533333  0.93 

Tuning parameter 'fL' was held constant at a value of 0
Tuning
 parameter 'adjust' was held constant at a value of 1
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were fL = 0, usekernel = FALSE and adjust
 = 1.

Prediccion

$class
  [1] setosa     setosa     setosa     setosa     setosa     setosa    
  [7] setosa     setosa     setosa     setosa     setosa     setosa    
 [13] setosa     setosa     setosa     setosa     setosa     setosa    
 [19] setosa     setosa     setosa     setosa     setosa     setosa    
 [25] setosa     setosa     setosa     setosa     setosa     setosa    
 [31] setosa     setosa     setosa     setosa     setosa     setosa    
 [37] setosa     setosa     setosa     setosa     setosa     setosa    
 [43] setosa     setosa     setosa     setosa     setosa     setosa    
 [49] setosa     setosa     versicolor versicolor virginica  versicolor
 [55] versicolor versicolor versicolor versicolor versicolor versicolor
 [61] versicolor versicolor versicolor versicolor versicolor versicolor
 [67] versicolor versicolor versicolor versicolor virginica  versicolor
 [73] versicolor versicolor versicolor versicolor versicolor virginica 
 [79] versicolor versicolor versicolor versicolor versicolor versicolor
 [85] versicolor versicolor versicolor versicolor versicolor versicolor
 [91] versicolor versicolor versicolor versicolor versicolor versicolor
 [97] versicolor versicolor versicolor versicolor virginica  virginica 
[103] virginica  virginica  virginica  virginica  versicolor virginica 
[109] virginica  virginica  virginica  virginica  virginica  virginica 
[115] virginica  virginica  virginica  virginica  virginica  versicolor
[121] virginica  virginica  virginica  virginica  virginica  virginica 
[127] virginica  virginica  virginica  virginica  virginica  virginica 
[133] virginica  versicolor virginica  virginica  virginica  virginica 
[139] virginica  virginica  virginica  virginica  virginica  virginica 
[145] virginica  virginica  virginica  virginica  virginica  virginica 
Levels: setosa versicolor virginica

