We will be analyzing COVID-19 statistics using the R package, “coronavirus”. The package provides the latest data by scrapping the data from Johns Hopkins University Center for Systems Science and Engineering (JHU-CCSE) Coronavirus repository. The code can be refreshed to obtain the latest information, provided that you installed the required packages. For any kind of collaboration or help reach me at sulovekoirala@gmail.com
library(coronavirus)
library(dplyr)
library(ggplot2)
library(lubridate)
library(countrycode)
## Warning: package 'countrycode' was built under R version 4.0.2
library(kableExtra)
## Warning: package 'kableExtra' was built under R version 4.0.2
library(tidyr)
library(knitr)
data = refresh_coronavirus_jhu()
head(data)
## date location location_type location_code location_code_type
## 1 2020-02-08 Afghanistan country AF iso_3166_2
## 2 2020-02-07 Afghanistan country AF iso_3166_2
## 3 2020-05-04 Afghanistan country AF iso_3166_2
## 4 2020-02-14 Afghanistan country AF iso_3166_2
## 5 2020-02-15 Afghanistan country AF iso_3166_2
## 6 2020-05-05 Afghanistan country AF iso_3166_2
## data_type value lat long
## 1 cases_new 0 33.93911 67.70995
## 2 cases_new 0 33.93911 67.70995
## 3 recovered_new 52 33.93911 67.70995
## 4 cases_new 0 33.93911 67.70995
## 5 cases_new 0 33.93911 67.70995
## 6 recovered_new 24 33.93911 67.70995
str(data)
## 'data.frame': 148365 obs. of 9 variables:
## $ date : chr "2020-02-08" "2020-02-07" "2020-05-04" "2020-02-14" ...
## $ location : chr "Afghanistan" "Afghanistan" "Afghanistan" "Afghanistan" ...
## $ location_type : chr "country" "country" "country" "country" ...
## $ location_code : chr "AF" "AF" "AF" "AF" ...
## $ location_code_type: chr "iso_3166_2" "iso_3166_2" "iso_3166_2" "iso_3166_2" ...
## $ data_type : chr "cases_new" "cases_new" "recovered_new" "cases_new" ...
## $ value : int 0 0 52 0 0 24 0 14 0 0 ...
## $ lat : num 33.9 33.9 33.9 33.9 33.9 ...
## $ long : num 67.7 67.7 67.7 67.7 67.7 ...
Let’s change the date from character format to date format. We are ordering data based on date. The reason is that it is necessary to perform time series analysis. At last, we are going to change the name of the variables in the data_type column. For eg. “cases” in place of “cases_new”.
# Converting Character to Date
data$date = ymd(data$date)
# Ordering the data
data = data[order(data$date, decreasing = F),]
# Renaming the values in data_type column
data$data_type <- gsub('cases_new', 'cases', data$data_type)
data$data_type <- gsub('deaths_new', 'deaths', data$data_type)
data$data_type <- gsub('recovered_new', 'recovered', data$data_type)
options(scipen = 999) # Removing scientific notation in plots
Let’s see the total number of cases, recovered and deaths in the world.
data %>%
group_by(data_type) %>%
summarise(total = sum(value)) %>%
kable(digits = 2, format = "html", row.names = TRUE) %>%
kable_styling(bootstrap_options = c("striped", "hover"))
| data_type | total | |
|---|---|---|
| 1 | cases | 16681996 |
| 2 | deaths | 659374 |
| 3 | recovered | 9711187 |
data %>%
group_by(date, data_type) %>%
summarise(count = sum(value)) %>%
ggplot()+
aes(date, count, color = data_type)+
geom_line(size = 1, alpha = 0.9)+
scale_color_manual(values=c("blue", "red", "green"))+
theme_minimal()+
theme(legend.title = element_blank())+
labs(x = "", y = "", title = "Daily New Cases, Deaths and Recovery", subtitle = today())
We will use “countrycode” package to assign the continent name to the countries in the dataset. We will make a separate column for continent
countrydata = filter(data, location_type == 'country')
countrydata$continent = countrycode(sourcevar = countrydata[, "location"],
origin = "country.name",
destination = "continent")
