options(knitr.duplicate.label = 'allow')
DATA_PATH <- here("data/processed/syntactic_bootstrapping_tidy_data.csv") # make all variables (i.e. things that might change) as capital letters at the top of the scripts

ma_data <- read_csv(DATA_PATH) 
ma_data <- ma_data %>% filter(paradigm_type == "action_matching")

Data Overview

effect size & paper

n_effect_sizes <- ma_data %>%
  filter(!is.na(d_calc)) %>%
  nrow()

n_papers <- ma_data %>%
  distinct(unique_id) %>%
  nrow()

There are 78 effect sizes collected from 21 different papers.

Here are the papers in this analysis:

ma_data %>%
  count(short_cite) %>%
  arrange(-n) %>%
  DT::datatable()

## Forest plot

ma_model <- rma(ma_data$d_calc, ma_data$d_var_calc)
ma_model
## 
## Random-Effects Model (k = 78; tau^2 estimator: REML)
## 
## tau^2 (estimated amount of total heterogeneity): 0.6593 (SE = 0.1277)
## tau (square root of estimated tau^2 value):      0.8120
## I^2 (total heterogeneity / total variability):   88.29%
## H^2 (total variability / sampling variability):  8.54
## 
## Test for Heterogeneity:
## Q(df = 77) = 408.5756, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.5485  0.1016  5.3977  <.0001  0.3494  0.7477  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
forest(ma_model,
       header = T,
       slab = ma_data$unique_id,
       col = "red",
       cex = .7)

## funnel plot {.tabset} ### vanilla

ma_data %>% 
  mutate(color = ifelse(sentence_structure == "transitive", "red", "blue"),
         color_sample_size = ifelse(n_1 < 10, "red", ifelse(n_1 < 20, "orange", "yellow")),
         color_confidence = ifelse(inclusion_certainty == 1, "red", "black"))-> ma_data_funnel


ma_data_funnel %>% filter (abs(d_calc) < 5) -> ma_data_funnel_no_outlier

ss_colors <- ma_data_funnel$color
ss_colors_no_outlier <- ma_data_funnel_no_outlier$color 

ma_model_funnel <- rma(ma_data_funnel$d_calc, ma_data_funnel$d_var_calc)
ma_model_funnel_no_outlier <- rma(ma_data_funnel_no_outlier$d_calc, ma_data_funnel_no_outlier$d_var_calc)

f1<- funnel(ma_model_funnel, xlab = "Effect Size", col = ss_colors) 
legend("topright",bg = "white",legend = c("transitive","intransitive"),pch=16,col=c("red", "blue"))
title(main = "All effect sizes break down by sentence structure")

f2<- funnel(ma_model_funnel_no_outlier, xlab = "Effect Size", col = ss_colors_no_outlier) 
legend("topright",bg = "white",legend = c("transitive","intransitive"),pch=16,col=c("red", "blue"))
title(main = "effect sizes excluded outliers (abs <5) break down by sentence structure")

take into account sentence structure?

ma_model_sentence_structure <- rma(ma_data_funnel$d_calc~ma_data_funnel$sentence_structure, ma_data_funnel$d_var_calc)
ma_model_no_outlier_ss <- rma(ma_data_funnel_no_outlier$d_calc~ma_data_funnel_no_outlier$sentence_structure, ma_data_funnel_no_outlier$d_var_calc)

f3 <- funnel(ma_model_sentence_structure, xlab = "effect size", col = ss_colors)

f3_b <- funnel(ma_model_no_outlier_ss, xlab = "effect size", col = ss_colors_no_outlier)

take into account sentence structure and age?

ma_model_ss_age <- rma(ma_data_funnel$d_calc~ma_data_funnel$sentence_structure + ma_data_funnel $mean_age, ma_data_funnel$d_var_calc)
ma_model_funnel_no_outlier_ss_age <- rma(ma_data_funnel_no_outlier$d_calc~ma_data_funnel_no_outlier$sentence_structure+ma_data_funnel_no_outlier$mean_age, ma_data_funnel_no_outlier$d_var_calc)



f4 <- funnel(ma_model_ss_age, xlab = "effect size", col = ss_colors)

f4_b <- funnel(ma_model_funnel_no_outlier_ss_age, xlab = "effect size", col = ss_colors_no_outlier)

Variable Summary

Continuous Variables

CONTINUOUS_VARS <- c("n_1", "x_1", "sd_1", "d_calc", "d_var_calc", "mean_age","n_train_test_pair","n_test_trial_per_pair","productive_vocab_mean", "productive_vocab_median")

long_continuous <- ma_data %>%
  pivot_longer(cols = CONTINUOUS_VARS)

long_continuous %>%
  ggplot(aes(x = value)) +
  geom_histogram() + 
  facet_wrap(~ name, scale = "free_x") +
  labs(title = "Distribution of continuous measures")

long_continuous %>%
  group_by(name) %>%
  summarize(mean = mean(value),
            sd = sd(value)) %>%
  kable()
name mean sd
d_calc 0.5634565 1.4158104
d_var_calc 0.2061217 0.3714431
mean_age 901.5634974 337.3459361
n_1 14.8589744 6.2267216
n_test_trial_per_pair 1.7435897 0.6123384
n_train_test_pair 2.4358974 1.3919037
productive_vocab_mean NA NA
productive_vocab_median NA NA
sd_1 0.1401252 0.0742438
x_1 0.5664519 0.0956078

Categorical Variables

CATEGORICAL_VARS <- c("sentence_structure", "agent_argument_type_clean", "patient_argument_type_clean", "stimuli_actor","agent_argument_number","transitive_event_type","intransitive_event_type",
                     "presentation_type", "character_identification",
                     "test_mass_or_distributed", "practice_phase", "test_method")

long_categorical <- ma_data %>%
  pivot_longer(cols = CATEGORICAL_VARS) %>%
  count(name, value) # this is a short cut for group_by() %>% summarize(count = n()) 

long_categorical %>%
  ggplot(aes(x = value, y = n)) +  
  facet_wrap(~ name, scale = "free_x") +
  geom_col(position = 'dodge',width=0.4) + 
  theme(text = element_text(size=8),
        axis.text.x = element_text(angle = 90, hjust = 1))  # rotate x-axis text

Prep for Moderators

ma_data_young <- ma_data_young <- ma_data %>%
    mutate(age_months = mean_age/30.44) %>% 
    filter(age_months < 36) 

ma_data_old <-  ma_data %>%
    mutate(age_months = mean_age/30.44) %>% 
    filter(age_months > 36 | age_months == 36) 

ma_data_vocab <- ma_data %>%
    filter(!is.na(productive_vocab_median)) 

no moderators

all

m1 <- rma.mv(d_calc, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m1)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -162.9086   325.8171   329.8171   334.5047   329.9793   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2245  0.4739     21     no  short_cite 
## 
## Test for Heterogeneity:
## Q(df = 77) = 408.5756, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.3968  0.1125  3.5273  0.0004  0.1763  0.6173  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36

m_young <- rma.mv(d_calc, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -115.7270   231.4539   235.4539   239.5046   235.6803   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2940  0.5422     17     no  short_cite 
## 
## Test for Heterogeneity:
## Q(df = 56) = 302.2290, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.4071  0.1414  2.8791  0.0040  0.1299  0.6842  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36

m_old <- rma.mv(d_calc, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.9329   85.8658   89.8658   91.8573   90.5717   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0315  0.1775      5     no  short_cite 
## 
## Test for Heterogeneity:
## Q(df = 20) = 106.3466, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.3286  0.1037  3.1691  0.0015  0.1254  0.5319  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Participants characteristics:

age only

colored by unique_id

ma_data %>% 
  ggplot(aes(x = mean_age/30.44, y = d_calc,color = unique_id)) +
  geom_point() +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") 

all

ma_data %>% 
  ggplot(aes(x = mean_age/30.44, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  geom_smooth(color = "red") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") +
  theme(legend.position = "none") 

m_simple <- rma.mv(d_calc ~ 1, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

m_age <- rma.mv(d_calc ~ mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_simple)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -162.9086   325.8171   329.8171   334.5047   329.9793   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2245  0.4739     21     no  short_cite 
## 
## Test for Heterogeneity:
## Q(df = 77) = 408.5756, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.3968  0.1125  3.5273  0.0004  0.1763  0.6173  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(m_age)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -159.6433   319.2865   325.2865   332.2787   325.6199   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2306  0.4802     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 76) = 407.7223, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 5.9754, p-val = 0.0145
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt     0.7864  0.1957   4.0180  <.0001   0.4028   1.1700  *** 
## mean_age   -0.0004  0.0002  -2.4445  0.0145  -0.0008  -0.0001    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
forest(m_age,
       header = T,
       slab = ma_data$unique_id,
       col = "red",
       cex = .7
)

funnel(m_age)

young, < 36

ma_data_young %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  geom_smooth(color = "red") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") +
  theme(legend.position = "none") 

m_age_young <- rma.mv(d_calc ~ mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -115.3058   230.6116   236.6116   242.6336   237.0822   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2908  0.5393     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 55) = 296.5941, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.3081, p-val = 0.5788
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt     0.6132  0.3973   1.5433  0.1228  -0.1656  1.3920    
## mean_age   -0.0003  0.0005  -0.5551  0.5788  -0.0012  0.0007    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
forest(m_age_young,
       header = T,
       slab = ma_data_young$unique_id,
       col = "red",
       cex = .7
)

old, >= 36

ma_data_old %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  geom_smooth(color = "red") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") +
  theme(legend.position = "none") 

m_age_old <- rma.mv(d_calc ~ mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_age_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.8038   85.6077   91.6077   94.4410   93.2077   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0359  0.1895      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 19) = 106.1716, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.9372, p-val = 0.3330
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt     0.7695  0.4683   1.6433  0.1003  -0.1483  1.6873    
## mean_age   -0.0003  0.0003  -0.9681  0.3330  -0.0010  0.0003    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab

ma_data_vocab %>%
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  geom_smooth(color = "red") +
  ylab("Effect Size") +
  xlab("Median Vocabulary Size") +
  ggtitle("Syntactical Bootstrapping effect size vs. Median Vocabulary (months)") +
  theme(legend.position = "none") 

m_age_vocab <- rma.mv(d_calc ~ productive_vocab_median, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -76.1570  152.3139  158.3139  162.8930  159.1139   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2602  0.5101      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 34) = 160.5343, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 6.7042, p-val = 0.0096
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt                    0.8285  0.2557   3.2401  0.0012   0.3273   1.3297 
## productive_vocab_median   -0.0063  0.0024  -2.5892  0.0096  -0.0111  -0.0015 
##  
## intrcpt                  ** 
## productive_vocab_median  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_vocab_with_age <- rma.mv(d_calc ~ mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_vocab_with_age)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -76.1407  152.2813  158.2813  162.8604  159.0813   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2767  0.5261      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 34) = 161.6858, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 7.1130, p-val = 0.0077
## 
## Model Results:
## 
##           estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt     0.9727  0.2867   3.3922  0.0007   0.4107   1.5347  *** 
## mean_age   -0.0006  0.0002  -2.6670  0.0077  -0.0010  -0.0002   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Linguistic Stimuli

Sentence structure

all with age

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = sentence_structure)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") 

m_age_sentence <- rma.mv(d_calc ~ mean_age + sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_sentence)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -151.9921   303.9843   311.9843   321.2542   312.5557   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2864  0.5351     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 75) = 402.0777, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 21.8831, p-val < .0001
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.4857  0.2180   2.2277  0.0259   0.0584 
## mean_age                       -0.0003  0.0002  -1.7311  0.0834  -0.0007 
## sentence_structuretransitive    0.3253  0.0817   3.9832  <.0001   0.1652 
##                                ci.ub 
## intrcpt                       0.9131    * 
## mean_age                      0.0000    . 
## sentence_structuretransitive  0.4854  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_sentence <- rma.mv(d_calc ~ mean_age * sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_sentence)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -148.2914   296.5829   306.5829   318.1032   307.4652   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2662  0.5159     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 74) = 381.3786, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 29.6044, p-val < .0001
## 
## Model Results:
## 
##                                        estimate      se     zval    pval 
## intrcpt                                  0.7336  0.2324   3.1567  0.0016 
## mean_age                                -0.0006  0.0002  -2.8561  0.0043 
## sentence_structuretransitive            -0.2651  0.2241  -1.1833  0.2367 
## mean_age:sentence_structuretransitive    0.0006  0.0002   2.8173  0.0048 
##                                          ci.lb    ci.ub 
## intrcpt                                 0.2781   1.1891  ** 
## mean_age                               -0.0010  -0.0002  ** 
## sentence_structuretransitive           -0.7043   0.1740     
## mean_age:sentence_structuretransitive   0.0002   0.0011  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