$posterior
              setosa   versicolor    virginica
  [1,]  1.000000e+00 2.981309e-18 2.152373e-25
  [2,]  1.000000e+00 3.169312e-17 6.938030e-25
  [3,]  1.000000e+00 2.367113e-18 7.240956e-26
  [4,]  1.000000e+00 3.069606e-17 8.690636e-25
  [5,]  1.000000e+00 1.017337e-18 8.885794e-26
  [6,]  1.000000e+00 2.717732e-14 4.344285e-21
  [7,]  1.000000e+00 2.321639e-17 7.988271e-25
  [8,]  1.000000e+00 1.390751e-17 8.166995e-25
  [9,]  1.000000e+00 1.990156e-17 3.606469e-25
 [10,]  1.000000e+00 7.378931e-18 3.615492e-25
 [11,]  1.000000e+00 9.396089e-18 1.474623e-24
 [12,]  1.000000e+00 3.461964e-17 2.093627e-24
 [13,]  1.000000e+00 2.804520e-18 1.010192e-25
 [14,]  1.000000e+00 1.799033e-19 6.060578e-27
 [15,]  1.000000e+00 5.533879e-19 2.485033e-25
 [16,]  1.000000e+00 6.273863e-17 4.509864e-23
 [17,]  1.000000e+00 1.106658e-16 1.282419e-23
 [18,]  1.000000e+00 4.841773e-17 2.350011e-24
 [19,]  1.000000e+00 1.126175e-14 2.567180e-21
 [20,]  1.000000e+00 1.808513e-17 1.963924e-24
 [21,]  1.000000e+00 2.178382e-15 2.013989e-22
 [22,]  1.000000e+00 1.210057e-15 7.788592e-23
 [23,]  1.000000e+00 4.535220e-20 3.130074e-27
 [24,]  1.000000e+00 3.147327e-11 8.175305e-19
 [25,]  1.000000e+00 1.838507e-14 1.553757e-21
 [26,]  1.000000e+00 6.873990e-16 1.830374e-23
 [27,]  1.000000e+00 3.192598e-14 1.045146e-21
 [28,]  1.000000e+00 1.542562e-17 1.274394e-24
 [29,]  1.000000e+00 8.833285e-18 5.368077e-25
 [30,]  1.000000e+00 9.557935e-17 3.652571e-24
 [31,]  1.000000e+00 2.166837e-16 6.730536e-24
 [32,]  1.000000e+00 3.940500e-14 1.546678e-21
 [33,]  1.000000e+00 1.609092e-20 1.013278e-26
 [34,]  1.000000e+00 7.222217e-20 4.261853e-26
 [35,]  1.000000e+00 6.289348e-17 1.831694e-24
 [36,]  1.000000e+00 2.850926e-18 8.874002e-26
 [37,]  1.000000e+00 7.746279e-18 7.235628e-25
 [38,]  1.000000e+00 8.623934e-20 1.223633e-26
 [39,]  1.000000e+00 4.612936e-18 9.655450e-26
 [40,]  1.000000e+00 2.009325e-17 1.237755e-24
 [41,]  1.000000e+00 1.300634e-17 5.657689e-25
 [42,]  1.000000e+00 1.577617e-15 5.717219e-24
 [43,]  1.000000e+00 1.494911e-18 4.800333e-26
 [44,]  1.000000e+00 1.076475e-10 3.721344e-18
 [45,]  1.000000e+00 1.357569e-12 1.708326e-19
 [46,]  1.000000e+00 3.882113e-16 5.587814e-24
 [47,]  1.000000e+00 5.086735e-18 8.960156e-25
 [48,]  1.000000e+00 5.012793e-18 1.636566e-25
 [49,]  1.000000e+00 5.717245e-18 8.231337e-25
 [50,]  1.000000e+00 7.713456e-18 3.349997e-25
