United States Communities:

The American Community Survey distributes downloadable data about United States communities. Download the 2006 microdata survey about housing for the state of Idaho using download.file() from here

The code book, describing the variable names is here

Apply strsplit() to split all the names of the data frame on the characters “wgtp”. What is the value of the 123 element of the resulting list?

url <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2Fss06hid.csv"
GetData <- read.csv(url)

head(GetData)
##   RT SERIALNO DIVISION PUMA REGION ST  ADJUST WGTP NP TYPE ACR AGS BDS BLD BUS
## 1  H      186        8  700      4 16 1015675   89  4    1   1  NA   4   2   2
## 2  H      306        8  700      4 16 1015675  310  1    1  NA  NA   1   7  NA
## 3  H      395        8  100      4 16 1015675  106  2    1   1  NA   3   2   2
## 4  H      506        8  700      4 16 1015675  240  4    1   1  NA   4   2   2
## 5  H      835        8  800      4 16 1015675  118  4    1   2   1   5   2   2
## 6  H      989        8  700      4 16 1015675  115  4    1   1  NA   3   2   2
##   CONP ELEP FS FULP GASP HFL INSP KIT MHP MRGI MRGP MRGT MRGX PLM RMS RNTM RNTP
## 1   NA  180  0    2    3   3  600   1  NA    1 1300    1    1   1   9   NA   NA
## 2   NA   60  0    2    3   3   NA   1  NA   NA   NA   NA   NA   1   2    2  600
## 3   NA   70  0    2   30   1  200   1  NA   NA   NA   NA    3   1   7   NA   NA
## 4   NA   40  0    2   80   1  200   1  NA    1  860    1    1   1   6   NA   NA
## 5   NA  250  0    2    3   3  700   1  NA    1 1900    1    1   1   7   NA   NA
## 6   NA  130  0    2    3   3  250   1  NA    1  700    1    1   1   6   NA   NA
##   SMP TEL TEN VACS VAL VEH WATP YBL FES  FINCP FPARC GRNTP GRPIP HHL HHT  HINCP
## 1  NA   1   1   NA  17   3  840   5   2 105600     2    NA    NA   1   1 105600
## 2  NA   1   3   NA  NA   1    1   3  NA     NA    NA   660    23   1   4  34000
## 3  NA   1   2   NA  18   2   50   5   7   9400     2    NA    NA   1   3   9400
## 4 400   1   1   NA  19   3  500   2   1  66000     1    NA    NA   1   1  66000
## 5 650   1   1   NA  20   5    2   3   1  93000     2    NA    NA   1   1  93000
## 6 400   1   1   NA  15   2 1200   5   2  61000     1    NA    NA   1   1  61000
##   HUGCL HUPAC HUPAOC HUPARC LNGI MV NOC NPF NPP NR NRC OCPIP PARTNER PSF R18
## 1     0     2      2      2    1  4   2   4   0  0   2    18       0   0   1
## 2     0     4      4      4    1  3   0  NA   0  0   0    NA       0   0   0
## 3     0     2      2      2    1  2   1   2   0  0   1    23       0   0   1
## 4     0     1      1      1    1  3   2   4   0  0   2    26       0   0   1
## 5     0     2      2      2    1  1   1   4   0  0   1    36       0   0   1
## 6     0     1      1      1    1  4   2   4   0  0   2    26       0   0   1
##   R60 R65 RESMODE SMOCP SMX SRNT SVAL TAXP WIF WKEXREL WORKSTAT FACRP FAGSP
## 1   0   0       1  1550   3    0    1   24   3       2        3     0     0
## 2   0   0       2    NA  NA    1    0   NA  NA      NA       NA     0     0
## 3   0   0       1   179  NA    0    1   16   1      13       13     0     0
## 4   0   0       2  1422   1    0    1   31   2       2        1     0     0
## 5   0   0       1  2800   1    0    1   25   3       1        1     0     0
## 6   0   0       2  1330   2    0    1    7   1       7        3     0     0
##   FBDSP FBLDP FBUSP FCONP FELEP FFSP FFULP FGASP FHFLP FINSP FKITP FMHP FMRGIP
## 1     0     0     0     0     0    0     0     0     0     0     0    0      0
## 2     0     0     0     0     0    0     0     0     0     0     0    0      0
## 3     0     0     0     0     0    0     0     0     0     0     0    0      0
## 4     0     0     0     0     0    0     0     0     0     0     0    0      0
## 5     0     0     0     0     0    0     0     0     0     0     0    0      0
## 6     0     0     0     0     0    0     0     0     0     1     0    0      0
##   FMRGP FMRGTP FMRGXP FMVYP FPLMP FRMSP FRNTMP FRNTP FSMP FSMXHP FSMXSP FTAXP
## 1     0      0      0     0     0     0      0     0    0      0      0     0
## 2     0      0      0     0     0     0      0     0    0      0      0     0