< 36, young, age

ma_data_young %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, , color = sentence_structure)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), with sentence_structure") 

m_age_sentence_young <- rma.mv(d_calc ~ mean_age + sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_sentence_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -114.4871   228.9742   236.9742   244.9301   237.7905   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3256  0.5706     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 54) = 293.9865, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 2.2202, p-val = 0.3295
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.4825  0.4118   1.1716  0.2413  -0.3247 
## mean_age                       -0.0002  0.0005  -0.3992  0.6898  -0.0012 
## sentence_structuretransitive    0.1316  0.0946   1.3915  0.1641  -0.0538 
##                                ci.ub 
## intrcpt                       1.2897    
## mean_age                      0.0008    
## sentence_structuretransitive  0.3169    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_sentence_young <- rma.mv(d_calc ~ mean_age * sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_sentence_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -111.3248   222.6496   232.6496   242.5010   233.9262   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3002  0.5479     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 53) = 281.8953, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 8.8233, p-val = 0.0317
## 
## Model Results:
## 
##                                        estimate      se     zval    pval 
## intrcpt                                  0.1283  0.4318   0.2971  0.7664 
## mean_age                                 0.0003  0.0005   0.6080  0.5432 
## sentence_structuretransitive             1.3145  0.4685   2.8058  0.0050 
## mean_age:sentence_structuretransitive   -0.0016  0.0006  -2.5857  0.0097 
##                                          ci.lb    ci.ub 
## intrcpt                                -0.7181   0.9747     
## mean_age                               -0.0007   0.0014     
## sentence_structuretransitive            0.3963   2.2328  ** 
## mean_age:sentence_structuretransitive  -0.0029  -0.0004  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old, age

ma_data_old %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = sentence_structure)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months)") 

m_age_sentence_old <- rma.mv(d_calc ~ mean_age + sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_age_sentence_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -26.1658   52.3317   60.3317   63.8932   63.4086   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 68.0107, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 38.3360, p-val < .0001
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.1760  0.4126   0.4265  0.6697  -0.6326 
## mean_age                       -0.0002  0.0003  -0.7331  0.4635  -0.0008 
## sentence_structuretransitive    0.7111  0.1151   6.1774  <.0001   0.4855 
##                                ci.ub 
## intrcpt                       0.9846      
## mean_age                      0.0004      
## sentence_structuretransitive  0.9367  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_sentence_old_interaction <- rma.mv(d_calc ~ mean_age * sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_age_sentence_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -26.1658   52.3317   60.3317   63.8932   63.4086   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 68.0107, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 38.3360, p-val < .0001
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.1760  0.4126   0.4265  0.6697  -0.6326 
## mean_age                       -0.0002  0.0003  -0.7331  0.4635  -0.0008 
## sentence_structuretransitive    0.7111  0.1151   6.1774  <.0001   0.4855 
##                                ci.ub 
## intrcpt                       0.9846      
## mean_age                      0.0004      
## sentence_structuretransitive  0.9367  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

all with vocab

ma_data_vocab %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = sentence_structure)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Median Productive Vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. Median Productive Vocab")

m_age_sentence_vocab <- rma.mv(d_calc ~ productive_vocab_median + sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_sentence_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -67.5932  135.1863  143.1863  149.1724  144.6149   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4741  0.6886      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 153.8355, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 23.8757, p-val < .0001
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.3683  0.3381   1.0893  0.2760  -0.2943 
## productive_vocab_median        -0.0022  0.0026  -0.8363  0.4030  -0.0074 
## sentence_structuretransitive    0.5993  0.1431   4.1886  <.0001   0.3189 
##                                ci.ub 
## intrcpt                       1.0309      
## productive_vocab_median       0.0030      
## sentence_structuretransitive  0.8798  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_sentence_vocab_interaction <- rma.mv(d_calc ~ productive_vocab_median * sentence_structure, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_sentence_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -67.5932  135.1863  143.1863  149.1724  144.6149   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.4741  0.6886      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 153.8355, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 23.8757, p-val < .0001
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.3683  0.3381   1.0893  0.2760  -0.2943 
## productive_vocab_median        -0.0022  0.0026  -0.8363  0.4030  -0.0074 
## sentence_structuretransitive    0.5993  0.1431   4.1886  <.0001   0.3189 
##                                ci.ub 
## intrcpt                       1.0309      
## productive_vocab_median       0.0030      
## sentence_structuretransitive  0.8798  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Agent Arguement Type (Noun, pronoun and varying)

decide to compare noun, pronoun and varying

ma_data %>% group_by(agent_argument_type_clean) %>% count()
## # A tibble: 4 x 2
## # Groups:   agent_argument_type_clean [4]
##   agent_argument_type_clean     n
##   <chr>                     <int>
## 1 noun                         21
## 2 noun_phrase                   9
## 3 pronoun                      22
## 4 varying_agent                26
ma_data_at <- ma_data %>% filter(agent_argument_type_clean != "noun_phrase")
ma_data_at_young <- ma_data_at %>%
    mutate(age_months = mean_age/30.44) %>% 
    filter(age_months < 36) 
ma_data_at_old <- ma_data_at %>%
    mutate(age_months = mean_age/30.44) %>% 
    filter(age_months > 36 | age_months == 36) 
ma_data_at_vocab <- ma_data_at %>%
      filter(!is.na(productive_vocab_median)) 

all

ma_data_at %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = agent_argument_type_clean)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by agent argument") 

m_age_aa <- rma.mv(d_calc ~ mean_age + agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_at)
summary(m_age_aa)
## 
## Multivariate Meta-Analysis Model (k = 69; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -125.2946   250.5893   260.5893   271.4612   261.6062   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2854  0.5342     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 65) = 342.7325, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.6879, p-val = 0.0529
## 
## Model Results:
## 
##                                         estimate      se     zval    pval 
## intrcpt                                   0.7312  0.2256   3.2417  0.0012 
## mean_age                                 -0.0005  0.0002  -2.6072  0.0091 
## agent_argument_type_cleanpronoun          0.2316  0.2972   0.7791  0.4359 
## agent_argument_type_cleanvarying_agent    0.2599  0.2693   0.9649  0.3346 
##                                           ci.lb    ci.ub 
## intrcpt                                  0.2891   1.1734  ** 
## mean_age                                -0.0008  -0.0001  ** 
## agent_argument_type_cleanpronoun        -0.3510   0.8141     
## agent_argument_type_cleanvarying_agent  -0.2680   0.7877     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_aa_interaction <- rma.mv(d_calc ~ mean_age * agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_at)
summary(m_age_aa_interaction)
## 
## Multivariate Meta-Analysis Model (k = 69; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -124.4721   248.9442   262.9442   277.9462   264.9806   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2934  0.5417     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 332.9361, p-val < .0001
## 
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 8.4576, p-val = 0.1328
## 
## Model Results:
## 
##                                                  estimate      se     zval 
## intrcpt                                            0.1886  0.8238   0.2290 
## mean_age                                           0.0002  0.0009   0.1641 
## agent_argument_type_cleanpronoun                   0.6663  0.9165   0.7270 
## agent_argument_type_cleanvarying_agent             0.8513  0.8696   0.9789 
## mean_age:agent_argument_type_cleanpronoun         -0.0005  0.0010  -0.5123 
## mean_age:agent_argument_type_cleanvarying_agent   -0.0007  0.0010  -0.7510 
##                                                    pval    ci.lb   ci.ub 
## intrcpt                                          0.8189  -1.4259  1.8032    
## mean_age                                         0.8697  -0.0017  0.0020    
## agent_argument_type_cleanpronoun                 0.4672  -1.1300  2.4625    
## agent_argument_type_cleanvarying_agent           0.3276  -0.8531  2.5557    
## mean_age:agent_argument_type_cleanpronoun        0.6085  -0.0025  0.0014    
## mean_age:agent_argument_type_cleanvarying_agent  0.4526  -0.0026  0.0012    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36, young

ma_data_at_young %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = agent_argument_type_clean)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by agent argument, young only") 

m_age_aa_young <- rma.mv(d_calc ~ mean_age + agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_at_young)
summary(m_age_aa_young)
## 
## Multivariate Meta-Analysis Model (k = 48; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -80.8721  161.7442  171.7442  180.6651  173.3231   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3553  0.5961     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 44) = 231.3444, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 1.8682, p-val = 0.6002
## 
## Model Results:
## 
##                                         estimate      se     zval    pval 
## intrcpt                                   0.5914  0.4437   1.3330  0.1825 
## mean_age                                 -0.0004  0.0005  -0.7685  0.4422 
## agent_argument_type_cleanpronoun          0.2974  0.3887   0.7652  0.4442 
## agent_argument_type_cleanvarying_agent    0.3368  0.3275   1.0284  0.3038 
##                                           ci.lb   ci.ub 
## intrcpt                                 -0.2782  1.4611    
## mean_age                                -0.0014  0.0006    
## agent_argument_type_cleanpronoun        -0.4644  1.0591    
## agent_argument_type_cleanvarying_agent  -0.3051  0.9786    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_aa_young_interaction <- rma.mv(d_calc ~ mean_age * agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_at_young)
summary(m_age_aa_young_interaction)
## 
## Multivariate Meta-Analysis Model (k = 48; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -80.2711  160.5422  174.5422  186.7059  177.8363   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3661  0.6051     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 42) = 231.0856, p-val < .0001
## 
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 2.0068, p-val = 0.8482
## 
## Model Results:
## 
##                                                  estimate       se     zval 
## intrcpt                                            1.0414   1.4551   0.7157 
## mean_age                                          -0.0010   0.0018  -0.5243 
## agent_argument_type_cleanpronoun                  -3.2878  11.9691  -0.2747 
## agent_argument_type_cleanvarying_agent            -0.1442   1.5271  -0.0944 
## mean_age:agent_argument_type_cleanpronoun          0.0054   0.0186   0.2927 
## mean_age:agent_argument_type_cleanvarying_agent    0.0006   0.0019   0.3225 
##                                                    pval     ci.lb    ci.ub 
## intrcpt                                          0.4742   -1.8106   3.8934    
## mean_age                                         0.6000   -0.0045   0.0026    
## agent_argument_type_cleanpronoun                 0.7836  -26.7469  20.1712    
## agent_argument_type_cleanvarying_agent           0.9248   -3.1372   2.8488    
## mean_age:agent_argument_type_cleanpronoun        0.7697   -0.0310   0.0419    
## mean_age:agent_argument_type_cleanvarying_agent  0.7471   -0.0031   0.0043    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>=36, old

ma_data_at_old %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = agent_argument_type_clean)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by agent argument, young only") 

m_age_aa_old <- rma.mv(d_calc ~ mean_age + agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_at_old)
summary(m_age_aa_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -41.4821   82.9641   92.9641   97.1302   98.4187   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0080  0.0893      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 17) = 97.4690, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 6.3151, p-val = 0.0972
## 
## Model Results:
## 
##                                         estimate      se     zval    pval 
## intrcpt                                   0.9225  0.4653   1.9826  0.0474 
## mean_age                                 -0.0003  0.0004  -0.8856  0.3758 
## agent_argument_type_cleanpronoun         -0.0791  0.2023  -0.3911  0.6957 
## agent_argument_type_cleanvarying_agent   -0.4824  0.2190  -2.2031  0.0276 
##                                           ci.lb    ci.ub 
## intrcpt                                  0.0105   1.8345  * 
## mean_age                                -0.0011   0.0004    
## agent_argument_type_cleanpronoun        -0.4756   0.3174    
## agent_argument_type_cleanvarying_agent  -0.9116  -0.0532  * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_aa_old_interaction <- rma.mv(d_calc ~ mean_age * agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_at_old)
summary(m_age_aa_old_interaction)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.2722   84.5444   98.5444  103.5007  114.5444   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0236  0.1535      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 15) = 96.6569, p-val < .0001
## 
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 5.1338, p-val = 0.3998
## 
## Model Results:
## 
##                                                  estimate      se     zval 
## intrcpt                                           -0.0821  3.1149  -0.0263 
## mean_age                                           0.0005  0.0026   0.1971 
## agent_argument_type_cleanpronoun                   0.8915  3.1665   0.2815 
## agent_argument_type_cleanvarying_agent             5.3278  6.7887   0.7848 
## mean_age:agent_argument_type_cleanpronoun         -0.0008  0.0027  -0.3183 
## mean_age:agent_argument_type_cleanvarying_agent   -0.0047  0.0055  -0.8545 
##                                                    pval    ci.lb    ci.ub 
## intrcpt                                          0.9790  -6.1871   6.0230    
## mean_age                                         0.8438  -0.0046   0.0057    
## agent_argument_type_cleanpronoun                 0.7783  -5.3146   7.0976    
## agent_argument_type_cleanvarying_agent           0.4326  -7.9777  18.6334    
## mean_age:agent_argument_type_cleanpronoun        0.7503  -0.0061   0.0044    
## mean_age:agent_argument_type_cleanvarying_agent  0.3928  -0.0155   0.0061    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Vocab

ma_data_at_vocab %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = agent_argument_type_clean)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by agent argument, with vocab") 

m_age_aa_vocab <- rma.mv(d_calc ~ productive_vocab_median + agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_at_vocab)
summary(m_age_aa_vocab)
## 
## Multivariate Meta-Analysis Model (k = 32; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -44.7773   89.5547   99.5547  106.2157  102.2819   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2733  0.5228      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 28) = 101.4373, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 11.0061, p-val = 0.0117
## 
## Model Results:
## 
##                                         estimate      se     zval    pval 
## intrcpt                                   2.1668  0.6841   3.1675  0.0015 
## productive_vocab_median                  -0.0063  0.0025  -2.5169  0.0118 
## agent_argument_type_cleanpronoun         -1.3655  0.7607  -1.7950  0.0727 
## agent_argument_type_cleanvarying_agent   -1.4352  0.7283  -1.9707  0.0488 
##                                           ci.lb    ci.ub 
## intrcpt                                  0.8261   3.5076  ** 
## productive_vocab_median                 -0.0112  -0.0014   * 
## agent_argument_type_cleanpronoun        -2.8566   0.1255   . 
## agent_argument_type_cleanvarying_agent  -2.8627  -0.0078   * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_aa_vocab_interaction <- rma.mv(d_calc ~ productive_vocab_median * agent_argument_type_clean, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_at_vocab)
summary(m_age_aa_vocab_interaction)
## 
## Multivariate Meta-Analysis Model (k = 32; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -43.9242   87.8485  101.8485  110.6551  108.0707   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2728  0.5223      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 26) = 100.5549, p-val < .0001
## 
## Test of Moderators (coefficients 2:6):
## QM(df = 5) = 11.8183, p-val = 0.0374
## 
## Model Results:
## 
##                                                                 estimate 
## intrcpt                                                         -11.4787 
## productive_vocab_median                                           0.4712 
## agent_argument_type_cleanpronoun                                 12.0958 
## agent_argument_type_cleanvarying_agent                           12.2202 
## productive_vocab_median:agent_argument_type_cleanpronoun         -0.4723 
## productive_vocab_median:agent_argument_type_cleanvarying_agent   -0.4777 
##                                                                      se 
## intrcpt                                                         17.0548 
## productive_vocab_median                                          0.5963 
## agent_argument_type_cleanpronoun                                17.0648 
## agent_argument_type_cleanvarying_agent                          17.0572 
## productive_vocab_median:agent_argument_type_cleanpronoun         0.5964 
## productive_vocab_median:agent_argument_type_cleanvarying_agent   0.5963 
##                                                                    zval    pval 
## intrcpt                                                         -0.6730  0.5009 
## productive_vocab_median                                          0.7902  0.4294 
## agent_argument_type_cleanpronoun                                 0.7088  0.4784 
## agent_argument_type_cleanvarying_agent                           0.7164  0.4737 
## productive_vocab_median:agent_argument_type_cleanpronoun        -0.7919  0.4284 
## productive_vocab_median:agent_argument_type_cleanvarying_agent  -0.8011  0.4231 
##                                                                    ci.lb 
## intrcpt                                                         -44.9055 
## productive_vocab_median                                          -0.6975 
## agent_argument_type_cleanpronoun                                -21.3507 
## agent_argument_type_cleanvarying_agent                          -21.2112 
## productive_vocab_median:agent_argument_type_cleanpronoun         -1.6413 
## productive_vocab_median:agent_argument_type_cleanvarying_agent   -1.6464 
##                                                                   ci.ub 
## intrcpt                                                         21.9481    
## productive_vocab_median                                          1.6399    
## agent_argument_type_cleanpronoun                                45.5422    
## agent_argument_type_cleanvarying_agent                          45.6517    
## productive_vocab_median:agent_argument_type_cleanpronoun         0.6967    
## productive_vocab_median:agent_argument_type_cleanvarying_agent   0.6910    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Patient Argument Type (??)

ma_data %>% group_by(patient_argument_type_clean) %>% count()
## # A tibble: 5 x 2
## # Groups:   patient_argument_type_clean [5]
##   patient_argument_type_clean     n
##   <chr>                       <int>
## 1 intransitive                   33
## 2 noun                           25
## 3 noun_phrase                    12
## 4 pronoun                         4
## 5 varying_patient                 4

