library(readxl)
seaice <- read_excel("Documents/Data Analysis and econometrics/seaice.xlsx",skip = 1)
So I used the same data set as week but instead looked at Antartica sea ice depth rather than Artic sea ice.
library(forecast)
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
library(seasonal)
t=c(1:255)
icets<-ts(seaice$Antarctica,t,frequency=12)
plot(icets)
ice<-window(icets,end=c(t=255))
## Warning in window.default(x, ...): 'end' value not changed
library(fpp2)
## Loading required package: ggplot2
## Loading required package: fma
## Loading required package: expsmooth
library(tseries)
library(fGarch)
## Loading required package: timeDate
## Loading required package: timeSeries
##
## Attaching package: 'timeSeries'
## The following objects are masked from 'package:seasonal':
##
## outlier, series
## Loading required package: fBasics
decomp=stl(icets,s.window='periodic')
autoplot(decomp)
train<-ts(icets[1:200],frequency = 12)
test<-ts(icets[201:255],frequency = 12)
ets<-ets(train,model = "ZZZ")
ets
## ETS(A,N,A)
##
## Call:
## ets(y = train, model = "ZZZ")
##
## Smoothing parameters:
## alpha = 0.8572
## gamma = 1e-04
##
## Initial states:
## l = 8.6114
## s = -2.0545 2.7694 5.18 5.7245 5.2947 3.9571
## 1.7382 -0.7528 -3.5797 -6.0259 -6.7337 -5.5174
##
## sigma: 0.2627
##
## AIC AICc BIC
## 540.4146 543.0233 589.8894
fcets<-forecast(ets,55)
autoplot(fcets)
accets<-accuracy(fcets,test[1:55])
accets
## ME RMSE MAE MPE MAPE MASE
## Training set 0.00287898 0.2533148 0.1981419 -0.199337 3.434498 0.09509972
## Test set -0.14446080 0.4756570 0.3973897 -5.133348 8.215553 0.19073019
## ACF1
## Training set 0.06909786
## Test set NA
checkresiduals(fcets)
##
## Ljung-Box test
##
## data: Residuals from ETS(A,N,A)
## Q* = 36.903, df = 10, p-value = 5.883e-05
##
## Model df: 14. Total lags used: 24
myarima<-auto.arima(train)
summary(myarima)
## Series: train
## ARIMA(1,0,1)(0,1,1)[12]
##
## Coefficients:
## ar1 ma1 sma1
## 0.6601 0.1446 -0.8815
## s.e. 0.0742 0.0966 0.0829
##
## sigma^2 estimated as 0.06378: log likelihood=-15.82
## AIC=39.64 AICc=39.86 BIC=52.59
##
## Training set error measures:
## ME RMSE MAE MPE MAPE MASE
## Training set 0.01558477 0.2429011 0.1852697 -0.1146198 3.173879 0.5013056
## ACF1
## Training set 0.001921232
fcmyarima<-forecast(myarima,55)
autoplot(fcmyarima)
accmyarima<-accuracy(fcmyarima,test[1:55])
accmyarima
## ME RMSE MAE MPE MAPE MASE
## Training set 0.01558477 0.2429011 0.1852697 -0.1146198 3.173879 0.08892161
## Test set 0.24148561 0.5119285 0.3936008 2.2973198 6.078179 0.18891170
## ACF1
## Training set 0.001921232
## Test set NA
checkresiduals(fcmyarima)
##
## Ljung-Box test
##
## data: Residuals from ARIMA(1,0,1)(0,1,1)[12]
## Q* = 17.519, df = 21, p-value = 0.6792
##
## Model df: 3. Total lags used: 24
garch1<-garch(train)
##
## ***** ESTIMATION WITH ANALYTICAL GRADIENT *****
##
##
## I INITIAL X(I) D(I)
##
## 1 1.870185e+01 1.000e+00
## 2 5.000000e-02 1.000e+00
## 3 5.000000e-02 1.000e+00
##
## IT NF F RELDF PRELDF RELDX STPPAR D*STEP NPRELDF
## 0 1 6.703e+02
## 1 2 5.332e+02 2.04e-01 2.18e+00 2.6e-02 1.5e+03 1.0e+00 1.59e+03
## 2 4 5.291e+02 7.79e-03 7.49e-03 1.3e-03 6.2e+00 5.0e-02 5.68e+00
## 3 6 5.222e+02 1.29e-02 1.28e-02 2.6e-03 1.8e+00 1.0e-01 2.94e-02
## 4 8 5.211e+02 2.21e-03 2.20e-03 5.2e-04 1.7e+01 2.0e-02 2.63e-02
## 5 10 5.190e+02 