Fetal cardiotocograms

Attribute Information:

LB - FHR baseline (beats per minute) AC - # of accelerations per second FM - # of fetal movements per second UC - # of uterine contractions per second DL - # of light decelerations per second DS - # of severe decelerations per second DP - # of prolongued decelerations per second ASTV - percentage of time with abnormal short term variability MSTV - mean value of short term variability ALTV - percentage of time with abnormal long term variability MLTV - mean value of long term variability Width - width of FHR histogram Min - minimum of FHR histogram Max - Maximum of FHR histogram Nmax - # of histogram peaks Nzeros - # of histogram zeros Mode - histogram mode Mean - histogram mean Median - histogram median Variance - histogram variance Tendency - histogram tendency CLASS - FHR pattern class code (1 to 10) NSP - fetal state class code (N=normal; S=suspect; P=pathologic)

In this dataset there are 2126 fetal cardiotocograms (CTGs) were automatically processed and the respective diagnostic features measured. The CTGs were also classified by three expert obstetricians and a consensus classification label assigned to each of them. Classification was both with respect to a morphologic pattern (A, B, C. …) and to a fetal state (N, S, P).

Acquring Dataset from uci

df <- read.csv('Cardiotocographic.csv')

Structure of the dataset

str(df)
## 'data.frame':    2126 obs. of  22 variables:
##  $ LB      : int  120 132 133 134 132 134 134 122 122 122 ...
##  $ AC      : num  0 0.00638 0.00332 0.00256 0.00651 ...
##  $ FM      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ UC      : num  0 0.00638 0.00831 0.00768 0.00814 ...
##  $ DL      : num  0 0.00319 0.00332 0.00256 0 ...
##  $ DS      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ DP      : num  0 0 0 0 0 ...
##  $ ASTV    : int  73 17 16 16 16 26 29 83 84 86 ...
##  $ MSTV    : num  0.5 2.1 2.1 2.4 2.4 5.9 6.3 0.5 0.5 0.3 ...
##  $ ALTV    : int  43 0 0 0 0 0 0 6 5 6 ...
##  $ MLTV    : num  2.4 10.4 13.4 23 19.9 0 0 15.6 13.6 10.6 ...
##  $ Width   : int  64 130 130 117 117 150 150 68 68 68 ...
##  $ Min     : int  62 68 68 53 53 50 50 62 62 62 ...
##  $ Max     : int  126 198 198 170 170 200 200 130 130 130 ...
##  $ Nmax    : int  2 6 5 11 9 5 6 0 0 1 ...
##  $ Nzeros  : int  0 1 1 0 0 3 3 0 0 0 ...
##  $ Mode    : int  120 141 141 137 137 76 71 122 122 122 ...
##  $ Mean    : int  137 136 135 134 136 107 107 122 122 122 ...
##  $ Median  : int  121 140 138 137 138 107 106 123 123 123 ...
##  $ Variance: int  73 12 13 13 11 170 215 3 3 1 ...
##  $ Tendency: int  1 0 0 1 1 0 0 1 1 1 ...
##  $ NSP     : int  2 1 1 1 1 3 3 3 3 3 ...

Converting a variable into Factor and making a new column

df$NSPF <- factor(df$NSP)

NSPF column

df$NSPF
##    [1] 2 1 1 1 1 3 3 3 3 3 2 2 1 1 1 1 1 2 1 1 3 1 3 3 3 3 3 3 2 1 1 1 1 1 1 1 1
##   [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##   [75] 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 3 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
##  [112] 1 1 1 1 1 3 1 1 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1 1 2 1 2 2 2 1 1 2 1 1 1 1 1
##  [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [186] 1 1 2 2 1 2 2 2 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1
##  [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1
##  [260] 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 1 1 2 2
##  [297] 3 3 3 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 3 3 2 2 3 3 2 2 2 3 2 2 2 2
##  [334] 2 3 3 2 2 2 3 3 3 3 2 2 2 2 2 2 2 2 3 3 2 2 2 2 1 2 1 2 2 2 3 3 2 2 2 2 2
##  [371] 2 1 2 2 2 2 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 2 2 2 1 2 3 2 2 2
##  [408] 2 2 2 2 2 2 1 1 1 2 2 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 2 2
##  [445] 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 3 3 3 3 3 3 3 3 3 3 2 2 2 1 2
##  [482] 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
##  [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 1 2 1 1 2 2 2 2 1 2 2 1 1 1 1
##  [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [593] 1 1 1 2 3 3 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [630] 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 3 3 2 2 2 2 3 3 3 3 3 1 1 1 1 1 1 2 2 2 2 2
##  [667] 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 3 3 1 1 1 1 1 2 3 1 1 1 1 1 1 3 3 2 3 3 3
##  [704] 3 3 2 3 1 1 1 1 1 1 1 1 1 1 2 1 2 3 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [741] 1 1 2 1 1 1 1 1 2 3 3 3 1 1 1 1 1 1 1 2 1 1 2 1 2 2 2 3 3 3 3 3 2 3 2 2 2
##  [778] 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 1 2 2 1 1 1
##  [815] 1 1 1 2 1 2 2 2 2 3 3 2 1 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1
##  [852] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [926] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
##  [963] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1000] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1037] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1074] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1111] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1148] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1185] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 2 2 1 1 1 1 1
## [1222] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1259] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1296] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1333] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1370] 1 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 1 1 1 1 1 1 2 2 2 2
## [1407] 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1
## [1444] 1 1 2 1 1 1 1 1 1 1 2 1 2 1 1 1 1 1 1 2 1 2 1 1 1 1 1 2 1 1 2 2 2 2 1 1 1
## [1481] 1 1 1 1 1 1 1 1 1 3 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1518] 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1
## [1555] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1592] 1 1 1 1 1 1 1 1 1 2 1 2 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1629] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1666] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1703] 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1
## [1740] 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [1777] 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1814] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1851] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 1 1 1 1 1
## [1888] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1925] 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
## [1962] 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [1999] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3
## [2036] 3 3 3 3 3 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2073] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [2110] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1
## Levels: 1 2 3