Agent Argument Numbers (??)

ma_data %>% group_by(agent_argument_number) %>% count()
## # A tibble: 3 x 2
## # Groups:   agent_argument_number [3]
##   agent_argument_number     n
##   <chr>                 <int>
## 1 1                        43
## 2 2                         9
## 3 varying                  26

Number of sentence reptition

ma_data %>% ggplot(aes(x = n_repetitions_sentence)) +
  geom_histogram() 

### all

ma_data %>% 
  ggplot(aes(x = n_repetitions_sentence, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("number of reptition in sentence") +
  ggtitle("Syntactical Bootstrapping effect size vs. number of sentence repetition") 

m_rep <- rma.mv(d_calc ~ n_repetitions_sentence, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_rep)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -161.6279   323.2557   329.2557   336.2479   329.5891   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2447  0.4947     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 76) = 408.4233, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 1.5374, p-val = 0.2150
## 
## Model Results:
## 
##                         estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                   0.2674  0.1571  1.7023  0.0887  -0.0405  0.5754  . 
## n_repetitions_sentence    0.0154  0.0124  1.2399  0.2150  -0.0089  0.0397    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age <- rma.mv(d_calc ~ n_repetitions_sentence + mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_rep_age)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -159.1553   318.3107   326.3107   335.5806   326.8821   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2401  0.4900     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 75) = 406.6686, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.0671, p-val = 0.0481
## 
## Model Results:
## 
##                         estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt                   0.7352  0.2690   2.7331  0.0063   0.2080   1.2625  ** 
## n_repetitions_sentence    0.0039  0.0135   0.2880  0.7734  -0.0225   0.0303     
## mean_age                 -0.0004  0.0002  -2.1317  0.0330  -0.0008  -0.0000   * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age_interaction <- rma.mv(d_calc ~ n_repetitions_sentence * mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_rep_age_interaction)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -158.1721   316.3442   326.3442   337.8645   327.2266   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2240  0.4733     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 74) = 393.4213, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.8389, p-val = 0.0495
## 
## Model Results:
## 
##                                  estimate      se     zval    pval    ci.lb 
## intrcpt                            0.4159  0.3576   1.1632  0.2448  -0.2849 
## n_repetitions_sentence             0.0351  0.0270   1.2994  0.1938  -0.0178 
## mean_age                           0.0000  0.0004   0.0419  0.9666  -0.0007 
## n_repetitions_sentence:mean_age   -0.0000  0.0000  -1.3408  0.1800  -0.0001 
##                                   ci.ub 
## intrcpt                          1.1167    
## n_repetitions_sentence           0.0880    
## mean_age                         0.0007    
## n_repetitions_sentence:mean_age  0.0000    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

< 36, young only

ma_data_young %>% 
  ggplot(aes(x = n_repetitions_sentence, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("number of reptition in sentence") +
  ggtitle("Syntactical Bootstrapping effect size vs. number of sentence repetition, young only") 

m_rep_young <- rma.mv(d_calc ~ n_repetitions_sentence, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_rep_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -115.0254   230.0508   236.0508   242.0727   236.5213   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3061  0.5533     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 55) = 301.9470, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 0.4143, p-val = 0.5198
## 
## Model Results:
## 
##                         estimate      se    zval    pval    ci.lb   ci.ub 
## intrcpt                   0.3186  0.1995  1.5974  0.1102  -0.0723  0.7095    
## n_repetitions_sentence    0.0090  0.0140  0.6437  0.5198  -0.0184  0.0365    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age_young <- rma.mv(d_calc ~ n_repetitions_sentence + mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_rep_age_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -114.6909   229.3817   237.3817   245.3376   238.1980   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3048  0.5521     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 54) = 296.5847, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.5337, p-val = 0.7658
## 
## Model Results:
## 
##                         estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                   0.4734  0.4891   0.9681  0.3330  -0.4851  1.4320    
## n_repetitions_sentence    0.0072  0.0149   0.4859  0.6271  -0.0220  0.0364    
## mean_age                 -0.0002  0.0005  -0.3465  0.7290  -0.0012  0.0008    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age_interaction_young <- rma.mv(d_calc ~ n_repetitions_sentence * mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_rep_age_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -112.7315   225.4630   235.4630   245.3145   236.7396   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3118  0.5584     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 53) = 293.9522, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 3.5403, p-val = 0.3156
## 
## Model Results:
## 
##                                  estimate      se     zval    pval    ci.lb 
## intrcpt                           -1.3840  1.1765  -1.1764  0.2395  -3.6899 
## n_repetitions_sentence             0.1412  0.0786   1.7958  0.0725  -0.0129 
## mean_age                           0.0024  0.0016   1.5307  0.1258  -0.0007 
## n_repetitions_sentence:mean_age   -0.0002  0.0001  -1.7343  0.0829  -0.0004 
##                                   ci.ub 
## intrcpt                          0.9219    
## n_repetitions_sentence           0.2952  . 
## mean_age                         0.0056    
## n_repetitions_sentence:mean_age  0.0000  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old only

ma_data_old %>% 
  ggplot(aes(x = n_repetitions_sentence, y = d_calc, size = n_1)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("number of reptition in sentence") +
  ggtitle("Syntactical Bootstrapping effect size vs. number of sentence repetition, old only") 

m_rep_old <- rma.mv(d_calc ~ n_repetitions_sentence, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_rep_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -41.0872   82.1744   88.1744   91.0077   89.7744   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 19) = 98.8189, p-val < .0001
## 
## Test of Moderators (coefficient 2):
## QM(df = 1) = 7.5277, p-val = 0.0061
## 
## Model Results:
## 
##                         estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt                   0.5724  0.0941   6.0814  <.0001   0.3880   0.7569 
## n_repetitions_sentence   -0.0481  0.0175  -2.7437  0.0061  -0.0825  -0.0137 
##  
## intrcpt                 *** 
## n_repetitions_sentence   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age_old <- rma.mv(d_calc ~ n_repetitions_sentence + mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_rep_age_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -40.8188   81.6376   89.6376   93.1991   92.7145   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 97.2874, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 9.0593, p-val = 0.0108
## 
## Model Results:
## 
##                         estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt                   1.1226  0.4544   2.4705  0.0135   0.2320   2.0132   * 
## n_repetitions_sentence   -0.0544  0.0183  -2.9806  0.0029  -0.0902  -0.0186  ** 
## mean_age                 -0.0004  0.0003  -1.2376  0.2159  -0.0010   0.0002     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_age_interaction_old <- rma.mv(d_calc ~ n_repetitions_sentence * mean_age, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_rep_age_interaction_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -40.3381   80.6762   90.6762   94.8422   96.1307   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 17) = 95.2713, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 11.0754, p-val = 0.0113
## 
## Model Results:
## 
##                                  estimate      se     zval    pval    ci.lb 
## intrcpt                           -1.4789  1.8877  -0.7834  0.4334  -5.1786 
## n_repetitions_sentence             0.7936  0.5975   1.3281  0.1841  -0.3776 
## mean_age                           0.0017  0.0015   1.1368  0.2556  -0.0012 
## n_repetitions_sentence:mean_age   -0.0007  0.0005  -1.4199  0.1556  -0.0016 
##                                   ci.ub 
## intrcpt                          2.2209    
## n_repetitions_sentence           1.9648    
## mean_age                         0.0047    
## n_repetitions_sentence:mean_age  0.0003    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

add vocab in

m_rep_v_r <- rma.mv(d_calc ~ n_repetitions_sentence + productive_vocab_median, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_rep_v_r)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.7330  151.4661  159.4661  165.4521  160.8947   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2836  0.5326      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 159.3444, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.8381, p-val = 0.0327
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    0.6930  0.4049   1.7117  0.0870  -0.1005  1.4866  . 
## n_repetitions_sentence     0.0084  0.0188   0.4458  0.6557  -0.0285  0.0453    
## productive_vocab_median   -0.0056  0.0029  -1.9416  0.0522  -0.0113  0.0001  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_rep_v_r_interaction <- rma.mv(d_calc ~ n_repetitions_sentence *productive_vocab_median, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_rep_v_r)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.7330  151.4661  159.4661  165.4521  160.8947   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2836  0.5326      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 159.3444, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.8381, p-val = 0.0327
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    0.6930  0.4049   1.7117  0.0870  -0.1005  1.4866  . 
## n_repetitions_sentence     0.0084  0.0188   0.4458  0.6557  -0.0285  0.0453    
## productive_vocab_median   -0.0056  0.0029  -1.9416  0.0522  -0.0113  0.0001  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Visual stimuli

stimuli_modality(video vs animation)

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_modality)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli modality") 

m_stim_mod<- rma.mv(d_calc ~ mean_age + stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_stim_mod)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -158.6951   317.3902   325.3902   334.6602   325.9616   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2331  0.4828     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 75) = 403.1084, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.6119, p-val = 0.0367
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                  0.8196  0.2004   4.0903  <.0001   0.4269  1.2123  *** 
## mean_age                -0.0003  0.0002  -1.2782  0.2012  -0.0008  0.0002      
## stimuli_modalityvideo   -0.1615  0.2028  -0.7963  0.4259  -0.5589  0.2360      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_mod_interaction<- rma.mv(d_calc ~ mean_age * stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_stim_mod_interaction)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -158.0371   316.0741   326.0741   337.5945   326.9565   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2414  0.4913     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 74) = 401.1491, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 6.6140, p-val = 0.0853
## 
## Model Results:
## 
##                                 estimate      se     zval    pval    ci.lb 
## intrcpt                           0.8050  0.3028   2.6589  0.0078   0.2116 
## mean_age                         -0.0003  0.0003  -0.9355  0.3495  -0.0009 
## stimuli_modalityvideo            -0.1230  0.6059  -0.2029  0.8392  -1.3104 
## mean_age:stimuli_modalityvideo   -0.0000  0.0006  -0.0674  0.9463  -0.0012 
##                                  ci.ub 
## intrcpt                         1.3984  ** 
## mean_age                        0.0003     
## stimuli_modalityvideo           1.0645     
## mean_age:stimuli_modalityvideo  0.0011     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

< 36, young only

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_modality)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli modality, young") 

m_stim_mod_young<- rma.mv(d_calc ~ mean_age + stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_stim_mod_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -114.3211   228.6423   236.6423   244.5982   237.4586   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3085  0.5555     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 54) = 295.5997, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.4061, p-val = 0.8162
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                  0.5570  0.4303   1.2944  0.1955  -0.2864  1.4004    
## mean_age                 0.0000  0.0010   0.0137  0.9890  -0.0019  0.0019    
## stimuli_modalityvideo   -0.1690  0.5071  -0.3333  0.7389  -1.1628  0.8249    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_mod_interaction_young <- rma.mv(d_calc ~ mean_age * stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_stim_mod_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -114.5329   229.0657   239.0657   248.9172   240.3423   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3156  0.5617     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 53) = 295.5042, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 0.4654, p-val = 0.9264
## 
## Model Results:
## 
##                                 estimate      se     zval    pval    ci.lb 
## intrcpt                           0.7876  1.0585   0.7441  0.4568  -1.2870 
## mean_age                         -0.0004  0.0020  -0.1999  0.8416  -0.0043 
## stimuli_modalityvideo            -0.5095  1.4791  -0.3445  0.7305  -3.4085 
## mean_age:stimuli_modalityvideo    0.0006  0.0023   0.2416  0.8091  -0.0039 
##                                  ci.ub 
## intrcpt                         2.8622    
## mean_age                        0.0035    
## stimuli_modalityvideo           2.3895    
## mean_age:stimuli_modalityvideo  0.0050    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old only

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_modality)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli modality, old") 

m_stim_mod_old<- rma.mv(d_calc ~ mean_age + stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_stim_mod_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.1965   84.3930   92.3930   95.9545   95.4699   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0369  0.1921      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 101.8392, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.7115, p-val = 0.4250
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                  1.0341  0.5567   1.8574  0.0633  -0.0571  2.1252  . 
## mean_age                -0.0004  0.0004  -1.1622  0.2451  -0.0011  0.0003    
## stimuli_modalityvideo   -0.2197  0.2500  -0.8788  0.3795  -0.7098  0.2703    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_mod_interaction_old <- rma.mv(d_calc ~ mean_age * stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_stim_mod_interaction_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.1137   84.2273   94.2273   98.3934   99.6819   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0520  0.2280      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 17) = 101.0787, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 2.0317, p-val = 0.5658
## 
## Model Results:
## 
##                                 estimate      se     zval    pval    ci.lb 
## intrcpt                           0.8948  0.5997   1.4921  0.1357  -0.2806 
## mean_age                         -0.0003  0.0004  -0.8408  0.4005  -0.0011 
## stimuli_modalityvideo             0.9144  1.5946   0.5734  0.5664  -2.2111 
## mean_age:stimuli_modalityvideo   -0.0009  0.0012  -0.7191  0.4721  -0.0033 
##                                  ci.ub 
## intrcpt                         2.0702    
## mean_age                        0.0004    
## stimuli_modalityvideo           4.0398    
## mean_age:stimuli_modalityvideo  0.0015    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab

ma_data_vocab %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = stimuli_modality)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median vocab, breakdown by stimuli modality, vocab") 

m_stim_mod_v <- rma.mv(d_calc ~ productive_vocab_median + stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_stim_mod_v)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.4588  150.9176  158.9176  164.9036  160.3462   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2748  0.5242      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 157.9163, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.6714, p-val = 0.0356
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    0.8217  0.2738   3.0015  0.0027   0.2851  1.3583  ** 
## productive_vocab_median   -0.0068  0.0056  -1.2116  0.2257  -0.0178  0.0042     
## stimuli_modalityvideo      0.0335  0.3609   0.0929  0.9260  -0.6739  0.7410     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_mod_intereaction_v <- rma.mv(d_calc ~ productive_vocab_median * stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_stim_mod_intereaction_v)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.4841  150.9683  160.9683  168.2970  163.2760   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2683  0.5180      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 157.2698, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.1748, p-val = 0.0665
## 
## Model Results:
## 
##                                                estimate      se     zval 
## intrcpt                                          0.3538  0.7239   0.4888 
## productive_vocab_median                          0.0164  0.0339   0.4842 
## stimuli_modalityvideo                            0.5379  0.8058   0.6676 
## productive_vocab_median:stimuli_modalityvideo   -0.0239  0.0344  -0.6956 
##                                                  pval    ci.lb   ci.ub 
## intrcpt                                        0.6250  -1.0650  1.7727    
## productive_vocab_median                        0.6282  -0.0500  0.0829    
## stimuli_modalityvideo                          0.5044  -1.0413  2.1172    
## productive_vocab_median:stimuli_modalityvideo  0.4867  -0.0913  0.0435    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab age comparison