## 3     0      0      0     0     0     0      0     0    0      0      0     0
## 4     0      0      0     0     0     0      0     0    0      0      0     0
## 5     0      0      0     0     0     0      0     0    0      0      0     0
## 6     0      0      0     0     0     0      0     0    0      0      0     1
##   FTELP FTENP FVACSP FVALP FVEHP FWATP FYBLP wgtp1 wgtp2 wgtp3 wgtp4 wgtp5
## 1     0     0      0     0     0     0     0    87    28   156    95    26
## 2     0     0      0     0     0     0     1   539   363   293   422   566
## 3     0     0      0     0     0     0     0   187    35   184   178    83
## 4     0     0      0     0     0     0     0   232   406   234   270   249
## 5     0     0      0     0     0     0     0   107   194   129    41   156
## 6     0     0      0     0     0     1     0   191   197   127   115   115
##   wgtp6 wgtp7 wgtp8 wgtp9 wgtp10 wgtp11 wgtp12 wgtp13 wgtp14 wgtp15 wgtp16
## 1    25    95    93    93     91     87    166     90     25    153     89
## 2   289    87   242   453    453    334    358    414    102    281     99
## 3    95    31    32   177    118    110    114    184    107     95    115
## 4   242   406   249   287     67     72    413    399     77    245    424
## 5   174    47   113   101     33    115     52    113     95    135    206
## 6   107   119    34    32     30    123    199    117     33    109    117
##   wgtp17 wgtp18 wgtp19 wgtp20 wgtp21 wgtp22 wgtp23 wgtp24 wgtp25 wgtp26 wgtp27
## 1    148     82     25    180     90     24    140     92     25     27     86
## 2    108    278    131    407    447    264    352    238    390    336    122
## 3     33    118    120     37    184     35    176    176    110    103     29
## 4     67     63    226    254    238     69    238    255    239    248     69
## 5    100    185    135    279    116     33    105    244     38     30    230
## 6     31    115    201    190    184    198    113    109    117    111    110
##   wgtp28 wgtp29 wgtp30 wgtp31 wgtp32 wgtp33 wgtp34 wgtp35 wgtp36 wgtp37 wgtp38
## 1     84     87     93     90    149     91     28    143     81    144     95
## 2    374    482    468    335    251    613    104    284    116     91    326
## 3     30    197    127     92    118    177     99     99    109     34    100
## 4    234    247    437    423     74     61    401    267     72    388    335
## 5    123    123    243    120    238     98     90    107     44    122     32
## 6     33     37     36    110    183    114     35    134    119     32    121
##   wgtp39 wgtp40 wgtp41 wgtp42 wgtp43 wgtp44 wgtp45 wgtp46 wgtp47 wgtp48 wgtp49
## 1     27     22     90    171     27     83    153    148     92     91     91
## 2    102    361    107    253    321    289     96    343    564    274    118
## 3    105     33    173     36    168    175     99    103     30     35    155
## 4    229    236    239     65    259    247    230    225     82    220    233
## 5    127    195    116     36    135    237     33     33    249    102     84
## 6    188     33     34     32    109    115    115    112    119    192    186
##   wgtp50 wgtp51 wgtp52 wgtp53 wgtp54 wgtp55 wgtp56 wgtp57 wgtp58 wgtp59 wgtp60
## 1     93     90     26     94    142     24     91     29     84    148     30
## 2    118    321    261    130    463    294    479    391    307    476    283
## 3    102     95    107    185    120    114    113     36    115    103     29
## 4    419    390     69     74    391    276     70    422    409    223    245
## 5    224    119    250    119    125    126     32    112     33    131     45
## 6    213    106     34    124    179    106    107    190    112     34     35
##   wgtp61 wgtp62 wgtp63 wgtp64 wgtp65 wgtp66 wgtp67 wgtp68 wgtp69 wgtp70 wgtp71
## 1     93    143     24     88    147    145     91     83     83     86     81
## 2    116    353    323    374    106    236    380    313     90     94    292
## 3    183     35    179    169     95    110     28     34    233     97    123
## 4    269    488    221    250    247    240    415    234    219     66     68
## 5    101    165    125     41    191    195     49    119     92     44    127
## 6     32     34    119    123    122    121    123    196    196    207    120
##   wgtp72 wgtp73 wgtp74 wgtp75 wgtp76 wgtp77 wgtp78 wgtp79 wgtp80
## 1     27     93    151     28     79     25    101    157    129
## 2    401     81    494    346    496    615    286    454    260
## 3    119    168    107     95    101     30    124    106     31
## 4    359    385     71    234    421     76     77    242    231
## 5     36    119    121    116    209     97    176    144     38
## 6     34    109    199    116    110    211    120     31    189
str(GetData)