Exploratort data Analysis

library(ggplot2)
library(plotly)
## 
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
## 
##     last_plot
## The following object is masked from 'package:stats':
## 
##     filter
## The following object is masked from 'package:graphics':
## 
##     layout
pl <- ggplot(df,aes(LB,FM,color=NSP))+geom_line(aes(frame= LB))+ggtitle("Featal heartbeat Ratio")+xlab("Time/min")+ylab("Fetal movements/sec")
## Warning: Ignoring unknown aesthetics: frame
fig <- ggplotly(pl)
fig

# Plotting Fetal Heartbeat ratio

pl <- ggplot(df,aes(LB,UC,color=factor(Nzeros)))+geom_point(aes(frame= LB))+ggtitle("Featal heartbeat Ratio")+xlab("Time/min")+ylab("Uterine contractions")
## Warning: Ignoring unknown aesthetics: frame
fig <- ggplotly(pl)
fig
## Warning in p$x$data[firstFrame] <- p$x$frames[[1]]$data: number of items to
## replace is not a multiple of replacement length

# PlotPowerBand

Data Partitioning

Split into train and test data

library(caTools)
sample <- sample.split(df$NSPF,SplitRatio = 0.80)
train <- subset(df,sample == T)
test <- subset(df,sample == F)
library(party)
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
Decision_tree <- ctree(NSPF~LB+AC+FM, data = train)
Decision_tree
## 
##   Conditional inference tree with 17 terminal nodes
## 
## Response:  NSPF 
## Inputs:  LB, AC, FM 
## Number of observations:  1701 
## 
## 1) AC <= 0.000823723; criterion = 1, statistic = 260.323
##   2) LB <= 136; criterion = 1, statistic = 126.15
##     3) FM <= 0.001545595; criterion = 1, statistic = 22.23
##       4) FM <= 0.000729927; criterion = 0.968, statistic = 9.066
##         5)*  weights = 244 
##       4) FM > 0.000729927
##         6)*  weights = 49 
##     3) FM > 0.001545595
##       7) FM <= 0.1351126; criterion = 1, statistic = 29.687
##         8)*  weights = 112 
##       7) FM > 0.1351126
##         9)*  weights = 7 
##   2) LB > 136
##     10) LB <= 143; criterion = 0.989, statistic = 11.153
##       11)*  weights = 138 
##     10) LB > 143
##       12) FM <= 0.001312336; criterion = 0.998, statistic = 15.106
##         13)*  weights = 126 
##       12) FM > 0.001312336
##         14) LB <= 146; criterion = 0.999, statistic = 15.673
##           15)*  weights = 29 
##         14) LB > 146
##           16)*  weights = 17 
## 1) AC > 0.000823723
##   17) AC <= 0.002053388; criterion = 1, statistic = 54.714
##     18) LB <= 128; criterion = 0.999, statistic = 15.808
##       19)*  weights = 46 
##     18) LB > 128
##       20) LB <= 134; criterion = 1, statistic = 18.641
##         21) FM <= 0.001953125; criterion = 1, statistic = 18.633
##           22)*  weights = 35 
##         21) FM > 0.001953125
##           23)*  weights = 7 
##       20) LB > 134
##         24)*  weights = 97 
##   17) AC > 0.002053388
##     25) AC <= 0.002923977; criterion = 0.999, statistic = 16.57
##       26) LB <= 144; criterion = 0.992, statistic = 8.917
##         27)*  weights = 108 
##       26) LB > 144
##         28)*  weights = 8 
##     25) AC > 0.002923977
##       29) FM <= 0.3802228; criterion = 1, statistic = 24.396
##         30) AC <= 0.004444444; criterion = 0.994, statistic = 12.362
##           31)*  weights = 160 
##         30) AC > 0.004444444
##           32)*  weights = 508 
##       29) FM > 0.3802228
##         33)*  weights = 10
plot(Decision_tree)