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_modality)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli modality, age compare vocab") 

m_stim_mod_v_a<- rma.mv(d_calc ~ mean_age + stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_stim_mod_v_a)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -74.8182  149.6365  157.6365  163.6225  159.0650   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2710  0.5206      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 159.2098, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.7842, p-val = 0.0204
## 
## Model Results:
## 
##                        estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                  1.0151  0.2898   3.5023  0.0005   0.4470  1.5831  *** 
## mean_age                -0.0011  0.0007  -1.6082  0.1078  -0.0025  0.0003      
## stimuli_modalityvideo    0.4087  0.5031   0.8125  0.4165  -0.5773  1.3948      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_mod_interaction_v_a <- rma.mv(d_calc ~ mean_age * stimuli_modality, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_stim_mod_interaction_v_a)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.0369  150.0739  160.0739  167.4026  162.3816   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2728  0.5223      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 159.1169, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.9359, p-val = 0.0474
## 
## Model Results:
## 
##                                 estimate      se     zval    pval    ci.lb 
## intrcpt                           0.6030  1.0757   0.5606  0.5751  -1.5052 
## mean_age                         -0.0004  0.0020  -0.1999  0.8416  -0.0043 
## stimuli_modalityvideo             0.9083  1.3540   0.6709  0.5023  -1.7454 
## mean_age:stimuli_modalityvideo   -0.0009  0.0021  -0.3979  0.6907  -0.0050 
##                                  ci.ub 
## intrcpt                         2.7113    
## mean_age                        0.0035    
## stimuli_modalityvideo           3.5621    
## mean_age:stimuli_modalityvideo  0.0033    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

stimuli_actor (person vs non-person)

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_actor)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli actor, all") 

m_stim_actor_age <- rma.mv(d_calc ~ mean_age + stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_stim_actor_age)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -158.9327   317.8654   325.8654   335.1353   326.4368   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2380  0.4879     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 75) = 402.0529, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.3334, p-val = 0.0421
## 
## Model Results:
## 
##                      estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                0.7749  0.1980   3.9136  <.0001   0.3868  1.1630  *** 
## mean_age              -0.0004  0.0002  -1.6349  0.1021  -0.0008  0.0001      
## stimuli_actorperson   -0.0971  0.1639  -0.5925  0.5535  -0.4184  0.2241      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_actor_age_interaction <- rma.mv(d_calc ~ mean_age * stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_stim_actor_age_interaction)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -158.0494   316.0987   326.0987   337.6191   326.9811   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2337  0.4834     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 74) = 393.2653, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 6.7602, p-val = 0.0799
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.6378  0.2873   2.2195  0.0265   0.0746 
## mean_age                       -0.0002  0.0003  -0.7799  0.4354  -0.0008 
## stimuli_actorperson             0.2851  0.6064   0.4702  0.6382  -0.9034 
## mean_age:stimuli_actorperson   -0.0004  0.0006  -0.6543  0.5129  -0.0016 
##                                ci.ub 
## intrcpt                       1.2009  * 
## mean_age                      0.0003    
## stimuli_actorperson           1.4737    
## mean_age:stimuli_actorperson  0.0008    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

< 36, young only

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_actor)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli actor, young") 

m_stim_actor_age_young <- rma.mv(d_calc ~ mean_age + stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_stim_actor_age_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -114.4670   228.9340   236.9340   244.8899   237.7503   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3085  0.5554     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 54) = 296.5893, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.3155, p-val = 0.8541
## 
## Model Results:
## 
##                      estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                0.6312  0.4263   1.4808  0.1387  -0.2042  1.4667    
## mean_age              -0.0003  0.0006  -0.5047  0.6138  -0.0016  0.0009    
## stimuli_actorperson    0.0387  0.2706   0.1429  0.8864  -0.4918  0.5691    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_actor_age_interaction_young <- rma.mv(d_calc ~ mean_age * stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_stim_actor_age_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -113.4216   226.8432   236.8432   246.6946   238.1198   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3492  0.5910     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 53) = 290.5912, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 0.6425, p-val = 0.8866
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         1.0220  0.7973   1.2819  0.1999  -0.5407 
## mean_age                       -0.0008  0.0011  -0.7531  0.4514  -0.0030 
## stimuli_actorperson            -0.8348  1.4629  -0.5706  0.5683  -3.7021 
## mean_age:stimuli_actorperson    0.0011  0.0019   0.6016  0.5474  -0.0026 
##                                ci.ub 
## intrcpt                       2.5847    
## mean_age                      0.0013    
## stimuli_actorperson           2.0325    
## mean_age:stimuli_actorperson  0.0048    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old only

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_actor)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli actor, old") 

m_stim_actor_age_old <- rma.mv(d_calc ~ mean_age + stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)

summary(m_stim_actor_age_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -40.0417   80.0835   88.0835   91.6450   91.1604   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 95.8384, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 10.5082, p-val = 0.0052
## 
## Model Results:
## 
##                      estimate      se     zval    pval    ci.lb    ci.ub 
## intrcpt                0.8301  0.4191   1.9805  0.0476   0.0086   1.6515   * 
## mean_age              -0.0003  0.0003  -0.9066  0.3646  -0.0009   0.0003     
## stimuli_actorperson   -0.4097  0.1275  -3.2145  0.0013  -0.6595  -0.1599  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_actor_age_interaction_old <- rma.mv(d_calc ~ mean_age * stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)

summary(m_stim_actor_age_interaction_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -40.3879   80.7757   90.7757   94.9418   96.2303   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 17) = 95.5607, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 10.7860, p-val = 0.0129
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.8938  0.4362   2.0490  0.0405   0.0388 
## mean_age                       -0.0003  0.0003  -1.0180  0.3087  -0.0009 
## stimuli_actorperson            -1.1870  1.4804  -0.8018  0.4227  -4.0885 
## mean_age:stimuli_actorperson    0.0006  0.0011   0.5270  0.5982  -0.0016 
##                                ci.ub 
## intrcpt                       1.7487  * 
## mean_age                      0.0003    
## stimuli_actorperson           1.7145    
## mean_age:stimuli_actorperson  0.0028    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = stimuli_actor)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli actor, vocab") 

m_stim_actor_vocab <- rma.mv(d_calc ~ productive_vocab_median + stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_stim_actor_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.4588  150.9176  158.9176  164.9036  160.3462   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2748  0.5242      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 157.9163, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.6714, p-val = 0.0356
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    0.8217  0.2738   3.0015  0.0027   0.2851  1.3583  ** 
## productive_vocab_median   -0.0068  0.0056  -1.2116  0.2257  -0.0178  0.0042     
## stimuli_actorperson        0.0335  0.3609   0.0929  0.9260  -0.6739  0.7410     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_actor_vocab_interaction <- rma.mv(d_calc ~ productive_vocab_median * stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_stim_actor_vocab_interaction)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.4841  150.9683  160.9683  168.2970  163.2760   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2683  0.5180      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 157.2698, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.1748, p-val = 0.0665
## 
## Model Results:
## 
##                                              estimate      se     zval    pval 
## intrcpt                                        0.3538  0.7239   0.4888  0.6250 
## productive_vocab_median                        0.0164  0.0339   0.4842  0.6282 
## stimuli_actorperson                            0.5379  0.8058   0.6676  0.5044 
## productive_vocab_median:stimuli_actorperson   -0.0239  0.0344  -0.6956  0.4867 
##                                                ci.lb   ci.ub 
## intrcpt                                      -1.0650  1.7727    
## productive_vocab_median                      -0.0500  0.0829    
## stimuli_actorperson                          -1.0413  2.1172    
## productive_vocab_median:stimuli_actorperson  -0.0913  0.0435    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab age comparison

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = stimuli_actor)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by stimuli actor, age vocab comparison") 

m_stim_actor_vocab_a <- rma.mv(d_calc ~ mean_age + stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_stim_actor_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -74.8182  149.6365  157.6365  163.6225  159.0650   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2710  0.5206      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 159.2098, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.7842, p-val = 0.0204
## 
## Model Results:
## 
##                      estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                1.0151  0.2898   3.5023  0.0005   0.4470  1.5831  *** 
## mean_age              -0.0011  0.0007  -1.6082  0.1078  -0.0025  0.0003      
## stimuli_actorperson    0.4087  0.5031   0.8125  0.4165  -0.5773  1.3948      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_stim_actor_vocab_interaction_a <- rma.mv(d_calc ~ mean_age * stimuli_actor, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_stim_actor_vocab_interaction_a)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.0369  150.0739  160.0739  167.4026  162.3816   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2728  0.5223      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 159.1169, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.9359, p-val = 0.0474
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.6030  1.0757   0.5606  0.5751  -1.5052 
## mean_age                       -0.0004  0.0020  -0.1999  0.8416  -0.0043 
## stimuli_actorperson             0.9083  1.3540   0.6709  0.5023  -1.7454 
## mean_age:stimuli_actorperson   -0.0009  0.0021  -0.3979  0.6907  -0.0050 
##                                ci.ub 
## intrcpt                       2.7113    
## mean_age                      0.0035    
## stimuli_actorperson           3.5621    
## mean_age:stimuli_actorperson  0.0033    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

transitive_event (indirect_caused_action vs direct caused action)

ma_data %>% count(transitive_event_type)
## # A tibble: 3 x 2
##   transitive_event_type      n
##   <chr>                  <int>
## 1 direct_caused_action      43
## 2 indirect_caused_action    31
## 3 minimal_contact            4
m_data_transtivity <- ma_data %>% 
  filter(transitive_event_type != "minimal_contact") 

m_data_transtivity_young <- ma_data %>% 
  filter(transitive_event_type != "minimal_contact") %>% 
  mutate(age_months = mean_age/30.44) %>% 
  filter(age_months < 36) 

m_data_transtivity_old <- ma_data %>% 
  filter(transitive_event_type != "minimal_contact") %>% 
  mutate(age_months = mean_age/30.44) %>% 
  filter(age_months > 36 | age_months == 36) 

m_data_transitivity_vocab <- ma_data_vocab %>% 
    filter(transitive_event_type != "minimal_contact") 

all

m_data_transtivity %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = transitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by transitive_event_type") 

m_age_vs_tran <- rma.mv(d_calc ~ mean_age + transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_transtivity)

summary(m_age_vs_tran)
## 
## Multivariate Meta-Analysis Model (k = 74; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -144.6545   289.3089   297.3089   306.3597   297.9150   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2260  0.4754     20     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 71) = 368.4407, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.2996, p-val = 0.0429
## 
## Model Results:
## 
##                                              estimate      se     zval    pval 
## intrcpt                                        0.8247  0.1986   4.1529  <.0001 
## mean_age                                      -0.0005  0.0002  -2.5000  0.0124 
## transitive_event_typeindirect_caused_action    0.0844  0.1632   0.5172  0.6050 
##                                                ci.lb    ci.ub 
## intrcpt                                       0.4355   1.2139  *** 
## mean_age                                     -0.0008  -0.0001    * 
## transitive_event_typeindirect_caused_action  -0.2355   0.4043      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_transtivity_interaction <- rma.mv(d_calc ~ mean_age * transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_transtivity)
summary(m_data_transtivity_interaction)
## 
## Multivariate Meta-Analysis Model (k = 74; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -144.6319   289.2638   299.2638   310.5063   300.2013   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2283  0.4778     20     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 70) = 367.6109, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 6.2955, p-val = 0.0981
## 
## Model Results:
## 
##                                                       estimate      se     zval 
## intrcpt                                                 0.8245  0.2300   3.5855 
## mean_age                                               -0.0005  0.0002  -1.9619 
## transitive_event_typeindirect_caused_action             0.0849  0.3511   0.2419 
## mean_age:transitive_event_typeindirect_caused_action   -0.0000  0.0004  -0.0037 
##                                                         pval    ci.lb    ci.ub 
## intrcpt                                               0.0003   0.3738   1.2752 
## mean_age                                              0.0498  -0.0009  -0.0000 
## transitive_event_typeindirect_caused_action           0.8089  -0.6032   0.7730 
## mean_age:transitive_event_typeindirect_caused_action  0.9971  -0.0007   0.0007 
##  
## intrcpt                                               *** 
## mean_age                                                * 
## transitive_event_typeindirect_caused_action 
## mean_age:transitive_event_typeindirect_caused_action 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

young < 36

m_data_transtivity_young %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = transitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by transitive_event_type") 

m_age_vs_tran_young <- rma.mv(d_calc ~ mean_age + transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_transtivity_young)

summary(m_age_vs_tran_young)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -99.7575  199.5150  207.5150  215.1631  208.4039   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2758  0.5252     16     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 50) = 258.1989, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.4673, p-val = 0.4802
## 
## Model Results:
## 
##                                              estimate      se     zval    pval 
## intrcpt                                        0.5677  0.4012   1.4149  0.1571 
## mean_age                                      -0.0002  0.0005  -0.4144  0.6785 
## transitive_event_typeindirect_caused_action    0.2494  0.2237   1.1147  0.2650 
##                                                ci.lb   ci.ub 
## intrcpt                                      -0.2187  1.3540    
## mean_age                                     -0.0011  0.0007    
## transitive_event_typeindirect_caused_action  -0.1891  0.6879    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_transtivity_interaction_young <- rma.mv(d_calc ~ mean_age * transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_transtivity_young)
summary(m_data_transtivity_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 53; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -97.4589  194.9179  204.9179  214.3770  206.3132   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2572  0.5072     16     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 49) = 250.8411, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 4.9858, p-val = 0.1728
## 
## Model Results:
## 
##                                                       estimate      se     zval 
## intrcpt                                                 0.7291  0.4077   1.7885 
## mean_age                                               -0.0004  0.0005  -0.8587 
## transitive_event_typeindirect_caused_action            -1.9091  1.1894  -1.6052 
## mean_age:transitive_event_typeindirect_caused_action    0.0035  0.0019   1.8523 
##                                                         pval    ci.lb   ci.ub 
## intrcpt                                               0.0737  -0.0699  1.5281 
## mean_age                                              0.3905  -0.0014  0.0005 
## transitive_event_typeindirect_caused_action           0.1085  -4.2403  0.4220 
## mean_age:transitive_event_typeindirect_caused_action  0.0640  -0.0002  0.0071 
##  
## intrcpt                                               . 
## mean_age 
## transitive_event_typeindirect_caused_action 
## mean_age:transitive_event_typeindirect_caused_action  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

old > 36

m_data_transtivity_old %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = transitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by transitive_event_type") 

m_age_vs_tran_old <- rma.mv(d_calc ~ mean_age + transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_transtivity_old)