## 'data.frame':    6496 obs. of  188 variables:
##  $ RT      : chr  "H" "H" "H" "H" ...
##  $ SERIALNO: int  186 306 395 506 835 989 1861 2120 2278 2428 ...
##  $ DIVISION: int  8 8 8 8 8 8 8 8 8 8 ...
##  $ PUMA    : int  700 700 100 700 800 700 700 200 400 500 ...
##  $ REGION  : int  4 4 4 4 4 4 4 4 4 4 ...
##  $ ST      : int  16 16 16 16 16 16 16 16 16 16 ...
##  $ ADJUST  : int  1015675 1015675 1015675 1015675 1015675 1015675 1015675 1015675 1015675 1015675 ...
##  $ WGTP    : int  89 310 106 240 118 115 0 35 47 51 ...
##  $ NP      : int  4 1 2 4 4 4 1 1 2 2 ...
##  $ TYPE    : int  1 1 1 1 1 1 2 1 1 1 ...
##  $ ACR     : int  1 NA 1 1 2 1 NA 1 1 1 ...
##  $ AGS     : int  NA NA NA NA 1 NA NA NA NA NA ...
##  $ BDS     : int  4 1 3 4 5 3 NA 2 3 2 ...
##  $ BLD     : int  2 7 2 2 2 2 NA 1 2 1 ...
##  $ BUS     : int  2 NA 2 2 2 2 NA 2 2 2 ...
##  $ CONP    : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ ELEP    : int  180 60 70 40 250 130 NA 40 2 20 ...
##  $ FS      : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FULP    : int  2 2 2 2 2 2 NA 480 2 2 ...
##  $ GASP    : int  3 3 30 80 3 3 NA 3 3 140 ...
##  $ HFL     : int  3 3 1 1 3 3 NA 4 3 1 ...
##  $ INSP    : int  600 NA 200 200 700 250 NA NA 770 120 ...
##  $ KIT     : int  1 1 1 1 1 1 NA 1 1 1 ...
##  $ MHP     : int  NA NA NA NA NA NA NA NA NA 220 ...
##  $ MRGI    : int  1 NA NA 1 1 1 NA NA 1 NA ...
##  $ MRGP    : int  1300 NA NA 860 1900 700 NA NA 750 NA ...
##  $ MRGT    : int  1 NA NA 1 1 1 NA NA 1 NA ...
##  $ MRGX    : int  1 NA 3 1 1 1 NA NA 1 3 ...
##  $ PLM     : int  1 1 1 1 1 1 NA 1 1 1 ...
##  $ RMS     : int  9 2 7 6 7 6 NA 4 6 5 ...
##  $ RNTM    : int  NA 2 NA NA NA NA NA NA NA NA ...
##  $ RNTP    : int  NA 600 NA NA NA NA NA NA NA NA ...
##  $ SMP     : int  NA NA NA 400 650 400 NA NA NA NA ...
##  $ TEL     : int  1 1 1 1 1 1 NA 1 1 1 ...
##  $ TEN     : int  1 3 2 1 1 1 NA 4 1 2 ...
##  $ VACS    : int  NA NA NA NA NA NA NA NA NA NA ...
##  $ VAL     : int  17 NA 18 19 20 15 NA NA 13 1 ...
##  $ VEH     : int  3 1 2 3 5 2 NA 1 2 2 ...
##  $ WATP    : int  840 1 50 500 2 1200 NA 650 660 2 ...
##  $ YBL     : int  5 3 5 2 3 5 NA 5 3 5 ...
##  $ FES     : int  2 NA 7 1 1 2 NA NA 2 NA ...
##  $ FINCP   : int  105600 NA 9400 66000 93000 61000 NA NA 209000 NA ...
##  $ FPARC   : int  2 NA 2 1 2 1 NA NA 4 NA ...
##  $ GRNTP   : int  NA 660 NA NA NA NA NA NA NA NA ...
##  $ GRPIP   : int  NA 23 NA NA NA NA NA NA NA NA ...
##  $ HHL     : int  1 1 1 1 1 1 NA 1 1 2 ...
##  $ HHT     : int  1 4 3 1 1 1 NA 6 1 5 ...
##  $ HINCP   : int  105600 34000 9400 66000 93000 61000 NA 10400 209000 35400 ...
##  $ HUGCL   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ HUPAC   : int  2 4 2 1 2 1 NA 4 4 4 ...
##  $ HUPAOC  : int  2 4 2 1 2 1 NA 4 4 4 ...
##  $ HUPARC  : int  2 4 2 1 2 1 NA 4 4 4 ...
##  $ LNGI    : int  1 1 1 1 1 1 NA 1 1 2 ...
##  $ MV      : int  4 3 2 3 1 4 5 5 1 1 ...
##  $ NOC     : int  2 0 1 2 1 2 NA 0 0 0 ...
##  $ NPF     : int  4 NA 2 4 4 4 NA NA 2 NA ...
##  $ NPP     : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ NR      : int  0 0 0 0 0 0 NA 0 0 1 ...
##  $ NRC     : int  2 0 1 2 1 2 NA 0 0 0 ...
##  $ OCPIP   : int  18 NA 23 26 36 26 NA NA 5 7 ...
##  $ PARTNER : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ PSF     : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ R18     : int  1 0 1 1 1 1 NA 0 0 0 ...
##  $ R60     : int  0 0 0 0 0 0 NA 1 1 0 ...
##  $ R65     : int  0 0 0 0 0 0 NA 1 1 0 ...
##  $ RESMODE : int  1 2 1 2 1 2 NA 2 1 1 ...
##  $ SMOCP   : int  1550 NA 179 1422 2800 1330 NA NA 805 196 ...
##  $ SMX     : int  3 NA NA 1 1 2 NA NA 3 NA ...