Decision_tree <- ctree(NSPF~LB+AC+FM, data = train, controls = ctree_control(mincriterion = 0.999,minsplit = 650))
Decision_tree
## 
##   Conditional inference tree with 6 terminal nodes
## 
## Response:  NSPF 
## Inputs:  LB, AC, FM 
## Number of observations:  1701 
## 
## 1) AC <= 0.000823723; criterion = 1, statistic = 260.323
##   2) LB <= 136; criterion = 1, statistic = 126.15
##     3)*  weights = 412 
##   2) LB > 136
##     4)*  weights = 310 
## 1) AC > 0.000823723
##   5) AC <= 0.002053388; criterion = 1, statistic = 54.714
##     6)*  weights = 185 
##   5) AC > 0.002053388
##     7) AC <= 0.002923977; criterion = 0.999, statistic = 16.57
##       8)*  weights = 116 
##     7) AC > 0.002923977
##       9) FM <= 0.3802228; criterion = 1, statistic = 24.396
##         10)*  weights = 668 
##       9) FM > 0.3802228
##         11)*  weights = 10
plot(Decision_tree)

predicted_tree <- Predict(Decision_tree,test,type="prob")
predicted_tree
## [[1]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[2]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[3]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[4]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[5]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[6]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[7]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[8]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[9]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[10]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[11]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[12]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[13]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[14]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[15]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[16]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[17]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[18]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[19]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[20]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[21]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[22]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[23]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[24]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[25]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[26]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[27]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[28]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[29]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[30]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[31]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[32]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[33]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[34]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[35]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[36]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[37]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[38]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[39]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[40]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[41]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[42]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[43]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[44]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[45]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[46]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[47]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[48]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[49]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[50]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[51]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[52]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[53]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[54]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[55]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[56]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[57]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[58]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[59]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[60]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[61]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[62]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[63]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[64]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[65]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[66]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[67]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[68]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[69]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[70]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[71]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[72]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[73]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[74]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[75]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[76]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[77]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[78]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[79]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[80]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[81]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[82]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[83]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[84]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[85]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[86]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[87]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[88]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[89]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[90]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[91]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[92]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[93]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[94]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[95]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[96]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[97]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[98]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[99]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[100]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[101]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[102]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[103]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[104]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[105]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[106]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[107]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[108]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[109]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[110]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[111]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[112]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[113]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[114]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[115]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[116]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[117]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[118]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[119]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[120]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[121]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[122]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[123]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[124]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[125]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[126]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[127]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[128]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[129]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[130]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[131]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[132]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[133]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[134]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[135]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[136]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[137]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[138]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[139]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[140]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[141]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[142]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[143]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[144]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[145]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[146]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[147]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[148]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[149]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[150]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[151]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[152]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[153]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[154]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[155]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[156]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[157]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[158]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[159]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[160]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[161]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[162]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[163]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[164]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[165]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[166]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[167]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[168]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[169]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[170]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[171]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[172]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[173]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[174]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[175]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[176]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[177]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[178]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[179]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[180]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[181]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[182]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[183]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[184]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[185]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[186]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[187]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[188]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[189]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[190]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[191]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[192]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[193]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[194]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[195]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[196]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[197]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[198]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[199]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[200]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[201]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[202]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[203]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[204]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[205]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[206]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[207]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[208]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[209]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[210]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[211]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[212]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[213]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[214]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[215]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[216]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[217]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[218]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[219]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[220]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[221]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[222]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[223]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[224]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[225]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[226]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[227]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