summary(m_age_vs_tran_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.9543   85.9086   93.9086   97.4701   96.9855   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0458  0.2140      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 105.9616, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.1174, p-val = 0.5719
## 
## Model Results:
## 
##                                              estimate      se     zval    pval 
## intrcpt                                        0.7602  0.4770   1.5936  0.1110 
## mean_age                                      -0.0003  0.0004  -0.8078  0.4192 
## transitive_event_typeindirect_caused_action   -0.0836  0.2046  -0.4085  0.6829 
##                                                ci.lb   ci.ub 
## intrcpt                                      -0.1747  1.6951    
## mean_age                                     -0.0010  0.0004    
## transitive_event_typeindirect_caused_action  -0.4847  0.3175    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_transtivity_interaction_old <- rma.mv(d_calc ~ mean_age * transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_transtivity_old)
summary(m_data_transtivity_interaction_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -43.1206   86.2412   96.2412  100.4073  101.6958   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0565  0.2377      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 17) = 105.0587, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 1.3965, p-val = 0.7064
## 
## Model Results:
## 
##                                                       estimate      se     zval 
## intrcpt                                                 2.2852  3.0396   0.7518 
## mean_age                                               -0.0016  0.0025  -0.6195 
## transitive_event_typeindirect_caused_action            -1.6640  3.1208  -0.5332 
## mean_age:transitive_event_typeindirect_caused_action    0.0013  0.0026   0.5050 
##                                                         pval    ci.lb   ci.ub 
## intrcpt                                               0.4522  -3.6723  8.2428 
## mean_age                                              0.5356  -0.0065  0.0034 
## transitive_event_typeindirect_caused_action           0.5939  -7.7806  4.4525 
## mean_age:transitive_event_typeindirect_caused_action  0.6136  -0.0037  0.0063 
##  
## intrcpt 
## mean_age 
## transitive_event_typeindirect_caused_action 
## mean_age:transitive_event_typeindirect_caused_action 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab

m_data_transitivity_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = transitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median vocab, breakdown by transitive_event_type") 

m_age_vs_tran_vocab <- rma.mv(d_calc ~ productive_vocab_median + transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_transitivity_vocab)

summary(m_age_vs_tran_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.9543   85.9086   93.9086   97.4701   96.9855   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0458  0.2140      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 105.9616, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.1174, p-val = 0.5719
## 
## Model Results:
## 
##                                              estimate      se     zval    pval 
## intrcpt                                        0.7602  0.4770   1.5936  0.1110 
## mean_age                                      -0.0003  0.0004  -0.8078  0.4192 
## transitive_event_typeindirect_caused_action   -0.0836  0.2046  -0.4085  0.6829 
##                                                ci.lb   ci.ub 
## intrcpt                                      -0.1747  1.6951    
## mean_age                                     -0.0010  0.0004    
## transitive_event_typeindirect_caused_action  -0.4847  0.3175    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_transtivity_interaction_vocab <- rma.mv(d_calc ~ productive_vocab_median * transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_transitivity_vocab)
summary(m_data_transtivity_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.6234  151.2468  161.2468  168.5755  163.5545   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2476  0.4976      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 156.6708, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.6262, p-val = 0.0544
## 
## Model Results:
## 
##                                                                      estimate 
## intrcpt                                                                0.7493 
## productive_vocab_median                                               -0.0057 
## transitive_event_typeindirect_caused_action                            0.3145 
## productive_vocab_median:transitive_event_typeindirect_caused_action   -0.0045 
##                                                                          se 
## intrcpt                                                              0.2667 
## productive_vocab_median                                              0.0029 
## transitive_event_typeindirect_caused_action                          0.3352 
## productive_vocab_median:transitive_event_typeindirect_caused_action  0.0056 
##                                                                         zval 
## intrcpt                                                               2.8096 
## productive_vocab_median                                              -1.9843 
## transitive_event_typeindirect_caused_action                           0.9385 
## productive_vocab_median:transitive_event_typeindirect_caused_action  -0.8111 
##                                                                        pval 
## intrcpt                                                              0.0050 
## productive_vocab_median                                              0.0472 
## transitive_event_typeindirect_caused_action                          0.3480 
## productive_vocab_median:transitive_event_typeindirect_caused_action  0.4173 
##                                                                        ci.lb 
## intrcpt                                                               0.2266 
## productive_vocab_median                                              -0.0113 
## transitive_event_typeindirect_caused_action                          -0.3423 
## productive_vocab_median:transitive_event_typeindirect_caused_action  -0.0154 
##                                                                        ci.ub 
## intrcpt                                                               1.2720 
## productive_vocab_median                                              -0.0001 
## transitive_event_typeindirect_caused_action                           0.9714 
## productive_vocab_median:transitive_event_typeindirect_caused_action   0.0064 
##  
## intrcpt                                                              ** 
## productive_vocab_median                                               * 
## transitive_event_typeindirect_caused_action 
## productive_vocab_median:transitive_event_typeindirect_caused_action 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab age comparsion

m_data_transitivity_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = mean_age, y = d_calc, size = n_1, color = transitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by transitive_event_type") 

m_age_vs_tran_vocab <- rma.mv(d_calc ~ mean_age + transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_transitivity_vocab)

summary(m_age_vs_tran_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.9543   85.9086   93.9086   97.4701   96.9855   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0458  0.2140      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 105.9616, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.1174, p-val = 0.5719
## 
## Model Results:
## 
##                                              estimate      se     zval    pval 
## intrcpt                                        0.7602  0.4770   1.5936  0.1110 
## mean_age                                      -0.0003  0.0004  -0.8078  0.4192 
## transitive_event_typeindirect_caused_action   -0.0836  0.2046  -0.4085  0.6829 
##                                                ci.lb   ci.ub 
## intrcpt                                      -0.1747  1.6951    
## mean_age                                     -0.0010  0.0004    
## transitive_event_typeindirect_caused_action  -0.4847  0.3175    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_transtivity_interaction_vocab <- rma.mv(d_calc ~ mean_age * transitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_transitivity_vocab)
summary(m_data_transtivity_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.6083  151.2166  161.2166  168.5453  163.5243   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2580  0.5079      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 157.2607, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 8.2242, p-val = 0.0416
## 
## Model Results:
## 
##                                                       estimate      se     zval 
## intrcpt                                                 0.8727  0.2981   2.9271 
## mean_age                                               -0.0005  0.0002  -2.1340 
## transitive_event_typeindirect_caused_action             0.5385  0.5198   1.0360 
## mean_age:transitive_event_typeindirect_caused_action   -0.0006  0.0006  -0.9761 
##                                                         pval    ci.lb    ci.ub 
## intrcpt                                               0.0034   0.2883   1.4571 
## mean_age                                              0.0328  -0.0010  -0.0000 
## transitive_event_typeindirect_caused_action           0.3002  -0.4803   1.5574 
## mean_age:transitive_event_typeindirect_caused_action  0.3290  -0.0017   0.0006 
##  
## intrcpt                                               ** 
## mean_age                                               * 
## transitive_event_typeindirect_caused_action 
## mean_age:transitive_event_typeindirect_caused_action 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

intransitive_event (one vs parallel)

ma_data %>% count(intransitive_event_type) 
## # A tibble: 3 x 2
##   intransitive_event_type     n
##   <chr>                   <int>
## 1 minimal_contact             5
## 2 one_action                 32
## 3 parallel_actions           41
m_data_intran <- ma_data %>% 
  filter(intransitive_event_type != "minimal_contact") 

m_data_intran_young <- ma_data %>% 
  filter(intransitive_event_type != "minimal_contact") %>% 
  mutate(age_months = mean_age/30.44) %>% 
  filter(age_months < 36) 

m_data_intran_old <- ma_data %>% 
  filter(intransitive_event_type != "minimal_contact") %>% 
  mutate(age_months = mean_age/30.44) %>% 
  filter(age_months > 36 | age_months == 36) 

m_data_intran_vocab <- ma_data_vocab %>% 
    filter(intransitive_event_type != "minimal_contact") 

all

m_data_intran %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = intransitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by intransitive_event_type") 

m_age_vs_intran <- rma.mv(d_calc ~ mean_age + intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_intran)

summary(m_age_vs_intran)
## 
## Multivariate Meta-Analysis Model (k = 73; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -157.1378   314.2756   322.2756   331.2696   322.8910   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2149  0.4636     19     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 70) = 388.0187, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.4764, p-val = 0.0392
## 
## Model Results:
## 
##                                          estimate      se     zval    pval 
## intrcpt                                    0.7910  0.2047   3.8647  0.0001 
## mean_age                                  -0.0005  0.0002  -2.5439  0.0110 
## intransitive_event_typeparallel_actions    0.0891  0.1358   0.6563  0.5116 
##                                            ci.lb    ci.ub 
## intrcpt                                   0.3898   1.1921  *** 
## mean_age                                 -0.0008  -0.0001    * 
## intransitive_event_typeparallel_actions  -0.1771   0.3554      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_intranstivity_interaction <- rma.mv(d_calc ~ mean_age * intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_intran)
summary(m_data_intranstivity_interaction)
## 
## Multivariate Meta-Analysis Model (k = 73; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -156.6472   313.2945   323.2945   334.4650   324.2468   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2171  0.4660     19     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 69) = 383.7100, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 6.9533, p-val = 0.0734
## 
## Model Results:
## 
##                                                   estimate      se     zval 
## intrcpt                                             0.6804  0.2606   2.6108 
## mean_age                                           -0.0003  0.0003  -1.0063 
## intransitive_event_typeparallel_actions             0.2749  0.3016   0.9116 
## mean_age:intransitive_event_typeparallel_actions   -0.0003  0.0004  -0.6901 
##                                                     pval    ci.lb   ci.ub 
## intrcpt                                           0.0090   0.1696  1.1912  ** 
## mean_age                                          0.3143  -0.0009  0.0003     
## intransitive_event_typeparallel_actions           0.3620  -0.3161  0.8660     
## mean_age:intransitive_event_typeparallel_actions  0.4901  -0.0010  0.0005     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

young < 36

m_data_intran_young %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = intransitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by intransitive_event_type, young") 

m_age_vs_intran_young <- rma.mv(d_calc ~ mean_age + intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_intran_young)

summary(m_age_vs_intran_young)
## 
## Multivariate Meta-Analysis Model (k = 52; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -112.9516   225.9032   233.9032   241.4705   234.8123   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2732  0.5227     15     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 49) = 276.2829, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.8869, p-val = 0.6418
## 
## Model Results:
## 
##                                          estimate      se     zval    pval 
## intrcpt                                    0.6156  0.3952   1.5575  0.1193 
## mean_age                                  -0.0003  0.0005  -0.6536  0.5134 
## intransitive_event_typeparallel_actions    0.1233  0.1485   0.8301  0.4065 
##                                            ci.lb   ci.ub 
## intrcpt                                  -0.1591  1.3903    
## mean_age                                 -0.0013  0.0007    
## intransitive_event_typeparallel_actions  -0.1678  0.4144    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_intranstivity_interaction_young <- rma.mv(d_calc ~ mean_age * intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_intran_young)
summary(m_data_intranstivity_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 52; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -112.5331   225.0662   235.0662   244.4222   236.4948   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2844  0.5333     15     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 48) = 276.1644, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 0.9631, p-val = 0.8102
## 
## Model Results:
## 
##                                                   estimate      se     zval 
## intrcpt                                             0.7851  0.6779   1.1582 
## mean_age                                           -0.0006  0.0011  -0.5829 
## intransitive_event_typeparallel_actions            -0.0844  0.6843  -0.1233 
## mean_age:intransitive_event_typeparallel_actions    0.0004  0.0011   0.3094 
##                                                     pval    ci.lb   ci.ub 
## intrcpt                                           0.2468  -0.5435  2.1137    
## mean_age                                          0.5600  -0.0027  0.0014    
## intransitive_event_typeparallel_actions           0.9019  -1.4255  1.2568    
## mean_age:intransitive_event_typeparallel_actions  0.7570  -0.0019  0.0026    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

old > 36

m_data_intran_old %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = intransitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by intransitive_event_type, old") 

m_age_vs_intran_old <- rma.mv(d_calc ~ mean_age + intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_intran_old)

summary(m_age_vs_intran_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.1965   84.3930   92.3930   95.9545   95.4699   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0369  0.1921      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 101.8392, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 1.7115, p-val = 0.4250
## 
## Model Results:
## 
##                                          estimate      se     zval    pval 
## intrcpt                                    1.0341  0.5567   1.8574  0.0633 
## mean_age                                  -0.0004  0.0004  -1.1622  0.2451 
## intransitive_event_typeparallel_actions   -0.2197  0.2500  -0.8788  0.3795 
##                                            ci.lb   ci.ub 
## intrcpt                                  -0.0571  2.1252  . 
## mean_age                                 -0.0011  0.0003    
## intransitive_event_typeparallel_actions  -0.7098  0.2703    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_intranstivity_interaction_old <- rma.mv(d_calc ~ mean_age * intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_intran_old)
summary(m_data_intranstivity_interaction_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.1137   84.2273   94.2273   98.3934   99.6819   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0520  0.2280      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 17) = 101.0787, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 2.0317, p-val = 0.5658
## 
## Model Results:
## 
##                                                   estimate      se     zval 
## intrcpt                                             0.8948  0.5997   1.4921 
## mean_age                                           -0.0003  0.0004  -0.8408 
## intransitive_event_typeparallel_actions             0.9144  1.5946   0.5734 
## mean_age:intransitive_event_typeparallel_actions   -0.0009  0.0012  -0.7191 
##                                                     pval    ci.lb   ci.ub 
## intrcpt                                           0.1357  -0.2806  2.0702    
## mean_age                                          0.4005  -0.0011  0.0004    
## intransitive_event_typeparallel_actions           0.5664  -2.2111  4.0398    
## mean_age:intransitive_event_typeparallel_actions  0.4721  -0.0033  0.0015    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab

m_data_intran_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = intransitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median vocab, breakdown by intransitive_event_type") 

m_age_vs_intran_vocab <- rma.mv(d_calc ~ productive_vocab_median + intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_intran_vocab)