##  $ SRNT    : int  0 1 0 0 0 0 NA 1 0 0 ...
##  $ SVAL    : int  1 0 1 1 1 1 NA 0 1 0 ...
##  $ TAXP    : int  24 NA 16 31 25 7 NA NA 22 4 ...
##  $ WIF     : int  3 NA 1 2 3 1 NA NA 1 NA ...
##  $ WKEXREL : int  2 NA 13 2 1 7 NA NA 6 NA ...
##  $ WORKSTAT: int  3 NA 13 1 1 3 NA NA 3 NA ...
##  $ FACRP   : int  0 0 0 0 0 0 NA 0 0 1 ...
##  $ FAGSP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FBDSP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FBLDP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FBUSP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FCONP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FELEP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FFSP    : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FFULP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FGASP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FHFLP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FINSP   : int  0 0 0 0 0 1 NA 0 0 0 ...
##  $ FKITP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FMHP    : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FMRGIP  : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FMRGP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FMRGTP  : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FMRGXP  : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FMVYP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FPLMP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FRMSP   : int  0 0 0 0 0 0 NA 0 0 1 ...
##  $ FRNTMP  : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FRNTP   : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FSMP    : int  0 0 0 0 0 0 NA 0 0 0 ...
##  $ FSMXHP  : int  0 0 0 0 0 0 NA 0 0 0 ...
##   [list output truncated]
ColNames <- names(GetData)
ColNames
##   [1] "RT"       "SERIALNO" "DIVISION" "PUMA"     "REGION"   "ST"      
##   [7] "ADJUST"   "WGTP"     "NP"       "TYPE"     "ACR"      "AGS"     
##  [13] "BDS"      "BLD"      "BUS"      "CONP"     "ELEP"     "FS"      
##  [19] "FULP"     "GASP"     "HFL"      "INSP"     "KIT"      "MHP"     
##  [25] "MRGI"     "MRGP"     "MRGT"     "MRGX"     "PLM"      "RMS"     
##  [31] "RNTM"     "RNTP"     "SMP"      "TEL"      "TEN"      "VACS"    
##  [37] "VAL"      "VEH"      "WATP"     "YBL"      "FES"      "FINCP"   
##  [43] "FPARC"    "GRNTP"    "GRPIP"    "HHL"      "HHT"      "HINCP"   
##  [49] "HUGCL"    "HUPAC"    "HUPAOC"   "HUPARC"   "LNGI"     "MV"      
##  [55] "NOC"      "NPF"      "NPP"      "NR"       "NRC"      "OCPIP"   
##  [61] "PARTNER"  "PSF"      "R18"      "R60"      "R65"      "RESMODE" 
##  [67] "SMOCP"    "SMX"      "SRNT"     "SVAL"     "TAXP"     "WIF"     
##  [73] "WKEXREL"  "WORKSTAT" "FACRP"    "FAGSP"    "FBDSP"    "FBLDP"   
##  [79] "FBUSP"    "FCONP"    "FELEP"    "FFSP"     "FFULP"    "FGASP"   
##  [85] "FHFLP"    "FINSP"    "FKITP"    "FMHP"     "FMRGIP"   "FMRGP"   
##  [91] "FMRGTP"   "FMRGXP"   "FMVYP"    "FPLMP"    "FRMSP"    "FRNTMP"  
##  [97] "FRNTP"    "FSMP"     "FSMXHP"   "FSMXSP"   "FTAXP"    "FTELP"   
## [103] "FTENP"    "FVACSP"   "FVALP"    "FVEHP"    "FWATP"    "FYBLP"   
## [109] "wgtp1"    "wgtp2"    "wgtp3"    "wgtp4"    "wgtp5"    "wgtp6"   
## [115] "wgtp7"    "wgtp8"    "wgtp9"    "wgtp10"   "wgtp11"   "wgtp12"  
## [121] "wgtp13"   "wgtp14"   "wgtp15"   "wgtp16"   "wgtp17"   "wgtp18"  
## [127] "wgtp19"   "wgtp20"   "wgtp21"   "wgtp22"   "wgtp23"   "wgtp24"  
## [133] "wgtp25"   "wgtp26"   "wgtp27"   "wgtp28"   "wgtp29"   "wgtp30"  
## [139] "wgtp31"   "wgtp32"   "wgtp33"   "wgtp34"   "wgtp35"   "wgtp36"  
## [145] "wgtp37"   "wgtp38"   "wgtp39"   "wgtp40"   "wgtp41"   "wgtp42"  
## [151] "wgtp43"   "wgtp44"   "wgtp45"   "wgtp46"   "wgtp47"   "wgtp48"  
## [157] "wgtp49"   "wgtp50"   "wgtp51"   "wgtp52"   "wgtp53"   "wgtp54"  
## [163] "wgtp55"   "wgtp56"   "wgtp57"   "wgtp58"   "wgtp59"   "wgtp60"  
## [169] "wgtp61"   "wgtp62"   "wgtp63"   "wgtp64"   "wgtp65"   "wgtp66"  
## [175] "wgtp67"   "wgtp68"   "wgtp69"   "wgtp70"   "wgtp71"   "wgtp72"  
## [181] "wgtp73"   "wgtp74"   "wgtp75"   "wgtp76"   "wgtp77"   "wgtp78"  
## [187] "wgtp79"   "wgtp80"
strsplit(ColNames, "^wgtp")[[123]]
## [1] ""   "15"