[228]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[229]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[230]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[231]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[232]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[233]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[234]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[235]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[236]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[237]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[238]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[239]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[240]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[241]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[242]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[243]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[244]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[245]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[246]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[247]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[248]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[249]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[250]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[251]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[252]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[253]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[254]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[255]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[256]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[257]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[258]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[259]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[260]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[261]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[262]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[263]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[264]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[265]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[266]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[267]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[268]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[269]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[270]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[271]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[272]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[273]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[274]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[275]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[276]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[277]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[278]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[279]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[280]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[281]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[282]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[283]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[284]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[285]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[286]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[287]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[288]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[289]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[290]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[291]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[292]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[293]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[294]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[295]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[296]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[297]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[298]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[299]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[300]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[301]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[302]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[303]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[304]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[305]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[306]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[307]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[308]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[309]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[310]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[311]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[312]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[313]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[314]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[315]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[316]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[317]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[318]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[319]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[320]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[321]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[322]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[323]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[324]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[325]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[326]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[327]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[328]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[329]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[330]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[331]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[332]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[333]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[334]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[335]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[336]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[337]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[338]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[339]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[340]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[341]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[342]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[343]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[344]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[345]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[346]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[347]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[348]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[349]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[350]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[351]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[352]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[353]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[354]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[355]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[356]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[357]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[358]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[359]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[360]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[361]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[362]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[363]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[364]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[365]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[366]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[367]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[368]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[369]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[370]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[371]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[372]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[373]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[374]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[375]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[376]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[377]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[378]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[379]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[380]]
## [1] 0.93965517 0.06034483 0.00000000
## 
## [[381]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[382]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[383]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[384]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[385]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[386]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[387]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[388]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[389]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[390]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[391]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[392]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[393]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[394]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[395]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[396]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[397]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[398]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[399]]
## [1] 0.78918919 0.14054054 0.07027027
## 
## [[400]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[401]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[402]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[403]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[404]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[405]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[406]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[407]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[408]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[409]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[410]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[411]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[412]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[413]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[414]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[415]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[416]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[417]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[418]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[419]]
## [1] 0.982035928 0.001497006 0.016467066
## 
## [[420]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[421]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[422]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[423]]
## [1] 0.6796117 0.1067961 0.2135922
## 
## [[424]]
## [1] 0.40000000 0.50645161 0.09354839
## 
## [[425]]
## [1] 0.78918919 0.14054054 0.07027027
Prediction <- predict(Decision_tree,test)
Prediction
##   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1 1 2 1 2 2 1 1 1 1 1 1 1 1 2 1 2 1
##  [38] 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 1 2 2 2 2 2 2
##  [75] 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
## [112] 1 1 2 2 2 2 1 2 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 1 1
## [149] 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 1 2 1 2 1 2 1 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1
## [186] 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1
## [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [297] 2 2 2 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 2
## [334] 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
## [371] 2 2 2 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1
## Levels: 1 2 3
library(rpart)
model_tree <- rpart(NSPF~LB+AC+FM, train)
model_tree
## n= 1701 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 1701 377 1 (0.77836567 0.13874192 0.08289242)  
##     2) AC>=0.0008261115 979  59 1 (0.93973442 0.03575077 0.02451481) *
##     3) AC< 0.0008261115 722 318 1 (0.55955679 0.27839335 0.16204986)  
##       6) LB< 136.5 412 132 1 (0.67961165 0.10679612 0.21359223)  
##        12) FM< 0.2165359 405 125 1 (0.69135802 0.10864198 0.20000000)  
##          24) FM>=0.004432953 69  28 1 (0.59420290 0.30434783 0.10144928) *
##          25) FM< 0.004432953 336  97 1 (0.71130952 0.06845238 0.22023810)  
##            50) LB>=121.5 286  73 1 (0.74475524 0.06993007 0.18531469) *
##            51) LB< 121.5 50  24 1 (0.52000000 0.06000000 0.42000000)  
##             102) LB< 119.5 19   0 1 (1.00000000 0.00000000 0.00000000) *
##             103) LB>=119.5 31  10 3 (0.22580645 0.09677419 0.67741935) *
##        13) FM>=0.2165359 7   0 3 (0.00000000 0.00000000 1.00000000) *
##       7) LB>=136.5 310 153 2 (0.40000000 0.50645161 0.09354839)  
##        14) LB< 143.5 138  61 1 (0.55797101 0.39130435 0.05072464)  
##          28) FM< 0.003750276 107  40 1 (0.62616822 0.32710280 0.04672897) *
##          29) FM>=0.003750276 31  12 2 (0.32258065 0.61290323 0.06451613) *
##        15) LB>=143.5 172  69 2 (0.27325581 0.59883721 0.12790698)  
##          30) FM< 0.001300498 125  51 2 (0.36000000 0.59200000 0.04800000) *
##          31) FM>=0.001300498 47  18 2 (0.04255319 0.61702128 0.34042553)  
##            62) LB< 147 29   5 2 (0.06896552 0.82758621 0.10344828) *
##            63) LB>=147 18   5 3 (0.00000000 0.27777778 0.72222222) *
library(rpart.plot)
rpart.plot(model_tree)