 [51,] 4.893048e-107 8.018653e-01 1.981347e-01
 [52,] 7.920550e-100 9.429283e-01 5.707168e-02
 [53,] 5.494369e-121 4.606254e-01 5.393746e-01
 [54,]  1.129435e-69 9.999621e-01 3.789964e-05
 [55,] 1.473329e-105 9.503408e-01 4.965916e-02
 [56,]  1.931184e-89 9.990013e-01 9.986538e-04
 [57,] 4.539099e-113 6.592515e-01 3.407485e-01
 [58,]  2.549753e-34 9.999997e-01 3.119517e-07
 [59,]  6.562814e-97 9.895385e-01 1.046153e-02
 [60,]  5.000210e-69 9.998928e-01 1.071638e-04
 [61,]  7.354548e-41 9.999997e-01 3.143915e-07
 [62,]  4.799134e-86 9.958564e-01 4.143617e-03
 [63,]  4.631287e-60 9.999925e-01 7.541274e-06
 [64,] 1.052252e-103 9.850868e-01 1.491324e-02
 [65,]  4.789799e-55 9.999700e-01 2.999393e-05
 [66,]  1.514706e-92 9.787587e-01 2.124125e-02
 [67,]  1.338348e-97 9.899311e-01 1.006893e-02
 [68,]  2.026115e-62 9.999799e-01 2.007314e-05
 [69,] 6.547473e-101 9.941996e-01 5.800427e-03
 [70,]  3.016276e-58 9.999913e-01 8.739959e-06
 [71,] 1.053341e-127 1.609361e-01 8.390639e-01
 [72,]  1.248202e-70 9.997743e-01 2.256698e-04
 [73,] 3.294753e-119 9.245812e-01 7.541876e-02
 [74,]  1.314175e-95 9.979398e-01 2.060233e-03
 [75,]  3.003117e-83 9.982736e-01 1.726437e-03
 [76,]  2.536747e-92 9.865372e-01 1.346281e-02
 [77,] 1.558909e-111 9.102260e-01 8.977398e-02
 [78,] 7.014282e-136 7.989607e-02 9.201039e-01
 [79,]  5.034528e-99 9.854957e-01 1.450433e-02
 [80,]  1.439052e-41 9.999984e-01 1.601574e-06
 [81,]  1.251567e-54 9.999955e-01 4.500139e-06
 [82,]  8.769539e-48 9.999983e-01 1.742560e-06
 [83,]  3.447181e-62 9.999664e-01 3.361987e-05
 [84,] 1.087302e-132 6.134355e-01 3.865645e-01
 [85,]  4.119852e-97 9.918297e-01 8.170260e-03
 [86,] 1.140835e-102 8.734107e-01 1.265893e-01
 [87,] 2.247339e-110 7.971795e-01 2.028205e-01
 [88,]  4.870630e-88 9.992978e-01 7.022084e-04
 [89,]  2.028672e-72 9.997620e-01 2.379898e-04
 [90,]  2.227900e-69 9.999461e-01 5.390514e-05
 [91,]  5.110709e-81 9.998510e-01 1.489819e-04
 [92,]  5.774841e-99 9.885399e-01 1.146006e-02
 [93,]  5.146736e-66 9.999591e-01 4.089540e-05
 [94,]  1.332816e-34 9.999997e-01 2.716264e-07
 [95,]  6.094144e-77 9.998034e-01 1.966331e-04
 [96,]  1.424276e-72 9.998236e-01 1.764463e-04
 [97,]  8.302641e-77 9.996692e-01 3.307548e-04
 [98,]  1.835520e-82 9.988601e-01 1.139915e-03
 [99,]  5.710350e-30 9.999997e-01 3.094739e-07
[100,]  3.996459e-73 9.998204e-01 1.795726e-04
[101,] 3.993755e-249 1.031032e-10 1.000000e+00
[102,] 1.228659e-149 2.724406e-02 9.727559e-01