Gross Domestic Product, GDP Data

Load the Gross Domestic Product data for the 190 ranked countries in this data set. What is the average? Remove the commas from the GDP numbers in millions of dollars and average them.

Original data sources

#Download & write the csv File:
url <- "https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FGDP.csv"
destfile <- "GDP.csv"
download.file(url, destfile, mode="wb")

path <- "GDP.csv"

SubSetGDP <- read.csv(path, nrow = 190, skip = 4)

colnames(SubSetGDP) <- c("CountryCode", "Rank", "Country", "Total")
SubSetGDP
##     CountryCode Rank Country                          Total           NA NA NA
## 1           USA    1      NA                  United States  16,244,600     NA
## 2           CHN    2      NA                          China   8,227,103     NA
## 3           JPN    3      NA                          Japan   5,959,718     NA
## 4           DEU    4      NA                        Germany   3,428,131     NA
## 5           FRA    5      NA                         France   2,612,878     NA
## 6           GBR    6      NA                 United Kingdom   2,471,784     NA
## 7           BRA    7      NA                         Brazil   2,252,664     NA
## 8           RUS    8      NA             Russian Federation   2,014,775     NA
## 9           ITA    9      NA                          Italy   2,014,670     NA
## 10          IND   10      NA                          India   1,841,710     NA
## 11          CAN   11      NA                         Canada   1,821,424     NA
## 12          AUS   12      NA                      Australia   1,532,408     NA
## 13          ESP   13      NA                          Spain   1,322,965     NA
## 14          MEX   14      NA                         Mexico   1,178,126     NA
## 15          KOR   15      NA                    Korea, Rep.   1,129,598     NA
## 16          IDN   16      NA                      Indonesia     878,043     NA
## 17          TUR   17      NA                         Turkey     789,257     NA
## 18          NLD   18      NA                    Netherlands     770,555     NA
## 19          SAU   19      NA                   Saudi Arabia     711,050     NA
## 20          CHE   20      NA                    Switzerland     631,173     NA
## 21          SWE   21      NA                         Sweden     523,806     NA
## 22          IRN   22      NA             Iran, Islamic Rep.     514,060     NA
## 23          NOR   23      NA                         Norway     499,667     NA
## 24          POL   24      NA                         Poland     489,795     NA
## 25          BEL   25      NA                        Belgium     483,262     NA
## 26          ARG   26      NA                      Argentina     475,502     NA
## 27          AUT   27      NA                        Austria     394,708     NA
## 28          ZAF   28      NA                   South Africa     384,313     NA
## 29          VEN   29      NA                  Venezuela, RB     381,286     NA
## 30          COL   30      NA                       Colombia     369,606     NA
## 31          THA   31      NA                       Thailand     365,966     NA
## 32          ARE   32      NA           United Arab Emirates     348,595     NA
## 33          DNK   33      NA                        Denmark     314,887     NA
## 34          MYS   34      NA                       Malaysia     305,033     NA
## 35          SGP   35      NA                      Singapore     274,701     NA
## 36          CHL   36      NA                          Chile     269,869     NA
## 37          HKG   37      NA           Hong Kong SAR, China     263,259     NA
## 38          EGY   38      NA               Egypt, Arab Rep.     262,832     NA
## 39          NGA   39      NA                        Nigeria     262,597     NA
## 40          ISR   40      NA                         Israel     258,217     NA
## 41          PHL   41      NA                    Philippines     250,182     NA
## 42          GRC   42      NA                         Greece     249,099     NA
## 43          FIN   43      NA                        Finland     247,546     NA
## 44          PAK   44      NA                       Pakistan     225,143     NA
## 45          PRT   45      NA                       Portugal     212,274     NA
## 46          IRL   46      NA                        Ireland     210,771     NA
## 47          IRQ   47      NA                           Iraq     210,280     NA
## 48          DZA   48      NA                        Algeria     205,789     NA
## 49          PER   49      NA                           Peru     203,790     NA
## 50          KAZ   50      NA                     Kazakhstan     203,521     NA
## 51          CZE   51      NA                 Czech Republic     196,446     NA
## 52          ROM   52      NA                        Romania     192,711     NA
## 53          UKR   53      NA                        Ukraine     176,309     NA
## 54          QAT   54      NA                          Qatar     171,476     NA
## 55          NZL   55      NA                    New Zealand     167,347     NA
## 56          KWT   56      NA                         Kuwait     160,913     NA
## 57          VNM   57      NA                        Vietnam     155,820     NA
## 58          HUN   58      NA                        Hungary     124,600     NA
## 59          BGD   59      NA                     Bangladesh     116,355     NA
## 60          AGO   60      NA                         Angola     114,147     NA
## 61          PRI   61      NA                    Puerto Rico     101,496     NA
## 62          MAR   62      NA                        Morocco      95,982   a NA
## 63          SVK   63      NA                Slovak Republic      91,149     NA
## 64          ECU   64      NA                        Ecuador      84,040     NA
## 65          SYR   65      NA           Syrian Arab Republic      73,672     NA
## 66          OMN   66      NA                           Oman      69,972     NA
## 67          CUB   67      NA                           Cuba      68,234     NA
## 68          AZE   68      NA                     Azerbaijan      66,605     NA
## 69          BLR   69      NA                        Belarus      63,267     NA
## 70          LKA   70      NA                      Sri Lanka      59,423     NA
## 71          HRV   71      NA                        Croatia      59,228     NA
## 72          DOM   72      NA             Dominican Republic      59,047     NA
## 73          SDN   73      NA                          Sudan      58,769   b NA
## 74          LUX   74      NA                     Luxembourg      55,178     NA
## 75          UZB   75      NA                     Uzbekistan      51,113     NA
## 76          BGR   76      NA                       Bulgaria      