rpart.plot(model_tree,extra=2)

Final_prediction<-predict(model_tree,test)
Final_prediction
##               1          2          3
## 5    0.93973442 0.03575077 0.02451481
## 10   0.74475524 0.06993007 0.18531469
## 13   0.93973442 0.03575077 0.02451481
## 21   0.00000000 0.00000000 1.00000000
## 24   0.74475524 0.06993007 0.18531469
## 25   0.74475524 0.06993007 0.18531469
## 27   0.74475524 0.06993007 0.18531469
## 28   0.74475524 0.06993007 0.18531469
## 31   0.59420290 0.30434783 0.10144928
## 39   0.93973442 0.03575077 0.02451481
## 43   0.93973442 0.03575077 0.02451481
## 44   0.93973442 0.03575077 0.02451481
## 49   0.93973442 0.03575077 0.02451481
## 52   0.36000000 0.59200000 0.04800000
## 58   0.36000000 0.59200000 0.04800000
## 60   0.93973442 0.03575077 0.02451481
## 70   0.36000000 0.59200000 0.04800000
## 72   0.93973442 0.03575077 0.02451481
## 73   0.93973442 0.03575077 0.02451481
## 78   0.93973442 0.03575077 0.02451481
## 79   0.93973442 0.03575077 0.02451481
## 83   0.06896552 0.82758621 0.10344828
## 91   0.93973442 0.03575077 0.02451481
## 93   0.00000000 0.27777778 0.72222222
## 95   0.00000000 0.27777778 0.72222222
## 102  0.93973442 0.03575077 0.02451481
## 103  0.93973442 0.03575077 0.02451481
## 107  0.59420290 0.30434783 0.10144928
## 109  0.93973442 0.03575077 0.02451481
## 110  0.74475524 0.06993007 0.18531469
## 112  0.93973442 0.03575077 0.02451481
## 117  0.74475524 0.06993007 0.18531469
## 121  0.74475524 0.06993007 0.18531469
## 127  0.36000000 0.59200000 0.04800000
## 139  0.93973442 0.03575077 0.02451481
## 143  0.36000000 0.59200000 0.04800000
## 154  0.93973442 0.03575077 0.02451481
## 155  0.74475524 0.06993007 0.18531469
## 160  0.93973442 0.03575077 0.02451481
## 163  0.93973442 0.03575077 0.02451481
## 176  0.93973442 0.03575077 0.02451481
## 177  1.00000000 0.00000000 0.00000000
## 182  0.93973442 0.03575077 0.02451481
## 190  0.93973442 0.03575077 0.02451481
## 193  0.93973442 0.03575077 0.02451481
## 196  0.36000000 0.59200000 0.04800000
## 201  0.59420290 0.30434783 0.10144928
## 202  0.59420290 0.30434783 0.10144928
## 214  0.93973442 0.03575077 0.02451481
## 215  0.93973442 0.03575077 0.02451481
## 226  0.59420290 0.30434783 0.10144928
## 229  0.93973442 0.03575077 0.02451481
## 235  0.74475524 0.06993007 0.18531469
## 237  0.93973442 0.03575077 0.02451481
## 240  0.59420290 0.30434783 0.10144928
## 249  0.93973442 0.03575077 0.02451481
## 257  0.93973442 0.03575077 0.02451481
## 259  0.93973442 0.03575077 0.02451481
## 261  0.74475524 0.06993007 0.18531469
## 265  0.74475524 0.06993007 0.18531469
## 280  0.93973442 0.03575077 0.02451481
## 295  0.06896552 0.82758621 0.10344828
## 302  0.06896552 0.82758621 0.10344828
## 303  0.06896552 0.82758621 0.10344828
## 313  0.06896552 0.82758621 0.10344828
## 316  0.06896552 0.82758621 0.10344828
## 324  0.74475524 0.06993007 0.18531469
## 325  0.74475524 0.06993007 0.18531469
## 331  0.06896552 0.82758621 0.10344828
## 332  0.06896552 0.82758621 0.10344828
## 335  0.06896552 0.82758621 0.10344828
## 336  0.06896552 0.82758621 0.10344828
## 337  0.32258065 0.61290323 0.06451613
## 339  0.32258065 0.61290323 0.06451613
## 344  0.32258065 0.61290323 0.06451613
## 349  0.32258065 0.61290323 0.06451613
## 352  0.32258065 0.61290323 0.06451613
## 355  0.32258065 0.61290323 0.06451613
## 362  0.59420290 0.30434783 0.10144928
## 366  0.59420290 0.30434783 0.10144928
## 370  0.32258065 0.61290323 0.06451613
## 371  0.62616822 0.32710280 0.04672897
## 379  0.93973442 0.03575077 0.02451481
## 383  0.93973442 0.03575077 0.02451481
## 384  0.93973442 0.03575077 0.02451481
## 387  0.93973442 0.03575077 0.02451481
## 396  0.62616822 0.32710280 0.04672897
## 399  0.36000000 0.59200000 0.04800000
## 406  0.36000000 0.59200000 0.04800000
## 415  0.93973442 0.03575077 0.02451481
## 421  0.93973442 0.03575077 0.02451481
## 422  0.62616822 0.32710280 0.04672897
## 425  0.62616822 0.32710280 0.04672897
## 426  0.00000000 0.27777778 0.72222222
## 431  0.93973442 0.03575077 0.02451481
## 433  0.93973442 0.03575077 0.02451481
## 439  0.36000000 0.59200000 0.04800000
## 440  0.36000000 0.59200000 0.04800000
## 447  0.32258065 0.61290323 0.06451613
## 471  0.00000000 0.27777778 0.72222222
## 474  0.00000000 0.27777778 0.72222222
## 477  0.36000000 0.59200000 0.04800000
## 486  0.62616822 0.32710280 0.04672897
## 492  0.93973442 0.03575077 0.02451481
## 493  0.93973442 0.03575077 0.02451481
## 494  