[103,] 2.460661e-216 2.327488e-07 9.999998e-01
[104,] 2.864831e-173 2.290954e-03 9.977090e-01
[105,] 8.299884e-214 3.175384e-07 9.999997e-01
[106,] 1.371182e-267 3.807455e-10 1.000000e+00
[107,] 3.444090e-107 9.719885e-01 2.801154e-02
[108,] 3.741929e-224 1.782047e-06 9.999982e-01
[109,] 5.564644e-188 5.823191e-04 9.994177e-01
[110,] 2.052443e-260 2.461662e-12 1.000000e+00
[111,] 8.669405e-159 4.895235e-04 9.995105e-01
[112,] 4.220200e-163 3.168643e-03 9.968314e-01
[113,] 4.360059e-190 6.230821e-06 9.999938e-01
[114,] 6.142256e-151 1.423414e-02 9.857659e-01
[115,] 2.201426e-186 1.393247e-06 9.999986e-01
[116,] 2.949945e-191 6.128385e-07 9.999994e-01
[117,] 2.909076e-168 2.152843e-03 9.978472e-01
[118,] 1.347608e-281 2.872996e-12 1.000000e+00
[119,] 2.786402e-306 1.151469e-12 1.000000e+00
[120,] 2.082510e-123 9.561626e-01 4.383739e-02
[121,] 2.194169e-217 1.712166e-08 1.000000e+00
[122,] 3.325791e-145 1.518718e-02 9.848128e-01
[123,] 6.251357e-269 1.170872e-09 1.000000e+00
[124,] 4.415135e-135 1.360432e-01 8.639568e-01
[125,] 6.315716e-201 1.300512e-06 9.999987e-01
[126,] 5.257347e-203 9.507989e-06 9.999905e-01
[127,] 1.476391e-129 2.067703e-01 7.932297e-01
[128,] 8.772841e-134 1.130589e-01 8.869411e-01
[129,] 5.230800e-194 1.395719e-05 9.999860e-01
[130,] 7.014892e-179 8.232518e-04 9.991767e-01
[131,] 6.306820e-218 1.214497e-06 9.999988e-01
[132,] 2.539020e-247 4.668891e-10 1.000000e+00
[133,] 2.210812e-201 2.000316e-06 9.999980e-01
[134,] 1.128613e-128 7.118948e-01 2.881052e-01
[135,] 8.114869e-151 4.900992e-01 5.099008e-01
[136,] 7.419068e-249 1.448050e-10 1.000000e+00
[137,] 1.004503e-215 9.743357e-09 1.000000e+00
[138,] 1.346716e-167 2.186989e-03 9.978130e-01
[139,] 1.994716e-128 1.999894e-01 8.000106e-01
[140,] 8.440466e-185 6.769126e-06 9.999932e-01
[141,] 2.334365e-218 7.456220e-09 1.000000e+00
[142,] 2.179139e-183 6.352663e-07 9.999994e-01
[143,] 1.228659e-149 2.724406e-02 9.727559e-01
[144,] 3.426814e-229 6.597015e-09 1.000000e+00
[145,] 2.011574e-232 2.620636e-10 1.000000e+00
[146,] 1.078519e-187 7.915543e-07 9.999992e-01
[147,] 1.061392e-146 2.770575e-02 9.722942e-01
[148,] 1.846900e-164 4.398402e-04 9.995602e-01
[149,] 1.439996e-195 3.384156e-07 9.999997e-01
[150,] 2.771480e-143 5.987903e-02 9.401210e-01
            y
             setosa versicolor virginica
  setosa         50          0         0
  versicolor      0         47         3
  virginica       0          3        47