50,972     NA
## 77          GTM   77      NA                      Guatemala      50,234     NA
## 78          URY   78      NA                        Uruguay      49,920     NA
## 79          TUN   79      NA                        Tunisia      45,662     NA
## 80          SVN   80      NA                       Slovenia      45,279     NA
## 81          CRI   81      NA                     Costa Rica      45,104     NA
## 82          MAC   82      NA               Macao SAR, China      43,582     NA
## 83          LBN   83      NA                        Lebanon      42,945     NA
## 84          LTU   84      NA                      Lithuania      42,344     NA
## 85          ETH   85      NA                       Ethiopia      41,605     NA
## 86          GHA   86      NA                          Ghana      40,711     NA
## 87          KEN   87      NA                          Kenya      40,697     NA
## 88          SRB   88      NA                         Serbia      37,489     NA
## 89          PAN   89      NA                         Panama      36,253     NA
## 90          YEM   90      NA                    Yemen, Rep.      35,646     NA
## 91          TKM   91      NA                   Turkmenistan      35,164     NA
## 92          JOR   92      NA                         Jordan      31,015     NA
## 93          BHR   93      NA                        Bahrain      29,044     NA
## 94          LVA   94      NA                         Latvia      28,373     NA
## 95          TZA   95      NA                       Tanzania      28,242   c NA
## 96          BOL   96      NA                        Bolivia      27,035     NA
## 97          PRY   97      NA                       Paraguay      25,502     NA
## 98          CMR   98      NA                       Cameroon      25,322     NA
## 99          CIV   99      NA                  Côte d'Ivoire      24,680     NA
## 100         SLV  100      NA                    El Salvador      23,864     NA
## 101         TTO  101      NA            Trinidad and Tobago      23,320     NA
## 102         CYP  102      NA                         Cyprus      22,767   d NA
## 103         EST  103      NA                        Estonia      22,390     NA
## 104         ZMB  104      NA                         Zambia      20,678     NA
## 105         AFG  105      NA                    Afghanistan      20,497     NA
## 106         UGA  106      NA                         Uganda      19,881     NA
## 107         NPL  107      NA                          Nepal      18,963     NA
## 108         HND  108      NA                       Honduras      18,434     NA
## 109         GAB  109      NA                          Gabon      18,377     NA
## 110         GNQ  110      NA              Equatorial Guinea      17,697     NA
## 111         BIH  111      NA         Bosnia and Herzegovina      17,466     NA
## 112         ZAR  112      NA               Congo, Dem. Rep.      17,204     NA
## 113         BRN  113      NA              Brunei Darussalam      16,954     NA
## 114         GEO  114      NA                        Georgia      15,747   e NA
## 115         PNG  115      NA               Papua New Guinea      15,654     NA
## 116         JAM  116      NA                        Jamaica      14,755     NA
## 117         BWA  117      NA                       Botswana      14,504     NA
## 118         MOZ  118      NA                     Mozambique      14,244     NA
## 119         SEN  119      NA                        Senegal      14,046     NA
## 120         KHM  120      NA                       Cambodia      14,038     NA
## 121         COG  121      NA                    Congo, Rep.      13,678     NA
## 122         ISL  122      NA                        Iceland      13,579     NA
## 123         NAM  123      NA                        Namibia      13,072     NA
## 124         TCD  124      NA                           Chad      12,887     NA
## 125         ALB  125      NA                        Albania      12,648     NA
## 126         NIC  126      NA                      Nicaragua      10,507     NA
## 127         MUS  127      NA                      Mauritius      10,486     NA
## 128         BFA  128      NA                   Burkina Faso      10,441     NA
## 129         MLI  129      NA                           Mali      10,308     NA
## 130         MNG  130      NA                       Mongolia      10,271     NA
## 131         SSD  131      NA                    South Sudan      10,220     NA
## 132         MDG  132      NA                     Madagascar       9,975     NA
## 133         ARM  133      NA                        Armenia       9,951     NA
## 134         ZWE  134      NA                       Zimbabwe       9,802     NA
## 135         MKD  135      NA                 Macedonia, FYR       9,613     NA
## 136         LAO  136      NA                        Lao PDR       9,418     NA
## 137         MLT  137      NA                          Malta       8,722     NA
## 138         BHS  138      NA                   Bahamas, The       8,149     NA
## 139         HTI  139      NA                          Haiti       7,843     NA
## 140         BEN  140      NA                          Benin       7,557     NA
## 141         MDA  141      NA                        Moldova       7,253   f NA
## 142         RWA  142      NA                         Rwanda       7,103     NA
## 143         TJK  143      NA                     Tajikistan       6,972     NA
## 144         NER  144      NA                          Niger       6,773     NA
## 145         KGZ  145      NA                Kyrgyz Republic       6,475     NA
## 146         KSV  146      NA                         Kosovo       6,445     NA
## 147         MCO  147      NA                         Monaco       6,075     NA
## 148         GIN  148      NA                         Guinea       5,632     NA
## 149         BMU  149      NA                        Bermuda       5,474     NA
## 150         SUR  150      NA                       Suriname       5,012     NA
## 151         MNE  151      NA                     Montenegro       4,373     NA
## 152         MWI  152      NA                         Malawi       4,264     NA
## 153         BRB  153      NA                       Barbados       4,225     NA
## 154         MRT  154      NA                     Mauritania       4,199     NA
## 155         FJI  155      NA                           Fiji       3,908     NA
## 156         TGO  156      NA                           Togo       3,814     NA
## 157         SLE  157      NA                   Sierra Leone       3,796     NA
## 158         SWZ  158      NA                      Swaziland       3,744     NA
## 159         ERI  159      NA                        Eritrea       3,092     NA
## 160         GUY  160      