0.93973442 0.03575077 0.02451481
## 496  0.93973442 0.03575077 0.02451481
## 497  0.93973442 0.03575077 0.02451481
## 501  0.93973442 0.03575077 0.02451481
## 503  0.93973442 0.03575077 0.02451481
## 513  0.93973442 0.03575077 0.02451481
## 531  0.93973442 0.03575077 0.02451481
## 537  0.93973442 0.03575077 0.02451481
## 538  0.62616822 0.32710280 0.04672897
## 540  0.62616822 0.32710280 0.04672897
## 549  0.62616822 0.32710280 0.04672897
## 551  0.62616822 0.32710280 0.04672897
## 553  0.93973442 0.03575077 0.02451481
## 555  0.62616822 0.32710280 0.04672897
## 556  0.93973442 0.03575077 0.02451481
## 557  0.93973442 0.03575077 0.02451481
## 568  0.93973442 0.03575077 0.02451481
## 569  0.93973442 0.03575077 0.02451481
## 570  0.93973442 0.03575077 0.02451481
## 572  0.93973442 0.03575077 0.02451481
## 573  0.93973442 0.03575077 0.02451481
## 596  0.00000000 0.27777778 0.72222222
## 599  0.00000000 0.27777778 0.72222222
## 606  0.93973442 0.03575077 0.02451481
## 608  0.93973442 0.03575077 0.02451481
## 610  0.93973442 0.03575077 0.02451481
## 628  0.93973442 0.03575077 0.02451481
## 629  0.22580645 0.09677419 0.67741935
## 631  0.93973442 0.03575077 0.02451481
## 636  0.62616822 0.32710280 0.04672897
## 645  0.74475524 0.06993007 0.18531469
## 648  0.74475524 0.06993007 0.18531469
## 649  0.74475524 0.06993007 0.18531469
## 659  0.93973442 0.03575077 0.02451481
## 665  0.62616822 0.32710280 0.04672897
## 667  0.32258065 0.61290323 0.06451613
## 689  0.93973442 0.03575077 0.02451481
## 696  0.93973442 0.03575077 0.02451481
## 702  0.00000000 0.00000000 1.00000000
## 703  0.00000000 0.00000000 1.00000000
## 705  0.00000000 0.00000000 1.00000000
## 707  0.74475524 0.06993007 0.18531469
## 710  0.74475524 0.06993007 0.18531469
## 716  0.93973442 0.03575077 0.02451481
## 717  0.93973442 0.03575077 0.02451481
## 721  0.59420290 0.30434783 0.10144928
## 725  0.93973442 0.03575077 0.02451481
## 726  0.93973442 0.03575077 0.02451481
## 734  0.93973442 0.03575077 0.02451481
## 739  0.93973442 0.03575077 0.02451481
## 745  0.62616822 0.32710280 0.04672897
## 752  0.74475524 0.06993007 0.18531469
## 762  0.93973442 0.03575077 0.02451481
## 780  0.74475524 0.06993007 0.18531469
## 786  0.93973442 0.03575077 0.02451481
## 791  0.93973442 0.03575077 0.02451481
## 793  0.36000000 0.59200000 0.04800000
## 794  0.36000000 0.59200000 0.04800000
## 809  0.93973442 0.03575077 0.02451481
## 811  0.36000000 0.59200000 0.04800000
## 812  0.93973442 0.03575077 0.02451481
## 816  0.36000000 0.59200000 0.04800000
## 817  0.93973442 0.03575077 0.02451481
## 827  0.36000000 0.59200000 0.04800000
## 836  0.93973442 0.03575077 0.02451481
## 838  0.93973442 0.03575077 0.02451481
## 840  0.62616822 0.32710280 0.04672897
## 843  0.62616822 0.32710280 0.04672897
## 849  0.93973442 0.03575077 0.02451481
## 850  0.93973442 0.03575077 0.02451481
## 854  0.62616822 0.32710280 0.04672897
## 871  0.93973442 0.03575077 0.02451481
## 876  0.93973442 0.03575077 0.02451481
## 880  0.93973442 0.03575077 0.02451481
## 884  0.93973442 0.03575077 0.02451481
## 885  0.93973442 0.03575077 0.02451481
## 887  0.93973442 0.03575077 0.02451481
## 890  0.93973442 0.03575077 0.02451481
## 892  0.74475524 0.06993007 0.18531469
## 893  0.93973442 0.03575077 0.02451481
## 900  0.93973442 0.03575077 0.02451481
## 908  0.93973442 0.03575077 0.02451481
## 910  0.93973442 0.03575077 0.02451481
## 919  0.74475524 0.06993007 0.18531469
## 927  0.74475524 0.06993007 0.18531469
## 931  0.93973442 0.03575077 0.02451481
## 940  0.74475524 0.06993007 0.18531469
## 947  0.62616822 0.32710280 0.04672897
## 948  0.93973442 0.03575077 0.02451481
## 954  0.93973442 0.03575077 0.02451481
## 956  0.74475524 0.06993007 0.18531469
## 957  0.74475524 0.06993007 0.18531469
## 960  0.74475524 0.06993007 0.18531469
## 982  0.93973442 0.03575077 0.02451481
## 983  0.74475524 0.06993007 0.18531469
## 984  0.74475524 0.06993007 0.18531469
## 985  0.93973442 0.03575077 0.02451481
## 986  0.93973442 0.03575077 0.02451481
## 996  0.93973442 0.03575077 0.02451481
## 1009 0.93973442 0.03575077 0.02451481
## 1010 0.93973442 0.03575077 0.02451481
## 1014 0.93973442 0.03575077 0.02451481
## 1015 0.93973442 0.03575077 0.02451481
## 1016 0.93973442 0.03575077 0.02451481
## 1019 0.93973442 0.03575077 0.02451481
## 1021 0.93973442 0.03575077 0.02451481
## 1023 0.93973442 0.03575077 0.02451481
## 1041 0.93973442 0.03575077 0.02451481
## 1043 0.74475524 0.06993007 