Sumário das atividades:
library(ggplot2)
library(reshape2)
babu=read.csv("sumario_babu.csv")
babu.m=melt(babu,id=c("Percent"))
ggplot(babu.m, aes(x = variable, y = value, fill = Percent)) + geom_boxplot() + scale_x_discrete(name="Data source") + ylim(0.4,0.6) +
scale_fill_manual(values = c("deepskyblue2", "darkseagreen","gray60","gray30"))
butland=read.csv("sumario_butland.csv")
butland.m=melt(butland,id=c("Percent"))
ggplot(butland.m, aes(x = variable, y = value, fill = Percent)) + geom_boxplot()+ scale_x_discrete(name="Data source") + ylim(0,1) +
scale_fill_manual(values = c("deepskyblue2", "darkseagreen","gray60","gray30"))
total=read.csv("sumario_total_complete.csv")
total.m=melt(total,id=c("Algorithm"))
ggplot(total.m, aes(x = variable, y = value, fill = Algorithm)) + geom_boxplot() + scale_x_discrete(name="Data source") + ylim(0,1) +
scale_fill_manual(values = c("deepskyblue2", "darkseagreen"))
Os revisores tinham razão em dizer que cross-validation é enviesado. Os dados de Babu não prestam.