Column

Wine


Modelo

  fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
1           7.0             0.27        0.36           20.7     0.045
2           6.3             0.30        0.34            1.6     0.049
3           8.1             0.28        0.40            6.9     0.050
4           7.2             0.23        0.32            8.5     0.058
5           7.2             0.23        0.32            8.5     0.058
6           8.1             0.28        0.40            6.9     0.050
  free.sulfur.dioxide total.sulfur.dioxide density   pH sulphates alcohol
1                  45                  170  1.0010 3.00      0.45     8.8
2                  14                  132  0.9940 3.30      0.49     9.5
3                  30                   97  0.9951 3.26      0.44    10.1
4                  47                  186  0.9956 3.19      0.40     9.9
5                  47                  186  0.9956 3.19      0.40     9.9
6                  30                   97  0.9951 3.26      0.44    10.1
  quality
1       6
2       6
3       6
4       6
5       6
6       6

Regresion Logistica

Column

Iris


Names

[1] "setosa"     "versicolor" "virginica" 
[1] 0

Grafico


Summary


Call:
glm(formula = y ~ x, family = "binomial")

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-2.12681  -0.51865   0.02993   0.30652   2.25044  

Coefficients:
            Estimate Std. Error z value Pr(>|z|)    
(Intercept)  -27.500      5.934  -4.634 3.59e-06 ***
x              5.112      1.109   4.611 4.01e-06 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 110.854  on 79  degrees of freedom
Residual deviance:  48.818  on 78  degrees of freedom
AIC: 52.818

Number of Fisher Scoring iterations: 6

Prediccion

   ir_ctrl.Sepal.Length ir_ctrl.Species predicted_val
1                   5.4          setosa    0.52665832
2                   5.0          setosa    0.12584710
3                   4.8          setosa    0.04923563
4                   5.4          setosa    0.52665832
5                   5.7          setosa    0.83759291
6                   4.9          setosa    0.07948111
7                   5.5          setosa    0.64975559
8                   5.1          setosa    0.19357325
9                   4.5          setosa    0.01104861
10                  5.0          setosa    0.12584710
11                  5.3          setosa    0.40023260
12                  6.9      versicolor    0.99958015
13                  5.7      versicolor    0.83759291
14                  5.2      versicolor    0.28582944
15                  5.6      versicolor    0.75569041
16                  5.6      versicolor    0.75569041
17                  6.3      versicolor    0.99105619
18                  6.4      versicolor    0.99461661
19                  5.7      versicolor    0.83759291
20                  5.7      versicolor    0.83759291

Grafica


Column

Wine


Table


   3    4    5    6    7    8    9 
  20  163 1457 2198  880  175    5 

Grafica


Grafica


Clase

      [,1]                   [,2]    
 [1,] "fixed.acidity"        "-0.114"
 [2,] "volatile.acidity"     "-0.195"
 [3,] "citric.acid"          "-0.009"
 [4,] "residual.sugar"       "-0.098"
 [5,] "chlorides"            "-0.21" 
 [6,] "free.sulfur.dioxide"  "0.008" 
 [7,] "total.sulfur.dioxide" "-0.175"
 [8,] "density"              "-0.307"
 [9,] "pH"                   "0.099" 
[10,] "sulphates"            "0.054" 
[11,] "alcohol"              "0.436" 
[12,] "quality"              "1"     
  Var1 Freq Freq Freq
1    3   20   16    4
2    4  163  131   32
3    5 1457 1166  291
4    6 2198 1759  439
5    7  880  704  176
6    8  175  140   35
7    9    5    4    1

SVM

Column

Iris


Modelo


Call:
svm(formula = Species ~ ., data = datos.entreno)


Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  1 

Number of Support Vectors:  43

Prediccion

         1          5         11         13         16         23         24 
    setosa     setosa     setosa     setosa     setosa     setosa     setosa 
        27         29         33         35         36         40         46 
    setosa     setosa     setosa     setosa     setosa     setosa     setosa 
        47         48         49         51         53         63         67 
    setosa     setosa     setosa versicolor versicolor versicolor versicolor 
        68         69         70         71         75         76         78 
versicolor versicolor versicolor  virginica versicolor versicolor  virginica 
        82         83         87         91        102        104        107 
versicolor versicolor versicolor versicolor  virginica  virginica versicolor 
       115        119        121        123        124        126        132 
 virginica  virginica  virginica  virginica  virginica  virginica  virginica 
       134        137        141 
versicolor  virginica  virginica 
Levels: setosa versicolor virginica

Resultados

            Species
prediccion   setosa versicolor virginica
  setosa         17          0         0
  versicolor      0         13         2
  virginica       0          2        11
[1] 91.11111

Column

Wine


Corrplot


Red Neuronal

Column

Iris


Modelo

$call
neuralnet(formula = frml, data = Train, hidden = 3, threshold = 0.1, 
    algorithm = "rprop+")

$response
    setosa versicolor virginica
1     TRUE      FALSE     FALSE
2     TRUE      FALSE     FALSE
3     TRUE      FALSE     FALSE
4     TRUE      FALSE     FALSE
5     TRUE      FALSE     FALSE
6     TRUE      FALSE     FALSE
8     TRUE      FALSE     FALSE
9     TRUE      FALSE     FALSE
10    TRUE      FALSE     FALSE
11    TRUE      FALSE     FALSE
12    TRUE      FALSE     FALSE
13    TRUE      FALSE     FALSE
14    TRUE      FALSE     FALSE
16    TRUE      FALSE     FALSE
17    TRUE      FALSE     FALSE
18    TRUE      FALSE     FALSE
19    TRUE      FALSE     FALSE
21    TRUE      FALSE     FALSE
23    TRUE      FALSE     FALSE
24    TRUE      FALSE     FALSE
25    TRUE      FALSE     FALSE
26    TRUE      FALSE     FALSE
27    TRUE      FALSE     FALSE
28    TRUE      FALSE     FALSE
29    TRUE      FALSE     FALSE
30    TRUE      FALSE     FALSE
31    TRUE      FALSE     FALSE
32    TRUE      FALSE     FALSE
33    TRUE      FALSE     FALSE
34    TRUE      FALSE     FALSE
35    TRUE      FALSE     FALSE
36    TRUE      FALSE     FALSE
37    TRUE      FALSE     FALSE
39    TRUE      FALSE     FALSE
40    TRUE      FALSE     FALSE
41    TRUE      FALSE     FALSE
42    TRUE      FALSE     FALSE
44    TRUE      FALSE     FALSE
45    TRUE      FALSE     FALSE
46    TRUE      FALSE     FALSE
47    TRUE      FALSE     FALSE
48    TRUE      FALSE     FALSE
49    TRUE      FALSE     FALSE
50    TRUE      FALSE     FALSE
51   FALSE       TRUE     FALSE
52   FALSE       TRUE     FALSE
53   FALSE       TRUE     FALSE
54   FALSE       TRUE     FALSE
55   FALSE       TRUE     FALSE
56   FALSE       TRUE     FALSE
58   FALSE       TRUE     FALSE
59   FALSE       TRUE     FALSE
60   FALSE       TRUE     FALSE
61   FALSE       TRUE     FALSE
62   FALSE       TRUE     FALSE
63   FALSE       TRUE     FALSE
64   FALSE       TRUE     FALSE
65   FALSE       TRUE     FALSE
66   FALSE       TRUE     FALSE
69   FALSE       TRUE     FALSE
70   FALSE       TRUE     FALSE
71   FALSE       TRUE     FALSE
72   FALSE       TRUE     FALSE
73   FALSE       TRUE     FALSE
74   FALSE       TRUE     FALSE
75   FALSE       TRUE     FALSE
77   FALSE       TRUE     FALSE
78   FALSE       TRUE     FALSE
79   FALSE       TRUE     FALSE
80   FALSE       TRUE     FALSE
81   FALSE       TRUE     FALSE
83   FALSE       TRUE     FALSE
84   FALSE       TRUE     FALSE
85   FALSE       TRUE     FALSE
86   FALSE       TRUE     FALSE
88   FALSE       TRUE     FALSE
89   FALSE       TRUE     FALSE
90   FALSE       TRUE     FALSE
91   FALSE       TRUE     FALSE
93   FALSE       TRUE     FALSE
94   FALSE       TRUE     FALSE
95   FALSE       TRUE     FALSE
96   FALSE       TRUE     FALSE
97   FALSE       TRUE     FALSE
98   FALSE       TRUE     FALSE
100  FALSE       TRUE     FALSE
101  FALSE      FALSE      TRUE
102  FALSE      FALSE      TRUE
103  FALSE      FALSE      TRUE
104  FALSE      FALSE      TRUE
105  FALSE      FALSE      TRUE
106  FALSE      FALSE      TRUE
107  FALSE      FALSE      TRUE
108  FALSE      FALSE      TRUE
109  FALSE      FALSE      TRUE
112  FALSE      FALSE      TRUE
113  FALSE      FALSE      TRUE
114  FALSE      FALSE      TRUE
115  FALSE      FALSE      TRUE
116  FALSE      FALSE      TRUE
117  FALSE      FALSE      TRUE
118  FALSE      FALSE      TRUE
119  FALSE      FALSE      TRUE
120  FALSE      FALSE      TRUE
121  FALSE      FALSE      TRUE
124  FALSE      FALSE      TRUE
125  FALSE      FALSE      TRUE
126  FALSE      FALSE      TRUE
127  FALSE      FALSE      TRUE
128  FALSE      FALSE      TRUE
130  FALSE      FALSE      TRUE
131  FALSE      FALSE      TRUE
132  FALSE      FALSE      TRUE
133  FALSE      FALSE      TRUE
134  FALSE      FALSE      TRUE
135  FALSE      FALSE      TRUE
136  FALSE      FALSE      TRUE
137  FALSE      FALSE      TRUE
138  FALSE      FALSE      TRUE
139  FALSE      FALSE      TRUE
141  FALSE      FALSE      TRUE
142  FALSE      FALSE      TRUE
143  FALSE      FALSE      TRUE
144  FALSE      FALSE      TRUE
145  FALSE      FALSE      TRUE
146  FALSE      FALSE      TRUE
147  FALSE      FALSE      TRUE
148  FALSE      FALSE      TRUE
149  FALSE      FALSE      TRUE
150  FALSE      FALSE      TRUE