0.18531469
## 1044 0.93973442 0.03575077 0.02451481
## 1045 0.74475524 0.06993007 0.18531469
## 1047 0.93973442 0.03575077 0.02451481
## 1052 0.93973442 0.03575077 0.02451481
## 1056 0.93973442 0.03575077 0.02451481
## 1057 0.93973442 0.03575077 0.02451481
## 1059 0.74475524 0.06993007 0.18531469
## 1062 0.93973442 0.03575077 0.02451481
## 1067 0.93973442 0.03575077 0.02451481
## 1070 0.93973442 0.03575077 0.02451481
## 1072 0.93973442 0.03575077 0.02451481
## 1075 0.93973442 0.03575077 0.02451481
## 1076 0.93973442 0.03575077 0.02451481
## 1079 0.74475524 0.06993007 0.18531469
## 1082 0.93973442 0.03575077 0.02451481
## 1085 0.93973442 0.03575077 0.02451481
## 1092 0.93973442 0.03575077 0.02451481
## 1094 0.93973442 0.03575077 0.02451481
## 1111 0.93973442 0.03575077 0.02451481
## 1115 0.74475524 0.06993007 0.18531469
## 1132 0.93973442 0.03575077 0.02451481
## 1135 0.93973442 0.03575077 0.02451481
## 1136 0.93973442 0.03575077 0.02451481
## 1137 0.74475524 0.06993007 0.18531469
## 1147 0.74475524 0.06993007 0.18531469
## 1149 0.74475524 0.06993007 0.18531469
## 1160 0.93973442 0.03575077 0.02451481
## 1169 0.74475524 0.06993007 0.18531469
## 1181 0.93973442 0.03575077 0.02451481
## 1182 0.93973442 0.03575077 0.02451481
## 1195 0.93973442 0.03575077 0.02451481
## 1206 0.62616822 0.32710280 0.04672897
## 1208 0.93973442 0.03575077 0.02451481
## 1213 0.93973442 0.03575077 0.02451481
## 1216 0.93973442 0.03575077 0.02451481
## 1217 0.74475524 0.06993007 0.18531469
## 1218 0.74475524 0.06993007 0.18531469
## 1226 0.93973442 0.03575077 0.02451481
## 1227 0.93973442 0.03575077 0.02451481
## 1233 0.93973442 0.03575077 0.02451481
## 1239 0.93973442 0.03575077 0.02451481
## 1244 0.93973442 0.03575077 0.02451481
## 1251 0.93973442 0.03575077 0.02451481
## 1253 1.00000000 0.00000000 0.00000000
## 1257 0.93973442 0.03575077 0.02451481
## 1261 1.00000000 0.00000000 0.00000000
## 1262 1.00000000 0.00000000 0.00000000
## 1267 0.93973442 0.03575077 0.02451481
## 1268 1.00000000 0.00000000 0.00000000
## 1271 1.00000000 0.00000000 0.00000000
## 1272 1.00000000 0.00000000 0.00000000
## 1273 0.93973442 0.03575077 0.02451481
## 1276 0.93973442 0.03575077 0.02451481
## 1286 1.00000000 0.00000000 0.00000000
## 1293 0.93973442 0.03575077 0.02451481
## 1294 0.93973442 0.03575077 0.02451481
## 1297 0.93973442 0.03575077 0.02451481
## 1299 0.93973442 0.03575077 0.02451481
## 1300 0.93973442 0.03575077 0.02451481
## 1303 0.93973442 0.03575077 0.02451481
## 1317 0.93973442 0.03575077 0.02451481
## 1323 0.59420290 0.30434783 0.10144928
## 1324 0.93973442 0.03575077 0.02451481
## 1331 0.93973442 0.03575077 0.02451481
## 1333 0.93973442 0.03575077 0.02451481
## 1334 0.93973442 0.03575077 0.02451481
## 1337 0.59420290 0.30434783 0.10144928
## 1338 0.93973442 0.03575077 0.02451481
## 1341 0.93973442 0.03575077 0.02451481
## 1353 0.93973442 0.03575077 0.02451481
## 1356 0.93973442 0.03575077 0.02451481
## 1358 0.93973442 0.03575077 0.02451481
## 1360 0.93973442 0.03575077 0.02451481
## 1365 0.93973442 0.03575077 0.02451481
## 1366 0.74475524 0.06993007 0.18531469
## 1377 0.93973442 0.03575077 0.02451481
## 1378 0.93973442 0.03575077 0.02451481
## 1382 0.22580645 0.09677419 0.67741935
## 1383 0.93973442 0.03575077 0.02451481
## 1384 0.22580645 0.09677419 0.67741935
## 1386 0.22580645 0.09677419 0.67741935
## 1389 0.93973442 0.03575077 0.02451481
## 1393 0.62616822 0.32710280 0.04672897
## 1394 0.62616822 0.32710280 0.04672897
## 1395 0.62616822 0.32710280 0.04672897
## 1397 0.93973442 0.03575077 0.02451481
## 1415 0.93973442 0.03575077 0.02451481
## 1416 0.93973442 0.03575077 0.02451481
## 1419 0.93973442 0.03575077 0.02451481
## 1426 0.93973442 0.03575077 0.02451481
## 1431 0.93973442 0.03575077 0.02451481
## 1432 0.36000000 0.59200000 0.04800000
## 1449 0.93973442 0.03575077 0.02451481
## 1450 0.93973442 0.03575077 0.02451481
## 1460 0.93973442 0.03575077 0.02451481
## 1468 0.93973442 0.03575077 0.02451481
## 1471 0.36000000 0.59200000 0.04800000
## 1482 0.93973442 0.03575077 0.02451481
## 1483 0.74475524 0.06993007 0.18531469
## 1488 0.93973442 0.03575077 0.02451481
## 1494 0.74475524 0.06993007 0.18531469
## 1495 0.93973442 0.03575077 0.02451481
## 1501 0.93973442 0.03575077 0.02451481
## 1507 0.93973442 0.03575077 0.02451481
## 1512 0.93973442 0.03575077 0.02451481
## 1519 0.74475524 0.06993007 0.18531469
## 1535 0.74475524 0.06993007 0.18531469
## 1540 0.93973442 0.03575077 0.02451481
## 1550 0.36000000 