summary(m_age_vs_intran_vocab)
## 
## Multivariate Meta-Analysis Model (k = 34; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -73.5991  147.1981  155.1981  160.9341  156.7366   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.1112  0.3335      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 31) = 148.7455, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 5.5662, p-val = 0.0618
## 
## Model Results:
## 
##                                          estimate      se     zval    pval 
## intrcpt                                    0.9273  0.2154   4.3048  <.0001 
## productive_vocab_median                   -0.0059  0.0025  -2.3337  0.0196 
## intransitive_event_typeparallel_actions    0.0412  0.1456   0.2826  0.7775 
##                                            ci.lb    ci.ub 
## intrcpt                                   0.5051   1.3494  *** 
## productive_vocab_median                  -0.0108  -0.0009    * 
## intransitive_event_typeparallel_actions  -0.2442   0.3265      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_intranstivity_interaction_vocab <- rma.mv(d_calc ~ productive_vocab_median * intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_intran_vocab)
summary(m_data_intranstivity_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 34; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -72.0878  144.1756  154.1756  161.1816  156.6756   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0624  0.2498      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 30) = 140.5711, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 8.4508, p-val = 0.0376
## 
## Model Results:
## 
##                                                                  estimate 
## intrcpt                                                            0.5435 
## productive_vocab_median                                            0.0040 
## intransitive_event_typeparallel_actions                            0.4112 
## productive_vocab_median:intransitive_event_typeparallel_actions   -0.0122 
##                                                                      se 
## intrcpt                                                          0.2723 
## productive_vocab_median                                          0.0062 
## intransitive_event_typeparallel_actions                          0.2591 
## productive_vocab_median:intransitive_event_typeparallel_actions  0.0070 
##                                                                     zval 
## intrcpt                                                           1.9955 
## productive_vocab_median                                           0.6451 
## intransitive_event_typeparallel_actions                           1.5869 
## productive_vocab_median:intransitive_event_typeparallel_actions  -1.7269 
##                                                                    pval 
## intrcpt                                                          0.0460 
## productive_vocab_median                                          0.5189 
## intransitive_event_typeparallel_actions                          0.1125 
## productive_vocab_median:intransitive_event_typeparallel_actions  0.0842 
##                                                                    ci.lb 
## intrcpt                                                           0.0097 
## productive_vocab_median                                          -0.0081 
## intransitive_event_typeparallel_actions                          -0.0967 
## productive_vocab_median:intransitive_event_typeparallel_actions  -0.0260 
##                                                                   ci.ub 
## intrcpt                                                          1.0773  * 
## productive_vocab_median                                          0.0161    
## intransitive_event_typeparallel_actions                          0.9190    
## productive_vocab_median:intransitive_event_typeparallel_actions  0.0016  . 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab age comparsion

m_data_intran_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = mean_age, y = d_calc, size = n_1, color = intransitive_event_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by intransitive_event_type") 

m_age_vs_intran_vocab <- rma.mv(d_calc ~ mean_age + intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_intran_vocab)

summary(m_age_vs_intran_vocab)
## 
## Multivariate Meta-Analysis Model (k = 34; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -72.8224  145.6449  153.6449  159.3808  155.1834   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0869  0.2949      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 31) = 145.2506, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.3897, p-val = 0.0249
## 
## Model Results:
## 
##                                          estimate      se     zval    pval 
## intrcpt                                    1.0872  0.2297   4.7326  <.0001 
## mean_age                                  -0.0007  0.0002  -2.6978  0.0070 
## intransitive_event_typeparallel_actions    0.1178  0.1524   0.7727  0.4397 
##                                            ci.lb    ci.ub 
## intrcpt                                   0.6369   1.5374  *** 
## mean_age                                 -0.0011  -0.0002   ** 
## intransitive_event_typeparallel_actions  -0.1809   0.4165      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_data_intranstivity_interaction_vocab <- rma.mv(d_calc ~ mean_age * intransitive_event_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = m_data_intran_vocab)
summary(m_data_intranstivity_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 34; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -71.9096  143.8193  153.8193  160.8253  156.3193   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0592  0.2434      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 30) = 139.9365, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 8.7463, p-val = 0.0329
## 
## Model Results:
## 
##                                                   estimate      se     zval 
## intrcpt                                             0.3905  0.6451   0.6054 
## mean_age                                            0.0005  0.0010   0.4476 
## intransitive_event_typeparallel_actions             0.8216  0.6533   1.2577 
## mean_age:intransitive_event_typeparallel_actions   -0.0012  0.0011  -1.1070 
##                                                     pval    ci.lb   ci.ub 
## intrcpt                                           0.5449  -0.8739  1.6550    
## mean_age                                          0.6544  -0.0016  0.0025    
## intransitive_event_typeparallel_actions           0.2085  -0.4588  2.1020    
## mean_age:intransitive_event_typeparallel_actions  0.2683  -0.0034  0.0009    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

maybe need to look at the combination of transitive vs intransitive?

ma_data %>% group_by(transitive_event_type, intransitive_event_type) %>% count()
## # A tibble: 7 x 3
## # Groups:   transitive_event_type, intransitive_event_type [7]
##   transitive_event_type  intransitive_event_type     n
##   <chr>                  <chr>                   <int>
## 1 direct_caused_action   minimal_contact             5
## 2 direct_caused_action   one_action                 14
## 3 direct_caused_action   parallel_actions           24
## 4 indirect_caused_action one_action                 16
## 5 indirect_caused_action parallel_actions           15
## 6 minimal_contact        one_action                  2
## 7 minimal_contact        parallel_actions            2

n_repetition_video (??)

ma_data %>% ggplot(aes(x = n_repetitions_video)) +
  geom_histogram() 

Testing Procedure

test_method (point vs look) (???)

ma_data %>% count(test_method)
## # A tibble: 2 x 2
##   test_method     n
##   <chr>       <int>
## 1 look           60
## 2 point          18

presentation_type (asynchronous vs immediate after )(maybe collapsing simultaneous with immediate after?)

ma_data %>% count(presentation_type)
## # A tibble: 3 x 2
##   presentation_type     n
##   <chr>             <int>
## 1 asynchronous         35
## 2 immediate_after      32
## 3 simultaneous         11
ma_data_pt <- ma_data %>% 
  filter(presentation_type != "simultaneous") 

ma_data_pt_young <- ma_data_pt %>% 
  mutate(age_months = mean_age/30.44) %>% 
    filter(age_months < 36) 

ma_data_pt_old <- ma_data_pt %>% 
  mutate(age_months = mean_age/30.44) %>% 
    filter(age_months > 36 | age_months == 36) 

ma_data_pt_vocab <- ma_data_vocab %>% 
    filter(presentation_type != "simultaneous") 

all

ma_data_pt %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1,  color = presentation_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by presentation type") 

m_age_pt <- rma.mv(d_calc ~ mean_age + presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_pt)

summary(m_age_pt)
## 
## Multivariate Meta-Analysis Model (k = 67; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -117.7657   235.5315   243.5315   252.1670   244.2095   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3222  0.5676     14     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 64) = 309.1098, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.5376, p-val = 0.0381
## 
## Model Results:
## 
##                                   estimate      se     zval    pval    ci.lb 
## intrcpt                             0.8560  0.2336   3.6648  0.0002   0.3982 
## mean_age                           -0.0005  0.0002  -2.5538  0.0107  -0.0008 
## presentation_typeimmediate_after    0.0166  0.1889   0.0880  0.9299  -0.3537 
##                                     ci.ub 
## intrcpt                            1.3138  *** 
## mean_age                          -0.0001    * 
## presentation_typeimmediate_after   0.3869      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pt_interaction <- rma.mv(d_calc ~ mean_age * presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_pt)
summary(m_age_pt_interaction)
## 
## Multivariate Meta-Analysis Model (k = 67; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -117.0993   234.1987   244.1987   254.9144   245.2513   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3151  0.5613     14     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 303.2844, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.6700, p-val = 0.0533
## 
## Model Results:
## 
##                                            estimate      se     zval    pval 
## intrcpt                                      0.9282  0.2424   3.8293  0.0001 
## mean_age                                    -0.0006  0.0002  -2.7277  0.0064 
## presentation_typeimmediate_after            -0.2834  0.3412  -0.8305  0.4062 
## mean_age:presentation_typeimmediate_after    0.0004  0.0004   1.0605  0.2889 
##                                              ci.lb    ci.ub 
## intrcpt                                     0.4531   1.4033  *** 
## mean_age                                   -0.0010  -0.0002   ** 
## presentation_typeimmediate_after           -0.9522   0.3854      
## mean_age:presentation_typeimmediate_after  -0.0004   0.0012      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36, young

ma_data_pt_young %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1,  color = presentation_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by presentation type, young only") 

m_data_pt_young <- rma.mv(d_calc ~ mean_age + presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_pt_young)


summary(m_age_pt)
## 
## Multivariate Meta-Analysis Model (k = 67; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -117.7657   235.5315   243.5315   252.1670   244.2095   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3222  0.5676     14     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 64) = 309.1098, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.5376, p-val = 0.0381
## 
## Model Results:
## 
##                                   estimate      se     zval    pval    ci.lb 
## intrcpt                             0.8560  0.2336   3.6648  0.0002   0.3982 
## mean_age                           -0.0005  0.0002  -2.5538  0.0107  -0.0008 
## presentation_typeimmediate_after    0.0166  0.1889   0.0880  0.9299  -0.3537 
##                                     ci.ub 
## intrcpt                            1.3138  *** 
## mean_age                          -0.0001    * 
## presentation_typeimmediate_after   0.3869      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pt_interaction_young <- rma.mv(d_calc ~ mean_age * presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_pt_young)
summary(m_age_pt_interaction)
## 
## Multivariate Meta-Analysis Model (k = 67; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -117.0993   234.1987   244.1987   254.9144   245.2513   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3151  0.5613     14     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 63) = 303.2844, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.6700, p-val = 0.0533
## 
## Model Results:
## 
##                                            estimate      se     zval    pval 
## intrcpt                                      0.9282  0.2424   3.8293  0.0001 
## mean_age                                    -0.0006  0.0002  -2.7277  0.0064 
## presentation_typeimmediate_after            -0.2834  0.3412  -0.8305  0.4062 
## mean_age:presentation_typeimmediate_after    0.0004  0.0004   1.0605  0.2889 
##                                              ci.lb    ci.ub 
## intrcpt                                     0.4531   1.4033  *** 
## mean_age                                   -0.0010  -0.0002   ** 
## presentation_typeimmediate_after           -0.9522   0.3854      
## mean_age:presentation_typeimmediate_after  -0.0004   0.0012      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old

ma_data_pt_old %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1,  color = presentation_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by presentation type, young only") 

vocab

ma_data_pt_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1,  color = presentation_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median vocab, breakdown by presentation type") 

m_pt_vocab <- rma.mv(d_calc ~ productive_vocab_median + presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_pt_vocab)

summary(m_pt_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.8093  151.6187  159.6187  165.6047  161.0473   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2698  0.5194      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 159.4768, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.6946, p-val = 0.0352
## 
## Model Results:
## 
##                                   estimate      se     zval    pval    ci.lb 
## intrcpt                             0.8330  0.2604   3.1985  0.0014   0.3225 
## productive_vocab_median            -0.0063  0.0025  -2.5368  0.0112  -0.0111 
## presentation_typeimmediate_after   -0.0293  0.2181  -0.1342  0.8932  -0.4567 
##                                     ci.ub 
## intrcpt                            1.3434  ** 
## productive_vocab_median           -0.0014   * 
## presentation_typeimmediate_after   0.3981     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_pt_vocab_interaction <- rma.mv(d_calc ~ productive_vocab_median * presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_pt_vocab)
summary(m_pt_vocab_interaction)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.5923  151.1847  161.1847  168.5133  163.4924   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2753  0.5247      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 159.3692, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.0166, p-val = 0.0714
## 
## Model Results:
## 
##                                                           estimate      se 
## intrcpt                                                     0.8516  0.2641 
## productive_vocab_median                                    -0.0066  0.0025 
## presentation_typeimmediate_after                           -0.2922  0.5020 
## productive_vocab_median:presentation_typeimmediate_after    0.0076  0.0130 
##                                                              zval    pval 
## intrcpt                                                    3.2246  0.0013 
## productive_vocab_median                                   -2.5983  0.0094 
## presentation_typeimmediate_after                          -0.5821  0.5605 
## productive_vocab_median:presentation_typeimmediate_after   0.5800  0.5619 
##                                                             ci.lb    ci.ub 
## intrcpt                                                    0.3340   1.3692  ** 
## productive_vocab_median                                   -0.0116  -0.0016  ** 
## presentation_typeimmediate_after                          -1.2761   0.6917     
## productive_vocab_median:presentation_typeimmediate_after  -0.0180   0.0331     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab age comparsion

ma_data_pt_vocab %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = mean_age, y = d_calc, size = n_1,  color = presentation_type)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("mean age ") +
  ggtitle("Syntactical Bootstrapping effect size vs. mean age, breakdown by presentation type") 

m_pt_vocab_a <- rma.mv(d_calc ~ mean_age + presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_pt_vocab)

summary(m_pt_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.7201  151.4402  159.4402  165.4262  160.8687   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2951  0.5432      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 160.9167, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.2702, p-val = 0.0264
## 
## Model Results:
## 
##                                   estimate      se     zval    pval    ci.lb 
## intrcpt                             0.9904  0.2947   3.3609  0.0008   0.4128 
## mean_age                           -0.0006  0.0002  -2.6438  0.0082  -0.0010 
## presentation_typeimmediate_after   -0.0943  0.2165  -0.4358  0.6630  -0.5186 
##                                     ci.ub 
## intrcpt                            1.5680  *** 
## mean_age                          -0.0002   ** 
## presentation_typeimmediate_after   0.3299      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_pt_vocab_a_interaction <- rma.mv(d_calc ~ mean_age * presentation_type, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_pt_vocab)
summary(m_pt_vocab_a_interaction)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.3289  150.6579  160.6579  167.9865  162.9656   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3168  0.5628      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 160.8706, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.5832, p-val = 0.0555
## 
## Model Results:
## 
##                                            estimate       se     zval    pval 
## intrcpt                                      1.0042   0.3016   3.3293  0.0009 
## mean_age                                    -0.0006   0.0002  -2.6520  0.0080 
## presentation_typeimmediate_after            -6.2613  10.6254  -0.5893  0.5557 
## mean_age:presentation_typeimmediate_after    0.0096   0.0166   0.5803  0.5617 
##                                               ci.lb    ci.ub 
## intrcpt                                      0.4130   1.5953  *** 
## mean_age                                    -0.0010  -0.0002   ** 
## presentation_typeimmediate_after           -27.0866  14.5640      
## mean_age:presentation_typeimmediate_after   -0.0229   0.0422      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

character_identification

ma_data %>% count(character_identification)
## # A tibble: 2 x 2
##   character_identification     n
##   <chr>                    <int>
## 1 no                          41
## 2 yes                         37

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = character_identification)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by character_identification") 

m_age_ci <- rma.mv(d_calc ~ mean_age + character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_age_ci)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -158.6843   317.3686   325.3686   334.6385   325.9400   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2392  0.4891     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 75) = 401.9015, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.3295, p-val = 0.0422
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb 
## intrcpt                        0.7386  0.2140   3.4517  0.0006   0.3192 
## mean_age                      -0.0005  0.0002  -2.5142  0.0119  -0.0008 
## character_identificationyes    0.1388  0.2359   0.5884  0.5563  -0.3236 
##                                ci.ub 
## intrcpt                       1.1581  *** 
## mean_age                     -0.0001    * 
## character_identificationyes   0.6012      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_stimuli_ci_interaction <- rma.mv(d_calc ~ mean_age * character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_stimuli_ci_interaction)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -158.2438   316.4875   326.4875   338.0078   327.3699   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2409  0.4909     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 74) = 396.5392, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.0462, p-val = 0.0704
## 
## Model Results:
## 
##                                       estimate      se     zval    pval 
## intrcpt                                 0.8215  0.2355   3.4877  0.0005 
## mean_age                               -0.0006  0.0002  -2.5468  0.0109 
## character_identificationyes            -0.1707  0.4352  -0.3922  0.6949 
## mean_age:character_identificationyes    0.0003  0.0004   0.8472  0.3969 
##                                         ci.lb    ci.ub 
## intrcpt                                0.3598   1.2831  *** 
## mean_age                              -0.0010  -0.0001    * 
## character_identificationyes           -1.0236   0.6822      
## mean_age:character_identificationyes  -0.0004   0.0011      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36, young