$covariate
    Sepal.Length Sepal.Width Petal.Length Petal.Width
1            5.1         3.5          1.4         0.2
2            4.9         3.0          1.4         0.2
3            4.7         3.2          1.3         0.2
4            4.6         3.1          1.5         0.2
5            5.0         3.6          1.4         0.2
6            5.4         3.9          1.7         0.4
8            5.0         3.4          1.5         0.2
9            4.4         2.9          1.4         0.2
10           4.9         3.1          1.5         0.1
11           5.4         3.7          1.5         0.2
12           4.8         3.4          1.6         0.2
13           4.8         3.0          1.4         0.1
14           4.3         3.0          1.1         0.1
16           5.7         4.4          1.5         0.4
17           5.4         3.9          1.3         0.4
18           5.1         3.5          1.4         0.3
19           5.7         3.8          1.7         0.3
21           5.4         3.4          1.7         0.2
23           4.6         3.6          1.0         0.2
24           5.1         3.3          1.7         0.5
25           4.8         3.4          1.9         0.2
26           5.0         3.0          1.6         0.2
27           5.0         3.4          1.6         0.4
28           5.2         3.5          1.5         0.2
29           5.2         3.4          1.4         0.2
30           4.7         3.2          1.6         0.2
31           4.8         3.1          1.6         0.2
32           5.4         3.4          1.5         0.4
33           5.2         4.1          1.5         0.1
34           5.5         4.2          1.4         0.2
35           4.9         3.1          1.5         0.2
36           5.0         3.2          1.2         0.2
37           5.5         3.5          1.3         0.2
39           4.4         3.0          1.3         0.2
40           5.1         3.4          1.5         0.2
41           5.0         3.5          1.3         0.3
42           4.5         2.3          1.3         0.3
44           5.0         3.5          1.6         0.6
45           5.1         3.8          1.9         0.4
46           4.8         3.0          1.4         0.3
47           5.1         3.8          1.6         0.2
48           4.6         3.2          1.4         0.2
49           5.3         3.7          1.5         0.2
50           5.0         3.3          1.4         0.2
51           7.0         3.2          4.7         1.4
52           6.4         3.2          4.5         1.5
53           6.9         3.1          4.9         1.5
54           5.5         2.3          4.0         1.3
55           6.5         2.8          4.6         1.5
56           5.7         2.8          4.5         1.3
58           4.9         2.4          3.3         1.0
59           6.6         2.9          4.6         1.3
60           5.2         2.7          3.9         1.4
61           5.0         2.0          3.5         1.0
62           5.9         3.0          4.2         1.5
63           6.0         2.2          4.0         1.0
64           6.1         2.9          4.7         1.4
65           5.6         2.9          3.6         1.3
66           6.7         3.1          4.4         1.4
69           6.2         2.2          4.5         1.5
70           5.6         2.5          3.9         1.1
71           5.9         3.2          4.8         1.8
72           6.1         2.8          4.0         1.3
73           6.3         2.5          4.9         1.5
74           6.1         2.8          4.7         1.2
75           6.4         2.9          4.3         1.3
77           6.8         2.8          4.8         1.4
78           6.7         3.0          5.0         1.7
79           6.0         2.9          4.5         1.5
80           5.7         2.6          3.5         1.0
81           5.5         2.4          3.8         1.1
83           5.8         2.7          3.9         1.2
84           6.0         2.7          5.1         1.6
85           5.4         3.0          4.5         1.5
86           6.0         3.4          4.5         1.6
88           6.3         2.3          4.4         1.3
89           5.6         3.0          4.1         1.3
90           5.5         2.5          4.0         1.3
91           5.5         2.6          4.4         1.2
93           5.8         2.6          4.0         1.2
94           5.0         2.3          3.3         1.0
95           5.6         2.7          4.2         1.3
96           5.7         3.0          4.2         1.2
97           5.7         2.9          4.2         1.3
98           6.2         2.9          4.3         1.3
100          5.7         2.8          4.1         1.3
101          6.3         3.3          6.0         2.5
102          5.8         2.7          5.1         1.9
103          7.1         3.0          5.9         2.1
104          6.3         2.9          5.6         1.8
105          6.5         3.0          5.8         2.2
106          7.6         3.0          6.6         2.1
107          4.9         2.5          4.5         1.7
108          7.3         2.9          6.3         1.8
109          6.7         2.5          5.8         1.8
112          6.4         2.7          5.3         1.9
113          6.8         3.0          5.5         2.1
114          5.7         2.5          5.0         2.0
115          5.8         2.8          5.1         2.4
116          6.4         3.2          5.3         2.3
117          6.5         3.0          5.5         1.8
118          7.7         3.8          6.7         2.2
119          7.7         2.6          6.9         2.3
120          6.0         2.2          5.0         1.5
121          6.9         3.2          5.7         2.3
124          6.3         2.7          4.9         1.8
125          6.7         3.3          5.7         2.1
126          7.2         3.2          6.0         1.8
127          6.2         2.8          4.8         1.8
128          6.1         3.0          4.9         1.8
130          7.2         3.0          5.8         1.6
131          7.4         2.8          6.1         1.9
132          7.9         3.8          6.4         2.0
133          6.4         2.8          5.6         2.2
134          6.3         2.8          5.1         1.5
135          6.1         2.6          5.6         1.4
136          7.7         3.0          6.1         2.3
137          6.3         3.4          5.6         2.4
138          6.4         3.1          5.5         1.8
139          6.0         3.0          4.8         1.8
141          6.7         3.1          5.6         2.4
142          6.9         3.1          5.1         2.3
143          5.8         2.7          5.1         1.9
144          6.8         3.2          5.9         2.3
145          6.7         3.3          5.7         2.5
146          6.7         3.0          5.2         2.3
147          6.3         2.5          5.0         1.9
148          6.5         3.0          5.2         2.0
149          6.2         3.4          5.4         2.3
150          5.9         3.0          5.1         1.8