0.59200000 0.04800000
## 1555 0.93973442 0.03575077 0.02451481
## 1557 0.93973442 0.03575077 0.02451481
## 1571 0.93973442 0.03575077 0.02451481
## 1579 0.74475524 0.06993007 0.18531469
## 1582 0.93973442 0.03575077 0.02451481
## 1587 0.74475524 0.06993007 0.18531469
## 1590 0.74475524 0.06993007 0.18531469
## 1598 0.62616822 0.32710280 0.04672897
## 1600 0.93973442 0.03575077 0.02451481
## 1601 0.62616822 0.32710280 0.04672897
## 1605 0.62616822 0.32710280 0.04672897
## 1606 0.62616822 0.32710280 0.04672897
## 1610 0.06896552 0.82758621 0.10344828
## 1612 0.93973442 0.03575077 0.02451481
## 1616 0.06896552 0.82758621 0.10344828
## 1617 0.93973442 0.03575077 0.02451481
## 1626 0.93973442 0.03575077 0.02451481
## 1630 0.93973442 0.03575077 0.02451481
## 1642 0.93973442 0.03575077 0.02451481
## 1645 0.93973442 0.03575077 0.02451481
## 1647 0.93973442 0.03575077 0.02451481
## 1649 0.93973442 0.03575077 0.02451481
## 1651 0.93973442 0.03575077 0.02451481
## 1657 1.00000000 0.00000000 0.00000000
## 1665 1.00000000 0.00000000 0.00000000
## 1670 0.93973442 0.03575077 0.02451481
## 1672 0.93973442 0.03575077 0.02451481
## 1673 0.93973442 0.03575077 0.02451481
## 1685 0.93973442 0.03575077 0.02451481
## 1687 0.93973442 0.03575077 0.02451481
## 1688 0.93973442 0.03575077 0.02451481
## 1692 0.93973442 0.03575077 0.02451481
## 1699 0.93973442 0.03575077 0.02451481
## 1704 0.93973442 0.03575077 0.02451481
## 1706 0.93973442 0.03575077 0.02451481
## 1714 0.93973442 0.03575077 0.02451481
## 1725 0.93973442 0.03575077 0.02451481
## 1727 0.93973442 0.03575077 0.02451481
## 1739 0.93973442 0.03575077 0.02451481
## 1745 0.93973442 0.03575077 0.02451481
## 1747 0.93973442 0.03575077 0.02451481
## 1768 0.22580645 0.09677419 0.67741935
## 1787 0.93973442 0.03575077 0.02451481
## 1798 0.93973442 0.03575077 0.02451481
## 1800 0.62616822 0.32710280 0.04672897
## 1802 0.62616822 0.32710280 0.04672897
## 1803 0.62616822 0.32710280 0.04672897
## 1805 0.62616822 0.32710280 0.04672897
## 1807 0.62616822 0.32710280 0.04672897
## 1811 0.62616822 0.32710280 0.04672897
## 1817 0.93973442 0.03575077 0.02451481
## 1844 0.62616822 0.32710280 0.04672897
## 1850 0.93973442 0.03575077 0.02451481
## 1863 0.93973442 0.03575077 0.02451481
## 1867 0.93973442 0.03575077 0.02451481
## 1873 0.93973442 0.03575077 0.02451481
## 1874 0.93973442 0.03575077 0.02451481
## 1882 0.62616822 0.32710280 0.04672897
## 1885 0.93973442 0.03575077 0.02451481
## 1887 0.93973442 0.03575077 0.02451481
## 1890 0.93973442 0.03575077 0.02451481
## 1893 0.93973442 0.03575077 0.02451481
## 1895 0.93973442 0.03575077 0.02451481
## 1898 0.93973442 0.03575077 0.02451481
## 1910 0.93973442 0.03575077 0.02451481
## 1914 0.93973442 0.03575077 0.02451481
## 1915 0.93973442 0.03575077 0.02451481
## 1919 0.93973442 0.03575077 0.02451481
## 1923 0.93973442 0.03575077 0.02451481
## 1925 0.93973442 0.03575077 0.02451481
## 1939 0.74475524 0.06993007 0.18531469
## 1946 0.74475524 0.06993007 0.18531469
## 1948 0.74475524 0.06993007 0.18531469
## 1956 0.74475524 0.06993007 0.18531469
## 1957 0.74475524 0.06993007 0.18531469
## 1963 0.93973442 0.03575077 0.02451481
## 1964 0.74475524 0.06993007 0.18531469
## 1977 0.93973442 0.03575077 0.02451481
## 1983 0.93973442 0.03575077 0.02451481
## 1989 0.93973442 0.03575077 0.02451481
## 1992 0.93973442 0.03575077 0.02451481
## 1998 0.74475524 0.06993007 0.18531469
## 2003 0.74475524 0.06993007 0.18531469
## 2010 0.74475524 0.06993007 0.18531469
## 2015 0.74475524 0.06993007 0.18531469
## 2017 0.74475524 0.06993007 0.18531469
## 2025 0.74475524 0.06993007 0.18531469
## 2033 0.74475524 0.06993007 0.18531469
## 2049 0.74475524 0.06993007 0.18531469
## 2050 0.93973442 0.03575077 0.02451481
## 2055 0.74475524 0.06993007 0.18531469
## 2062 0.74475524 0.06993007 0.18531469
## 2064 0.74475524 0.06993007 0.18531469
## 2067 0.93973442 0.03575077 0.02451481
## 2068 0.93973442 0.03575077 0.02451481
## 2081 0.93973442 0.03575077 0.02451481
## 2083 0.59420290 0.30434783 0.10144928
## 2098 0.74475524 0.06993007 0.18531469
## 2106 0.74475524 0.06993007 0.18531469
## 2112 0.74475524 0.06993007 0.18531469
## 2115 0.62616822 0.32710280 0.04672897
## 2124 0.93973442 0.03575077 0.02451481

Evaluation of the model

Cm <- predict(model_tree,test)
Confusionmatrix <- table(Prediction, test$NSPF)
print(Confusionmatrix)
##           
## Prediction   1   2   3
##          1 302  14  28
##          2  29  45   7
##          3   0   0   0