usa_claims <-
"UNRATE" %>%
tq_get(get = "economic.data",
from = "2019-01-01") %>%
rename(claims = price)
usa_claims %>%
ggplot(aes(x = date, y = claims)) +
geom_line(color = "blue",size=1) +
labs(
x = "Rate",y = "Date", caption = "Illusration by @JoeLongSanDiego",
title = "New Unemployment Claims National",
subtitle = str_glue("Weekly from {min(usa_claims$date)} through {max(usa_claims$date)}")
) +
theme_economist() +
scale_y_continuous(labels = scales::comma)
gender <-
c("LNS12000001","LNS12000002") %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
spread(symbol,price) %>%
rename(Men=LNS12000001,Women=LNS12000002)
ggplot(data = gender, aes(x = date)) +
geom_line(aes(y = Men, color = "Men"),size=.8) +
geom_line(aes(y = Women, color = "Women"),size=.8) +
labs(x = "Time",y = "Thousands of persons",title = "Employment by gender ",
caption = "Men=LNS12000001 Women=LNS12000002",
subtitle = str_glue("Monthly from {min(gender$date)} through {max(gender$date)}") ) +
theme_economist() +
scale_y_continuous(labels = scales::comma)
Mostly entry level jobs
Employment Level - 16-19 Yrs., Women (LNS12000014)
Employment Level - 16-19 Yrs., Men (LNS12000013)
gender <-
c("LNS12000014","LNS12000013") %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
spread(symbol,price) %>%
rename(Women=LNS12000014,Men=LNS12000013)
ggplot(data = gender, aes(x = date)) +
geom_line(aes(y = Men, color = "Men"),size=.8) +
geom_line(aes(y = Women, color = "Women"),size=.8) +
labs(x = "Time",y = "Thousands of persons",title = "Youth Employment 16-19 Yrs",
caption = "Women=LNS12000014 Men=LNS12000013",
subtitle = str_glue("Monthly from {min(gender$date)} through {max(gender$date)}") ) +
theme_economist() +
scale_y_continuous(labels = scales::comma)
race <-
c("LNS12000006","LNS12000009") %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
spread(symbol,price) %>%
rename(Black=LNS12000006,Hispanic=LNS12000009)
ggplot(data = race, aes(x = date)) +
geom_line(aes(y = Black, color = "Black"),size=.8) +
geom_line(aes(y = Hispanic, color = "Hispanic"),size=.8) +
labs(x = "Time",y = "Thousands of persons",
caption = "Black=LNS12000006 Hispanic=LNS12000009",
title = "Employment Black/Afican American and Hispanic/Latino ",
subtitle = str_glue("Monthly from {min(race$date)} through {max(race$date)}") ) +
theme_economist() +
scale_y_continuous(labels = scales::comma)
ed <-
c("LNS12027659","LNS12027660","LNS12027689") %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
spread(symbol,price) %>%
rename(No_highschool=LNS12027659,Highschool=LNS12027660,Associate=LNS12027689)
ggplot(data = ed, aes(x = date)) +
geom_line(aes(y = No_highschool, color = "No_highschool"),size=.8) +
geom_line(aes(y = Highschool, color = "Highschool"),size=.8) +
geom_line(aes(y = Associate, color = "Associate"),size=.8) +
labs(x = "Time",y = "Thousands of persons",
title = "Education level ",
caption = "No_highschool=LNS12027659 Highschool=LNS12027660 Associate=LNS12027689",
subtitle = str_glue("Monthly from {min(ed$date)} through {max(ed$date)}") ) +
theme_economist_white()+
scale_y_continuous(labels = scales::comma)
youth <-
c("LNS12000018","LNU02000021") %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
spread(symbol,price) %>%
rename(Black=LNS12000018,Hispanic=LNU02000021)
ggplot(data = youth, aes(x = date)) +
geom_line(aes(y = Black, color = "Black"),size=.8) +
geom_line(aes(y = Hispanic, color = "Hispanic"),size=.8) +
labs(x = "Time",y = "Thousands of persons",
title = "Minority Youth Employment ",
caption = "Black=LNS12000018 Hispanic=LNU02000021",
subtitle = str_glue("Monthly from {min(youth$date)} through {max(youth$date)}") ) +
theme_economist_white()+
scale_y_continuous(labels = scales::comma)