$model.list
$model.list$response
[1] "setosa"     "versicolor" "virginica" 

$model.list$variables
[1] "Sepal.Length" "Sepal.Width"  "Petal.Length" "Petal.Width" 


$err.fct
function (x, y) 
{
    1/2 * (y - x)^2
}
<bytecode: 0x1079d6f0>
<environment: 0x10786be8>
attr(,"type")
[1] "sse"

$act.fct
function (x) 
{
    1/(1 + exp(-x))
}
<bytecode: 0x107a21a0>
<environment: 0x107a2a98>
attr(,"type")
[1] "logistic"

Prediccion

 [1] "virginica"  "versicolor" "virginica"  "virginica"  "versicolor"
 [6] "setosa"     "versicolor" "virginica"  "virginica"  "setosa"    
[11] "versicolor" "versicolor" "versicolor" "setosa"     "versicolor"
[16] "setosa"     "setosa"     "versicolor" "setosa"     "virginica" 

Matriz de Confusion

            predict_class
             setosa versicolor virginica
  setosa          6          0         0
  versicolor      0          8         0
  virginica       0          0         6

Grafica


Column

Wine


Grafica

                        Wine                      Alcohol 
                           0                            0 
                  Malic_acid                          Ash 
                           0                            0 
              Alcalinity_ash                    Magnesium 
                           0                            0 
               Total_phenols                   Flavanoids 
                           0                            0 
      Nonflavanoinds_phenols              Proanthocyanins 
                           0                            0 
             Color_intensity                          Hue 
                           0                            0 
OD280_OD315_of_diluted_wines                      Proline 
                           0                            0 


Grafica


Normalizado


Modelo


Prediccion

   V1 V2 V3
3   1  0  0
4   1  0  0
8   1  0  0
11  1  0  0
17  1  0  0
19  1  0  0
25  1  0  0
30  1  0  0
38  1  0  0
45  1  0  0
[1] 1 1 1 1 1 1

Table


 
   Cell Contents
|-------------------------|
|                       N |
| Chi-square contribution |
|           N / Row Total |
|           N / Col Total |
|         N / Table Total |
|-------------------------|

 
Total Observations in Table:  44 

 
             | predic 
    test_res |         1 |         2 |         3 | Row Total | 
-------------|-----------|-----------|-----------|-----------|
           1 |        15 |         0 |         0 |        15 | 
             |    12.803 |     4.773 |     4.091 |           | 
             |     1.000 |     0.000 |     0.000 |     0.341 | 
             |     0.833 |     0.000 |     0.000 |           | 
             |     0.341 |     0.000 |     0.000 |           | 
-------------|-----------|-----------|-----------|-----------|
           2 |         3 |        13 |         0 |        16 | 
             |     1.920 |    12.287 |     4.364 |           | 
             |     0.188 |     0.812 |     0.000 |     0.364 | 
             |     0.167 |     0.929 |     0.000 |           | 
             |     0.068 |     0.295 |     0.000 |           | 
-------------|-----------|-----------|-----------|-----------|
           3 |         0 |         1 |        12 |        13 | 
             |     5.318 |     2.378 |    20.161 |           | 
             |     0.000 |     0.077 |     0.923 |     0.295 | 
             |     0.000 |     0.071 |     1.000 |           | 
             |     0.000 |     0.023 |     0.273 |           | 
-------------|-----------|-----------|-----------|-----------|
Column Total |        18 |        14 |        12 |        44 | 
             |     0.409 |     0.318 |     0.273 |           | 
-------------|-----------|-----------|-----------|-----------|

 

Matriz de confusion

Confusion Matrix and Statistics

        predic
test_res  1  2  3
       1 15  0  0
       2  3 13  0
       3  0  1 12

Overall Statistics
                                          
               Accuracy : 0.9091          
                 95% CI : (0.7833, 0.9747)
    No Information Rate : 0.4091          
    P-Value [Acc > NIR] : 5.265e-12       
                                          
                  Kappa : 0.8631          
                                          
 Mcnemar's Test P-Value : NA              

Statistics by Class:

                     Class: 1 Class: 2 Class: 3
Sensitivity            0.8333   0.9286   1.0000
Specificity            1.0000   0.9000   0.9688
Pos Pred Value         1.0000   0.8125   0.9231
Neg Pred Value         0.8966   0.9643   1.0000
Prevalence             0.4091   0.3182   0.2727
Detection Rate         0.3409   0.2955   0.2727
Detection Prevalence   0.3409   0.3636   0.2955
Balanced Accuracy      0.9167   0.9143   0.9844