4.05e-03 4.04e-03 1.0e-03 3.1e+00 4.0e-02 3.33e-02
## 6 12 5.186e+02 7.54e-04 7.53e-04 2.1e-04 3.9e+01 8.0e-03 3.49e-02
## 7 14 5.185e+02 1.49e-04 1.49e-04 4.2e-05 2.0e+02 1.6e-03 3.85e-02
## 8 16 5.184e+02 2.95e-04 2.95e-04 8.4e-05 2.5e+01 3.2e-03 3.92e-02
## 9 18 5.183e+02 5.86e-05 5.86e-05 1.7e-05 4.8e+02 6.4e-04 3.94e-02
## 10 20 5.183e+02 1.17e-04 1.17e-04 3.3e-05 6.2e+01 1.3e-03 3.97e-02
## 11 22 5.183e+02 2.33e-05 2.33e-05 6.7e-06 1.2e+03 2.6e-04 3.97e-02
## 12 24 5.182e+02 4.66e-05 4.66e-05 1.3e-05 1.5e+02 5.1e-04 3.99e-02
## 13 26 5.182e+02 9.31e-06 9.31e-06 2.7e-06 3.0e+03 1.0e-04 3.99e-02
## 14 28 5.182e+02 1.86e-05 1.86e-05 5.4e-06 3.8e+02 2.0e-04 3.99e-02
## 15 30 5.182e+02 3.72e-06 3.72e-06 1.1e-06 7.5e+03 4.1e-05 3.99e-02
## 16 32 5.182e+02 7.44e-07 7.44e-07 2.1e-07 3.8e+04 8.2e-06 4.00e-02
## 17 34 5.182e+02 1.49e-07 1.49e-07 4.3e-08 1.9e+05 1.6e-06 4.00e-02
## 18 36 5.182e+02 2.98e-07 2.98e-07 8.6e-08 2.4e+04 3.3e-06 4.00e-02
## 19 38 5.182e+02 5.95e-08 5.95e-08 1.7e-08 4.7e+05 6.6e-07 4.00e-02
## 20 40 5.182e+02 1.19e-07 1.19e-07 3.4e-08 5.9e+04 1.3e-06 4.00e-02
## 21 42 5.182e+02 2.38e-07 2.38e-07 6.9e-08 2.9e+04 2.6e-06 4.00e-02
## 22 44 5.182e+02 4.76e-08 4.76e-08 1.4e-08 5.9e+05 5.2e-07 4.00e-02
## 23 46 5.182e+02 9.52e-09 9.52e-09 2.7e-09 2.9e+06 1.0e-07 4.00e-02
## 24 48 5.182e+02 1.90e-08 1.90e-08 5.5e-09 3.7e+05 2.1e-07 4.00e-02
## 25 50 5.182e+02 3.81e-09 3.81e-09 1.1e-09 7.4e+06 4.2e-08 4.00e-02
## 26 52 5.182e+02 7.62e-09 7.62e-09 2.2e-09 9.2e+05 8.4e-08 4.00e-02
## 27 54 5.182e+02 1.52e-08 1.52e-08 4.4e-09 4.6e+05 1.7e-07 4.00e-02
## 28 57 5.182e+02 3.05e-10 3.05e-10 8.8e-11 9.2e+07 3.4e-09 4.00e-02
## 29 59 5.182e+02 6.09e-11 6.09e-11 1.8e-11 1.2e+00 6.7e-10 -2.74e-02
## 30 61 5.182e+02 1.22e-10 1.22e-10 3.5e-11 5.8e+07 1.3e-09 4.00e-02
## 31 64 5.182e+02 2.44e-12 2.44e-12 7.0e-13 1.2e+00 2.7e-11 -2.74e-02
## 32 66 5.182e+02 4.88e-12 4.88e-12 1.4e-12 1.2e+00 5.4e-11 -2.74e-02
## 33 68 5.182e+02 9.75e-12 9.75e-12 2.8e-12 1.2e+00 1.1e-10 -2.74e-02
## 34 71 5.182e+02 1.95e-13 1.95e-13 5.6e-14 1.2e+00 2.1e-12 -2.74e-02
## 35 73 5.182e+02 3.91e-14 3.90e-14 1.1e-14 1.2e+00 4.3e-13 -2.74e-02
## 36 75 5.182e+02 7.24e-15 7.80e-15 2.2e-15 1.2e+00 8.6e-14 -2.74e-02
## 37 77 5.182e+02 1.65e-14 1.56e-14 4.5e-15 1.2e+00 1.7e-13 -2.75e-02
## 38 78 5.182e+02 -1.93e+07 3.12e-14 9.0e-15 1.2e+00 3.4e-13 -2.75e-02
##
## ***** FALSE CONVERGENCE *****
##
## FUNCTION 5.182099e+02 RELDX 8.995e-15
## FUNC. EVALS 78 GRAD. EVALS 38
## PRELDF 3.120e-14 NPRELDF -2.747e-02
##
## I FINAL X(I) D(I) G(I)
##
## 1 1.870655e+01 1.000e+00 5.456e-01
## 2 9.780310e-01 1.000e+00 9.485e+00
## 3 3.523641e-15 1.000e+00 4.609e+01
summary(garch1)
##
## Call:
## garch(x = train)
##
## Model:
## GARCH(1,1)
##
## Residuals:
## Min 1Q Median 3Q Max
## 0.2627 0.5491 0.9491 1.0994 1.2746
##
## Coefficient(s):
## Estimate Std. Error t value Pr(>|t|)
## a0 1.871e+01 1.942e+01 0.963 0.335
## a1 9.780e-01 8.229e-01 1.189 0.235
## b1 3.524e-15 4.238e-01 0.000 1.000
##
## Diagnostic Tests:
## Jarque Bera Test
##
## data: Residuals
## X-squared = 20.462, df = 2, p-value = 3.603e-05
##
##
## Box-Ljung test
##
## data: Squared.Residuals
## X-squared = 128.01, df = 1, p-value < 2.2e-16
checkresiduals(garch1)
## Warning in modeldf.default(object): Could not find appropriate degrees of
## freedom for this model.