NA                         Guyana       2,851     NA
## 161         ABW  161      NA                          Aruba       2,584     NA
## 162         BDI  162      NA                        Burundi       2,472     NA
## 163         LSO  163      NA                        Lesotho       2,448     NA
## 164         MDV  164      NA                       Maldives       2,222     NA
## 165         CAF  165      NA       Central African Republic       2,184     NA
## 166         CPV  166      NA                     Cape Verde       1,827     NA
## 167         BTN  167      NA                         Bhutan       1,780     NA
## 168         LBR  168      NA                        Liberia       1,734     NA
## 169         BLZ  169      NA                         Belize       1,493     NA
## 170         TMP  170      NA                    Timor-Leste       1,293     NA
## 171         LCA  171      NA                      St. Lucia       1,239     NA
## 172         ATG  172      NA            Antigua and Barbuda       1,134     NA
## 173         SYC  173      NA                     Seychelles       1,129     NA
## 174         SLB  174      NA                Solomon Islands       1,008     NA
## 175         GMB  175      NA                    Gambia, The         917     NA
## 176         GNB  176      NA                  Guinea-Bissau         822     NA
## 177         VUT  177      NA                        Vanuatu         787     NA
## 178         GRD  178      NA                        Grenada         767     NA
## 179         KNA  178      NA            St. Kitts and Nevis         767     NA
## 180         VCT  180      NA St. Vincent and the Grenadines         713     NA
## 181         WSM  181      NA                          Samoa         684     NA
## 182         COM  182      NA                        Comoros         596     NA
## 183         DMA  183      NA                       Dominica         480     NA
## 184         TON  184      NA                          Tonga         472     NA
## 185         FSM  185      NA          Micronesia, Fed. Sts.         326     NA
## 186         STP  186      NA          São Tomé and Principe         263     NA
## 187         PLW  187      NA                          Palau         228     NA
## 188         MHL  188      NA               Marshall Islands         182     NA
## 189         KIR  189      NA                       Kiribati         175     NA
## 190         TUV  190      NA                         Tuvalu          40     NA
##     NA NA NA
## 1   NA NA NA
## 2   NA NA NA
## 3   NA NA NA
## 4   NA NA NA
## 5   NA NA NA
## 6   NA NA NA
## 7   NA NA NA
## 8   NA NA NA
## 9   NA NA NA
## 10  NA NA NA
## 11  NA NA NA
## 12  NA NA NA
## 13  NA NA NA
## 14  NA NA NA
## 15  NA NA NA
## 16  NA NA NA
## 17  NA NA NA
## 18  NA NA NA
## 19  NA NA NA
## 20  NA NA NA
## 21  NA NA NA
## 22  NA NA NA
## 23  NA NA NA
## 24  NA NA NA
## 25  NA NA NA
## 26  NA NA NA
## 27  NA NA NA
## 28  NA NA NA
## 29  NA NA NA
## 30  NA NA NA
## 31  NA NA NA
## 32  NA NA NA
## 33  NA NA NA
## 34  NA NA NA
## 35  NA NA NA
## 36  NA NA NA
## 37  NA NA NA
## 38  NA NA NA
## 39  NA NA NA
## 40  NA NA NA
## 41  NA NA NA
## 42  NA NA NA
## 43  NA NA NA
## 44  NA NA NA
## 45  NA NA NA
## 46  NA NA NA
## 47  NA NA NA
## 48  NA NA NA
## 49  NA NA NA
## 50  NA NA NA
## 51  NA NA NA
## 52  NA NA NA
## 53  NA NA NA
## 54  NA NA NA
## 55  NA NA NA
## 56  NA NA NA
## 57  NA NA NA
## 58  NA NA NA
## 59  NA NA NA
## 60  NA NA NA
## 61  NA NA NA
## 62  NA NA NA
## 63  NA NA NA
## 64  NA NA NA
## 65  NA NA NA
## 66  NA NA NA
## 67  NA NA NA
## 68  NA NA NA
## 69  NA NA NA
## 70  NA NA NA
## 71  NA NA NA
## 72  NA NA NA
## 73  NA NA NA
## 74  NA NA NA
## 75  NA NA NA
## 76  NA NA NA
## 77  NA NA NA
## 78  NA NA NA
## 79  NA NA NA
## 80  NA NA NA
## 81  NA NA NA
## 82  NA NA NA
## 83  NA NA NA
## 84  NA NA NA
## 85  NA NA NA
## 86  NA NA NA
## 87  NA NA NA
## 88  NA NA NA
## 89  NA NA NA
## 90  NA NA NA
## 91  NA NA NA
## 92  NA NA NA
## 93  NA NA NA
## 94  NA NA NA
## 95  NA NA NA
## 96  NA NA NA
## 97  NA NA NA
## 98  NA NA NA
## 99  NA NA NA
## 100 NA NA NA
## 101 NA NA NA
## 102 NA NA NA
## 103 NA NA NA
## 104 NA NA NA
## 105 NA NA NA
## 106 NA NA NA
## 107 NA NA NA
## 108 NA NA NA
## 109 NA NA NA
## 110 NA NA NA
## 111 NA NA NA
## 112 NA NA NA
## 113 NA NA NA
## 114 NA NA NA
## 115 NA NA NA
## 116 NA NA NA
## 117 NA NA NA
## 118 NA NA NA
## 119 NA NA NA
## 120 NA NA NA
## 121 NA NA NA
## 122 NA NA NA
## 123 NA NA NA
## 124 NA NA NA
## 125 NA NA NA
## 126 NA NA NA
## 127 NA NA NA
## 128 NA NA NA
## 129 NA NA NA
## 130 NA NA NA
## 131 NA NA NA
## 132 NA NA NA
## 133 NA NA NA
## 134 NA NA NA
## 135 NA NA NA
## 136 NA NA NA
## 137 NA NA NA
## 138 NA NA NA
## 139 NA NA NA
## 140 NA NA NA
## 141 NA NA NA
## 142 NA NA NA
## 143 NA NA NA
## 144 NA NA NA
## 145 NA NA NA
## 146 NA NA NA
## 147 NA NA NA
## 148 NA NA NA
## 149 NA NA NA
## 150 NA NA NA
## 151 NA NA NA
## 152 NA NA NA
## 153 NA NA NA
## 154 NA NA NA
## 155 NA NA NA
## 156 NA NA NA
## 157 NA NA NA
## 158 NA NA NA
## 159 NA NA NA
## 160 NA NA NA
## 161 NA NA NA
## 162 NA NA NA
## 163 NA NA NA
## 164 NA NA NA
## 165 NA NA NA
## 166 NA NA NA
## 167 NA NA NA
## 168 NA NA NA
## 169 NA NA NA
## 170 NA NA NA
## 171 NA NA NA
## 172 NA NA NA
## 173 NA NA NA
## 174 NA NA NA
## 175 NA NA NA
## 176 NA NA NA
## 177 NA NA NA
## 178 NA NA NA
## 179 NA NA NA
## 180 NA NA NA
## 181 NA NA NA
## 182 NA NA NA
## 183 NA NA NA
## 184 NA NA NA
## 185 NA NA NA
## 186 NA NA NA
## 187 NA NA NA
## 188 NA NA NA
## 189 NA NA NA
## 190 NA NA NA
summary(SubSetGDP)
##  CountryCode             Rank        Country           Total          
##  Length:190         Min.   :  1.00   Mode:logical   Length:190        
##  Class :character   1st Qu.: 48.25   NA's:190       Class :character  
##  Mode  :character   Median : 95.50                  Mode  :character  
##                     Mean   : 95.49                                    
##                     3rd Qu.:142.75                                    
##                     Max.   :190.00                                    
##       NA                 NA               NA             NA         
##  Length:190         Length:190         Mode:logical   Mode:logical  
##  Class :character   Class :character   NA's:190       NA's:190      
##  Mode  :character   Mode  :character                                
##                                                                     
##                                                                     
##                                                                     
##     NA             NA         
##  Mode:logical   Mode:logical  
##  NA's:190       NA's:190      
##                               
##                               
##                               
## 
CleanSubSetGDP <- gsub(",","",SubSetGDP[,5])