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = character_identification)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by character_identification, young only") 

m_age_ci_young <- rma.mv(d_calc ~ mean_age + character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_age_ci_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -114.3668   228.7337   236.7337   244.6896   237.5500   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3144  0.5607     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 54) = 294.3994, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.2973, p-val = 0.8619
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                        0.6038  0.4060   1.4874  0.1369  -0.1919  1.3995 
## mean_age                      -0.0003  0.0005  -0.5450  0.5857  -0.0012  0.0007 
## character_identificationyes    0.0241  0.3052   0.0791  0.9369  -0.5740  0.6223 
##  
## intrcpt 
## mean_age 
## character_identificationyes 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_ci_interaction_young <- rma.mv(d_calc ~ mean_age * character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_ci_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -113.5404   227.0809   237.0809   246.9323   238.3575   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3441  0.5866     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 53) = 291.6547, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 0.6826, p-val = 0.8773
## 
## Model Results:
## 
##                                       estimate      se     zval    pval 
## intrcpt                                 0.6697  0.4253   1.5747  0.1153 
## mean_age                               -0.0004  0.0005  -0.6893  0.4906 
## character_identificationyes            -0.8853  1.4630  -0.6051  0.5451 
## mean_age:character_identificationyes    0.0011  0.0018   0.6359  0.5249 
##                                         ci.lb   ci.ub 
## intrcpt                               -0.1638  1.5032    
## mean_age                              -0.0014  0.0007    
## character_identificationyes           -3.7528  1.9823    
## mean_age:character_identificationyes  -0.0023  0.0046    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = character_identification)) +
  geom_point() +
   geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by character_identification, old only") 

m_age_ci_old <- rma.mv(d_calc ~ mean_age + character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)

summary(m_age_ci_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -40.9362   81.8724   89.8724   93.4339   92.9494   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 97.5418, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 8.8048, p-val = 0.0122
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                        0.5093  0.4086   1.2463  0.2127  -0.2916  1.3102 
## mean_age                      -0.0004  0.0003  -1.2527  0.2103  -0.0010  0.0002 
## character_identificationyes    0.4526  0.1541   2.9376  0.0033   0.1506  0.7546 
##  
## intrcpt 
## mean_age 
## character_identificationyes  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_ci_interaction_old <- rma.mv(d_calc ~ mean_age * character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_age_ci_interaction_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -41.2030   82.4060   92.4060   96.5721   97.8606   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 17) = 96.9220, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 9.4246, p-val = 0.0241
## 
## Model Results:
## 
##                                       estimate      se     zval    pval 
## intrcpt                                 5.2458  6.0299   0.8700  0.3843 
## mean_age                               -0.0042  0.0048  -0.8658  0.3866 
## character_identificationyes            -4.3056  6.0456  -0.7122  0.4764 
## mean_age:character_identificationyes    0.0038  0.0048   0.7873  0.4311 
##                                          ci.lb    ci.ub 
## intrcpt                                -6.5726  17.0642    
## mean_age                               -0.0136   0.0053    
## character_identificationyes           -16.1547   7.5436    
## mean_age:character_identificationyes   -0.0057   0.0133    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = character_identification)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median voca, breakdown by character_identification, old only") 

m_age_ci_vocab <- rma.mv(d_calc ~ productive_vocab_median + character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_ci_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -74.7434  149.4869  157.4869  163.4729  158.9154   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3002  0.5479      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 159.1196, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.1087, p-val = 0.0286
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb 
## intrcpt                        0.9497  0.3159   3.0059  0.0026   0.3305 
## productive_vocab_median       -0.0063  0.0025  -2.5534  0.0107  -0.0111 
## character_identificationyes   -0.3698  0.5179  -0.7141  0.4752  -1.3850 
##                                ci.ub 
## intrcpt                       1.5689  ** 
## productive_vocab_median      -0.0015   * 
## character_identificationyes   0.6453     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_ci_interaction_vocab <- rma.mv(d_calc ~ productive_vocab_median * character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_ci_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -72.2209  144.4419  154.4419  161.7706  156.7496   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0981  0.3132      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 144.1155, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 14.6682, p-val = 0.0021
## 
## Model Results:
## 
##                                                      estimate      se     zval 
## intrcpt                                                0.8596  0.2155   3.9879 
## productive_vocab_median                               -0.0055  0.0024  -2.2628 
## character_identificationyes                            1.3618  0.7828   1.7397 
## productive_vocab_median:character_identificationyes   -0.0335  0.0139  -2.4204 
##                                                        pval    ci.lb    ci.ub 
## intrcpt                                              <.0001   0.4371   1.2820 
## productive_vocab_median                              0.0236  -0.0103  -0.0007 
## character_identificationyes                          0.0819  -0.1724   2.8960 
## productive_vocab_median:character_identificationyes  0.0155  -0.0607  -0.0064 
##  
## intrcpt                                              *** 
## productive_vocab_median                                * 
## character_identificationyes                            . 
## productive_vocab_median:character_identificationyes    * 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

age w/ vocab comparison

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = mean_age, y = d_calc, size = n_1, color = character_identification)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by character_identification, old only") 

m_age_ci_vocab_a <- rma.mv(d_calc ~ mean_age + character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_ci_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -74.6833  149.3666  157.3666  163.3526  158.7951   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3121  0.5587      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 158.9186, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.6098, p-val = 0.0223
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb 
## intrcpt                        1.1017  0.3427   3.2151  0.0013   0.4301 
## mean_age                      -0.0006  0.0002  -2.6533  0.0080  -0.0010 
## character_identificationyes   -0.3928  0.5264  -0.7463  0.4555  -1.4246 
##                                ci.ub 
## intrcpt                       1.7733  ** 
## mean_age                     -0.0002  ** 
## character_identificationyes   0.6389     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_ci_interaction_vocab_a <- rma.mv(d_calc ~ mean_age * character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_ci_interaction_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -71.6005  143.2010  153.2010  160.5297  155.5087   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0626  0.2503      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 141.1022, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 18.9790, p-val = 0.0003
## 
## Model Results:
## 
##                                       estimate      se     zval    pval 
## intrcpt                                 1.0062  0.2270   4.4334  <.0001 
## mean_age                               -0.0006  0.0002  -2.5574  0.0105 
## character_identificationyes             4.6529  1.7021   2.7336  0.0063 
## mean_age:character_identificationyes   -0.0067  0.0022  -2.9986  0.0027 
##                                         ci.lb    ci.ub 
## intrcpt                                0.5614   1.4510  *** 
## mean_age                              -0.0010  -0.0001    * 
## character_identificationyes            1.3169   7.9889   ** 
## mean_age:character_identificationyes  -0.0110  -0.0023   ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

practice_phase

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = practice_phase)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by practice_phase") 

m_age_pf <- rma.mv(d_calc ~ mean_age + character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_age_ci)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -158.6843   317.3686   325.3686   334.6385   325.9400   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2392  0.4891     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 75) = 401.9015, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.3295, p-val = 0.0422
## 
## Model Results:
## 
##                              estimate      se     zval    pval    ci.lb 
## intrcpt                        0.7386  0.2140   3.4517  0.0006   0.3192 
## mean_age                      -0.0005  0.0002  -2.5142  0.0119  -0.0008 
## character_identificationyes    0.1388  0.2359   0.5884  0.5563  -0.3236 
##                                ci.ub 
## intrcpt                       1.1581  *** 
## mean_age                     -0.0001    * 
## character_identificationyes   0.6012      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pf_interaction <- rma.mv(d_calc ~ mean_age * character_identification, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_stimuli_ci_interaction)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -158.2438   316.4875   326.4875   338.0078   327.3699   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2409  0.4909     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 74) = 396.5392, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.0462, p-val = 0.0704
## 
## Model Results:
## 
##                                       estimate      se     zval    pval 
## intrcpt                                 0.8215  0.2355   3.4877  0.0005 
## mean_age                               -0.0006  0.0002  -2.5468  0.0109 
## character_identificationyes            -0.1707  0.4352  -0.3922  0.6949 
## mean_age:character_identificationyes    0.0003  0.0004   0.8472  0.3969 
##                                         ci.lb    ci.ub 
## intrcpt                                0.3598   1.2831  *** 
## mean_age                              -0.0010  -0.0001    * 
## character_identificationyes           -1.0236   0.6822      
## mean_age:character_identificationyes  -0.0004   0.0011      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36, young

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = practice_phase)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by practice_phase, young only") 

m_age_pf_young <- rma.mv(d_calc ~ mean_age + practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_age_pf_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -114.5234   229.0468   237.0468   245.0027   237.8631   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2749  0.5243     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 54) = 290.5875, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.8004, p-val = 0.6702
## 
## Model Results:
## 
##                    estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt              0.7492  0.4393   1.7055  0.0881  -0.1118  1.6103  . 
## mean_age            -0.0005  0.0006  -0.8686  0.3851  -0.0017  0.0007    
## practice_phaseyes    0.1335  0.1928   0.6921  0.4889  -0.2445  0.5114    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pf_interaction_young <- rma.mv(d_calc ~ mean_age * practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_pf_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -113.3324   226.6648   236.6648   246.5162   237.9414   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3045  0.5518     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 53) = 288.4535, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 1.9467, p-val = 0.5835
## 
## Model Results:
## 
##                             estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                       1.3243  0.6888   1.9225  0.0545  -0.0258  2.6743 
## mean_age                     -0.0014  0.0010  -1.3847  0.1662  -0.0033  0.0006 
## practice_phaseyes            -0.9787  0.9969  -0.9817  0.3263  -2.9326  0.9753 
## mean_age:practice_phaseyes    0.0016  0.0014   1.1256  0.2603  -0.0012  0.0044 
##  
## intrcpt                     . 
## mean_age 
## practice_phaseyes 
## mean_age:practice_phaseyes 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = practice_phase)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by practice_phase, old only") 

m_age_pf_old <- rma.mv(d_calc ~ mean_age + practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)

summary(m_age_pf_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -114.5234   229.0468   237.0468   245.0027   237.8631   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2749  0.5243     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 54) = 290.5875, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.8004, p-val = 0.6702
## 
## Model Results:
## 
##                    estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt              0.7492  0.4393   1.7055  0.0881  -0.1118  1.6103  . 
## mean_age            -0.0005  0.0006  -0.8686  0.3851  -0.0017  0.0007    
## practice_phaseyes    0.1335  0.1928   0.6921  0.4889  -0.2445  0.5114    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pf_interaction_old <- rma.mv(d_calc ~ mean_age * practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_age_pf_interaction_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -42.8420   85.6839   95.6839   99.8500  101.1385   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0511  0.2260      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 17) = 104.1628, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 1.9800, p-val = 0.5766
## 
## Model Results:
## 
##                             estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                      -0.0821  3.7856  -0.0217  0.9827  -7.5016  7.3375 
## mean_age                      0.0005  0.0032   0.1622  0.8712  -0.0057  0.0068 
## practice_phaseyes             0.6518  3.8229   0.1705  0.8646  -6.8409  8.1446 
## mean_age:practice_phaseyes   -0.0008  0.0032  -0.2397  0.8106  -0.0071  0.0055 
##  
## intrcpt 
## mean_age 
## practice_phaseyes 
## mean_age:practice_phaseyes 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = practice_phase)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("productive vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. productive vocab, breakdown by practice_phase, old only") 

m_age_pf_vocab <- rma.mv(d_calc ~ productive_vocab_median + practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_pf_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.6422  151.2843  159.2843  165.2704  160.7129   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2436  0.4935      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 156.3412, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.0094, p-val = 0.0301
## 
## Model Results:
## 
##                          estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                    0.8217  0.2503   3.2832  0.0010   0.3312  1.3122  ** 
## productive_vocab_median   -0.0086  0.0051  -1.6985  0.0894  -0.0185  0.0013   . 
## practice_phaseyes          0.1368  0.2722   0.5026  0.6153  -0.3966  0.6702     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pf_interaction_vocab <- rma.mv(d_calc ~ productive_vocab_median * practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_pf_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.5823  151.1647  161.1647  168.4934  163.4724   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2483  0.4983      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 155.9780, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.4501, p-val = 0.0589
## 
## Model Results:
## 
##                                            estimate      se     zval    pval 
## intrcpt                                      0.4265  0.6339   0.6728  0.5011 
## productive_vocab_median                      0.0133  0.0325   0.4085  0.6829 
## practice_phaseyes                            0.5138  0.6197   0.8291  0.4071 
## productive_vocab_median:practice_phaseyes   -0.0215  0.0316  -0.6801  0.4964 
##                                              ci.lb   ci.ub 
## intrcpt                                    -0.8160  1.6690    
## productive_vocab_median                    -0.0504  0.0769    
## practice_phaseyes                          -0.7009  1.7285    
## productive_vocab_median:practice_phaseyes  -0.0834  0.0404    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

age w/ vocab comparsion

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = mean_age, y = d_calc, size = n_1, color = practice_phase)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("mean age") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by practice_phase, old only") 

m_age_pf_vocab_a <- rma.mv(d_calc ~ mean_age + practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_pf_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.7665  151.5330  159.5330  165.5190  160.9615   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2702  0.5198      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 159.9395, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.2472, p-val = 0.0267
## 
## Model Results:
## 
##                    estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt              0.9924  0.2905   3.4157  0.0006   0.4230  1.5619  *** 
## mean_age            -0.0007  0.0004  -1.7594  0.0785  -0.0015  0.0001    . 
## practice_phaseyes    0.0836  0.2398   0.3486  0.7274  -0.3865  0.5537      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_pf_interaction_vocab_a <- rma.mv(d_calc ~ mean_age * practice_phase, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_pf_interaction_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -75.6884  151.3768  161.3768  168.7054  163.6845   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2650  0.5148      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 159.3021, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.4131, p-val = 0.0598
## 
## Model Results:
## 
##                             estimate      se     zval    pval    ci.lb   ci.ub 
## intrcpt                       0.5875  1.0760   0.5460  0.5851  -1.5214  2.6964 
## mean_age                      0.0000  0.0019   0.0105  0.9917  -0.0038  0.0038 
## practice_phaseyes             0.5752  1.2784   0.4499  0.6528  -1.9305  3.0808 
## mean_age:practice_phaseyes   -0.0008  0.0021  -0.3907  0.6960  -0.0050  0.0034 
##  
## intrcpt 
## mean_age 
## practice_phaseyes 
## mean_age:practice_phaseyes 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

test_mass_distributed

all

ma_data %>% 
  mutate(age_months = mean_age/30.44) %>% 
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = test_mass_or_distributed)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by test type") 

m_age_tt <- rma.mv(d_calc ~ mean_age + test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)

summary(m_age_tt)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -158.6671   317.3342   325.3342   334.6042   325.9056   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2454  0.4954     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 75) = 406.6032, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 6.0183, p-val = 0.0493
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.8016  0.2116   3.7888  0.0002   0.3869 
## mean_age                       -0.0004  0.0002  -2.4487  0.0143  -0.0008 
## test_mass_or_distributedmass   -0.0448  0.2598  -0.1723  0.8632  -0.5540 
##                                 ci.ub 
## intrcpt                        1.2163  *** 
## mean_age                      -0.0001    * 
## test_mass_or_distributedmass   0.4645      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_tt_interaction <- rma.mv(d_calc ~ mean_age * test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_age_tt_interaction)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -157.7668   315.5336   325.5336   337.0540   326.4160   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2382  0.4880     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 74) = 396.2509, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 7.3336, p-val = 0.0620
## 
## Model Results:
## 
##                                        estimate      se     zval    pval 
## intrcpt                                  0.5269  0.3178   1.6579  0.0973 
## mean_age                                -0.0001  0.0003  -0.4123  0.6801 
## test_mass_or_distributedmass             0.3503  0.4294   0.8159  0.4146 
## mean_age:test_mass_or_distributedmass   -0.0004  0.0004  -1.1489  0.2506 
##                                          ci.lb   ci.ub 
## intrcpt                                -0.0960  1.1497  . 
## mean_age                               -0.0008  0.0005    
## test_mass_or_distributedmass           -0.4912  1.1919    
## mean_age:test_mass_or_distributedmass  -0.0012  0.0003    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