mean(as.numeric(CleanSubSetGDP[1:190]),na.rm = TRUE)
## [1] 377652.4
#Count country Names that being with "United"
#grep("^United,countryNames",3)

Load the Gross Domestic Product data for the 190 ranked countries in this data set. Load the educational data from this data set. Of the countries for which the end of the fiscal year is available, how many end in June? Match the data based on the country shortcode.

download.file("https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FGDP.csv", destfile = "GDP190.csv")

GDP190data <- read.csv("GDP190.csv")

download.file("https://d396qusza40orc.cloudfront.net/getdata%2Fdata%2FEDSTATS_Country.csv", destfile = "Education.csv")

Educationdata <- read.csv("Education.csv")

#Reminder:
#DT <- data.table(x=c('a', 'b', 'c', 'dt1'), y=1:4) 
#DT2 <- data.table(x=c('a', 'b', 'dt2'), z=5:7) 
#setkey(DT, x); setkey(DT2, x)
#merge(DT, DT2)

   #x y z
#1: a 1 5
#2: b 2 6

#setnames(GDP190data, c("X", "X.1", "X.3", "X.4"), c("CountryCode", "rankingGDP", "Long.Name", "gdp"))

#all <- merge(GDP190data, Educationdata, by = "CountryCode")

#table(grepl("june", tolower(all$Special.Notes)), grepl("fiscal year end", tolower(all$Special.Notes)))[4]

Install quantmod (http://www.quantmod.com/) package to get historical stock prices for publicly traded companies on the NASDAQ and NYSE. Use the following code to download data on Amazon’s stock price and get the times the data was sampled.

library(quantmod)
## Loading required package: xts
## Loading required package: zoo
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: TTR
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
## Version 0.4-0 included new data defaults. See ?getSymbols.
amzn = getSymbols("AMZN",auto.assign=FALSE)
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
## 
## This message is shown once per session and may be disabled by setting 
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
sampleTimes = index(amzn)
length(grep("^2012",sampleTimes))
## [1] 250
library(lubridate)
## 
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
## 
##     date, intersect, setdiff, union
sum(weekdays(as.Date(sampleTimes[grep("^2012",sampleTimes)]))=="Monday")
## [1] 47