<36, young

ma_data_young %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = test_mass_or_distributed)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by test_mass_or_distributed, young only") 

m_age_tt_young <- rma.mv(d_calc ~ mean_age + test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)

summary(m_age_tt_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -114.3078   228.6157   236.6157   244.5716   237.4320   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3143  0.5607     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 54) = 296.5626, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 0.3138, p-val = 0.8548
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.5878  0.4247   1.3838  0.1664  -0.2447 
## mean_age                       -0.0003  0.0005  -0.5162  0.6057  -0.0012 
## test_mass_or_distributedmass    0.0487  0.3230   0.1508  0.8801  -0.5843 
##                                ci.ub 
## intrcpt                       1.4203    
## mean_age                      0.0007    
## test_mass_or_distributedmass  0.6817    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_tt_interaction_young <- rma.mv(d_calc ~ mean_age * test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_young)
summary(m_age_tt_interaction_young)
## 
## Multivariate Meta-Analysis Model (k = 57; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -113.2307   226.4615   236.4615   246.3130   237.7381   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3410  0.5840     17     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 53) = 296.3776, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 1.3688, p-val = 0.7129
## 
## Model Results:
## 
##                                        estimate      se     zval    pval 
## intrcpt                                 -0.5465  1.1727  -0.4660  0.6412 
## mean_age                                 0.0012  0.0015   0.8064  0.4200 
## test_mass_or_distributedmass             1.3089  1.2612   1.0378  0.2993 
## mean_age:test_mass_or_distributedmass   -0.0016  0.0016  -1.0351  0.3006 
##                                          ci.lb   ci.ub 
## intrcpt                                -2.8450  1.7521    
## mean_age                               -0.0017  0.0040    
## test_mass_or_distributedmass           -1.1629  3.7807    
## mean_age:test_mass_or_distributedmass  -0.0046  0.0014    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

>= 36, old

ma_data_old %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = age_months, y = d_calc, size = n_1, color = test_mass_or_distributed)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by test_mass_or_distributed, old only") 

m_age_tt_old <- rma.mv(d_calc ~ mean_age + test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)

summary(m_age_tt_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -40.0417   80.0835   88.0835   91.6450   91.1604   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 18) = 95.8384, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 10.5082, p-val = 0.0052
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.8301  0.4191   1.9805  0.0476   0.0086 
## mean_age                       -0.0003  0.0003  -0.9066  0.3646  -0.0009 
## test_mass_or_distributedmass   -0.4097  0.1275  -3.2145  0.0013  -0.6595 
##                                 ci.ub 
## intrcpt                        1.6515   * 
## mean_age                       0.0003     
## test_mass_or_distributedmass  -0.1599  ** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_tt_interaction_old <- rma.mv(d_calc ~ mean_age * test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_old)
summary(m_age_tt_interaction_old)
## 
## Multivariate Meta-Analysis Model (k = 21; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -40.3879   80.7757   90.7757   94.9418   96.2303   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.0000  0.0000      5     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 17) = 95.5607, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 10.7860, p-val = 0.0129
## 
## Model Results:
## 
##                                        estimate      se     zval    pval 
## intrcpt                                  0.8938  0.4362   2.0490  0.0405 
## mean_age                                -0.0003  0.0003  -1.0180  0.3087 
## test_mass_or_distributedmass            -1.1870  1.4804  -0.8018  0.4227 
## mean_age:test_mass_or_distributedmass    0.0006  0.0011   0.5270  0.5982 
##                                          ci.lb   ci.ub 
## intrcpt                                 0.0388  1.7487  * 
## mean_age                               -0.0009  0.0003    
## test_mass_or_distributedmass           -4.0885  1.7145    
## mean_age:test_mass_or_distributedmass  -0.0016  0.0028    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

vocab

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = productive_vocab_median, y = d_calc, size = n_1, color = test_mass_or_distributed)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("median vocab") +
  ggtitle("Syntactical Bootstrapping effect size vs. median voca, breakdown by test_mass_or_distributed, old only") 

m_age_tt_vocab <- rma.mv(d_calc ~ productive_vocab_median + test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_tt_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -74.5086  149.0173  157.0173  163.0033  158.4458   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2681  0.5178      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 155.1572, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 7.4670, p-val = 0.0239
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         1.3009  0.5916   2.1988  0.0279   0.1413 
## productive_vocab_median        -0.0061  0.0025  -2.5009  0.0124  -0.0110 
## test_mass_or_distributedmass   -0.5685  0.6413  -0.8864  0.3754  -1.8253 
##                                 ci.ub 
## intrcpt                        2.4604  * 
## productive_vocab_median       -0.0013  * 
## test_mass_or_distributedmass   0.6884    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_tt_interaction_vocab <- rma.mv(d_calc ~ productive_vocab_median * test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_tt_interaction_vocab)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -72.7496  145.4992  155.4992  162.8279  157.8069   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2680  0.5177      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 152.8033, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 9.8104, p-val = 0.0202
## 
## Model Results:
## 
##                                                       estimate       se 
## intrcpt                                               -15.7524  11.1567 
## productive_vocab_median                                 0.5920   0.3908 
## test_mass_or_distributedmass                           16.4860  11.1603 
## productive_vocab_median:test_mass_or_distributedmass   -0.5982   0.3908 
##                                                          zval    pval     ci.lb 
## intrcpt                                               -1.4119  0.1580  -37.6192 
## productive_vocab_median                                1.5149  0.1298   -0.1739 
## test_mass_or_distributedmass                           1.4772  0.1396   -5.3877 
## productive_vocab_median:test_mass_or_distributedmass  -1.5307  0.1259   -1.3642 
##                                                         ci.ub 
## intrcpt                                                6.1144    
## productive_vocab_median                                1.3580    
## test_mass_or_distributedmass                          38.3597    
## productive_vocab_median:test_mass_or_distributedmass   0.1678    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

age w/ vocab comparison

ma_data_vocab %>% 
  mutate(age_months = mean_age/30.44) %>%
  ggplot(aes(x = mean_age, y = d_calc, size = n_1, color = test_mass_or_distributed)) +
  geom_point() +
  geom_smooth(method = "lm") +
  ylab("Effect Size") +
  xlab("Age (months)") +
  ggtitle("Syntactical Bootstrapping effect size vs. Age (months), breakdown by test_mass_or_distributed, old only") 

m_age_tt_vocab_a <- rma.mv(d_calc ~ mean_age + test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)

summary(m_age_tt_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -74.3962  148.7924  156.7924  162.7785  158.2210   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2753  0.5247      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 33) = 155.8851, p-val < .0001
## 
## Test of Moderators (coefficients 2:3):
## QM(df = 2) = 8.0512, p-val = 0.0179
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         1.4935  0.6099   2.4486  0.0143   0.2980 
## mean_age                       -0.0006  0.0002  -2.6203  0.0088  -0.0010 
## test_mass_or_distributedmass   -0.6252  0.6464  -0.9672  0.3334  -1.8922 
##                                 ci.ub 
## intrcpt                        2.6889   * 
## mean_age                      -0.0001  ** 
## test_mass_or_distributedmass   0.6418     
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_age_tt_interaction_vocab_a <- rma.mv(d_calc ~ mean_age * test_mass_or_distributed, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data_vocab)
summary(m_age_tt_interaction_vocab_a)
## 
## Multivariate Meta-Analysis Model (k = 36; method: REML)
## 
##   logLik  Deviance       AIC       BIC      AICc 
## -72.6519  145.3038  155.3038  162.6325  157.6115   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2753  0.5247      6     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 32) = 153.5680, p-val < .0001
## 
## Test of Moderators (coefficients 2:4):
## QM(df = 3) = 10.3647, p-val = 0.0157
## 
## Model Results:
## 
##                                        estimate       se     zval    pval 
## intrcpt                                -90.6459  60.5818  -1.4963  0.1346 
## mean_age                                 0.1459   0.0963   1.5149  0.1298 
## test_mass_or_distributedmass            91.5147  60.5826   1.5106  0.1309 
## mean_age:test_mass_or_distributedmass   -0.1465   0.0963  -1.5210  0.1283 
##                                            ci.lb     ci.ub 
## intrcpt                                -209.3841   28.0924    
## mean_age                                 -0.0429    0.3346    
## test_mass_or_distributedmass            -27.2250  210.2544    
## mean_age:test_mass_or_distributedmass    -0.3352    0.0423    
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

n_train_test_pair (????)

ma_data %>% ggplot(aes(x = n_train_test_pair)) +
  geom_histogram() 

n_test_trial (???)

ma_data %>% ggplot(aes(x = n_test_trial_per_pair)) +
  geom_histogram() 

Reasonalbe Moderators (??)

null <- rma.mv(d_calc~1, V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(null)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -162.9086   325.8171   329.8171   334.5047   329.9793   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.2245  0.4739     21     no  short_cite 
## 
## Test for Heterogeneity:
## Q(df = 77) = 408.5756, p-val < .0001
## 
## Model Results:
## 
## estimate      se    zval    pval   ci.lb   ci.ub 
##   0.3968  0.1125  3.5273  0.0004  0.1763  0.6173  *** 
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_sink <- rma.mv(d_calc ~ mean_age + sentence_structure + agent_argument_type_clean + agent_argument_number + n_repetitions_sentence + test_method + character_identification + practice_phase + test_mass_or_distributed , V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_sink)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -140.7492   281.4984   305.4984   331.9547   311.2761   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3106  0.5573     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 67) = 369.4530, p-val < .0001
## 
## Test of Moderators (coefficients 2:11):
## QM(df = 10) = 34.6318, p-val = 0.0001
## 
## Model Results:
## 
##                                         estimate      se     zval    pval 
## intrcpt                                   0.2322  0.3767   0.6164  0.5376 
## mean_age                                 -0.0004  0.0003  -1.5174  0.1292 
## sentence_structuretransitive              0.4804  0.0968   4.9621  <.0001 
## agent_argument_type_cleannoun_phrase      0.5466  0.1888   2.8948  0.0038 
## agent_argument_type_cleanpronoun          0.4004  0.9589   0.4176  0.6762 
## agent_argument_type_cleanvarying_agent    0.6418  0.8419   0.7622  0.4459 
## n_repetitions_sentence                   -0.0016  0.0184  -0.0879  0.9300 
## test_methodpoint                          0.2833  0.7440   0.3808  0.7033 
## character_identificationyes               0.0214  0.3000   0.0713  0.9432 
## practice_phaseyes                         0.1691  0.2103   0.8042  0.4213 
## test_mass_or_distributedmass             -0.4297  0.7543  -0.5697  0.5689 
##                                           ci.lb   ci.ub 
## intrcpt                                 -0.5062  0.9706      
## mean_age                                -0.0010  0.0001      
## sentence_structuretransitive             0.2907  0.6702  *** 
## agent_argument_type_cleannoun_phrase     0.1765  0.9167   ** 
## agent_argument_type_cleanpronoun        -1.4790  2.2798      
## agent_argument_type_cleanvarying_agent  -1.0084  2.2920      
## n_repetitions_sentence                  -0.0377  0.0345      
## test_methodpoint                        -1.1748  1.7415      
## character_identificationyes             -0.5666  0.6094      
## practice_phaseyes                       -0.2430  0.5812      
## test_mass_or_distributedmass            -1.9081  1.0486      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
m_sink_2 <- rma.mv(d_calc ~ mean_age + sentence_structure  + n_repetitions_sentence + test_method + character_identification + practice_phase + test_mass_or_distributed , V = d_var_calc,
                            random = ~ 1 | short_cite, data = ma_data)
summary(m_sink_2)
## 
## Multivariate Meta-Analysis Model (k = 78; method: REML)
## 
##    logLik   Deviance        AIC        BIC       AICc 
## -146.9178   293.8356   311.8356   332.0721   314.8356   
## 
## Variance Components:
## 
##             estim    sqrt  nlvls  fixed      factor 
## sigma^2    0.3056  0.5529     21     no  short_cite 
## 
## Test for Residual Heterogeneity:
## QE(df = 70) = 381.0954, p-val < .0001
## 
## Test of Moderators (coefficients 2:8):
## QM(df = 7) = 25.1224, p-val = 0.0007
## 
## Model Results:
## 
##                               estimate      se     zval    pval    ci.lb 
## intrcpt                         0.3630  0.3324   1.0919  0.2749  -0.2886 
## mean_age                       -0.0005  0.0003  -1.8436  0.0652  -0.0010 
## sentence_structuretransitive    0.3343  0.0828   4.0372  <.0001   0.1720 
## n_repetitions_sentence          0.0099  0.0155   0.6379  0.5235  -0.0205 
## test_methodpoint                0.5372  0.3794   1.4157  0.1569  -0.2065 
## character_identificationyes     0.0797  0.2881   0.2766  0.7821  -0.4849 
## practice_phaseyes               0.1400  0.1764   0.7941  0.4272  -0.2056 
## test_mass_or_distributedmass   -0.0696  0.3080  -0.2259  0.8212  -0.6732 
##                                ci.ub 
## intrcpt                       1.0145      
## mean_age                      0.0000    . 
## sentence_structuretransitive  0.4966  *** 
## n_repetitions_sentence        0.0402      
## test_methodpoint              1.2808      
## character_identificationyes   0.6443      
## practice_phaseyes             0.4857      
## test_mass_or_distributedmass  0.5340      
## 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1