## Warning in countrycode(sourcevar = countrydata[, "location"], origin = "country.name", : Some values were not matched unambiguously: Diamond Princess, Kosovo, MS Zaandam
head(countrydata)
## date location location_type location_code location_code_type
## 1 2020-01-22 Afghanistan country AF iso_3166_2
## 2 2020-01-22 Afghanistan country AF iso_3166_2
## 3 2020-01-22 Afghanistan country AF iso_3166_2
## 4 2020-01-22 Albania country AL iso_3166_2
## 5 2020-01-22 Albania country AL iso_3166_2
## 6 2020-01-22 Albania country AL iso_3166_2
## data_type value lat long continent
## 1 cases 0 33.93911 67.70995 Asia
## 2 recovered 0 33.93911 67.70995 Asia
## 3 deaths 0 33.93911 67.70995 Asia
## 4 recovered 0 41.15330 20.16830 Europe
## 5 cases 0 41.15330 20.16830 Europe
## 6 deaths 0 41.15330 20.16830 Europe
# Removing cruise ships data and assigning Kosovo to Europe
countrydata$continent[countrydata$location == "Kosovo"] = "Europe"
countrydata = countrydata[- grep("Diamond Princess", countrydata$location),]
countrydata = countrydata[- grep("MS Zaandam", countrydata$location),]
# Cumulative Cases Continent wise
continent_df = countrydata %>%
group_by(continent, data_type) %>%
mutate(cumvalues = cumsum(value)) %>%
select(date,continent, data_type, cumvalues)
# Plot
ggplot(continent_df)+
aes(date, cumvalues, color = data_type)+
geom_line(size = 1)+
facet_wrap(~continent, scales = "free_y")+
theme_minimal()+
labs(x = "", y = "Cumulative Value", title = "Situtaiton of COVID-19 in different continents", subtitle = today())+
scale_color_discrete(name="")+
theme(legend.background = element_rect(fill="#fcfcfc", size=.5, linetype="dotted"), legend.position = "bottom", legend.title = element_blank()) +
scale_color_manual(values=c("blue", "red", "green"))
## Scale for 'colour' is already present. Adding another scale for 'colour',
## which will replace the existing scale.
df = data %>%
group_by(location, data_type) %>%
summarise(total = sum(value)) %>%
pivot_wider(names_from = data_type, values_from = total) %>%
mutate(active = cases - ifelse(is.na(recovered), 0, recovered) - ifelse(is.na(deaths), 0, deaths)) %>%
arrange(-cases) %>%
ungroup() %>%
mutate(location = if_else(location == "United Arab Emirates", "UAE", location)) %>%
mutate(location = if_else(location == "Mainland China", "China", location)) %>%
mutate(location = if_else(location == "North Macedonia", "N.Macedonia", location)) %>%
mutate(location = trimws(location)) %>%
mutate(location = factor(location, levels = location))
df %>% kable(digits = 2, format = "html", row.names = TRUE) %>%
kable_styling(bootstrap_options = c("striped", "hover"),
full_width = T,
font_size = 15) %>%
scroll_box(height = "300px")
| location | cases | deaths | recovered | active | |
|---|---|---|---|---|---|
| 1 | US | 4351997 | 149256 | 1355363 | 2847378 |
| 2 | Brazil | 2483191 | 88539 | 1868749 | 525903 |
| 3 | India | 1483156 | 33425 | 952743 | 496988 |
| 4 | Russia | 822060 | 13483 | 611109 | 197468 |
| 5 | South Africa | 459761 | 7257 | 287313 | 165191 |
| 6 | Mexico | 402697 | 44876 | 308142 | 49679 |
| 7 | Peru | 389717 | 18418 | 276452 | 94847 |
| 8 | Chile | 349800 | 9240 | 322332 | 18228 |
| 9 | United Kingdom | 300658 | 45878 | 0 | 254780 |
| 10 | Iran | 296273 | 16147 | 257019 | 23107 |
| 11 | Spain | 280610 | 28436 | 150376 | 101798 |
| 12 | Pakistan | 275225 | 5865 | 242436 | 26924 |
| 13 | Saudi Arabia | 270831 | 2789 | 225624 | 42418 |
| 14 | Colombia | 267385 | 9074 | 136690 | 121621 |
| 15 | Italy | 246488 | 35123 | 198756 | 12609 |
| 16 | Bangladesh | 229185 | 3000 | 127414 | 98771 |
| 17 | Turkey | 227982 | 5645 | 211561 | 10776 |
| 18 | France | 209342 | 30109 | 71667 | 107566 |
| 19 | Germany | 207707 | 9131 | 190711 | 7865 |
| 20 | Argentina | 173355 | 3179 | 75083 | 95093 |
| 21 | Iraq | 115332 | 4535 | 81062 | 29735 |
| 22 | Qatar | 109880 | 167 | 106603 | 3110 |
| 23 | Indonesia | 102051 | 4901 | 60539 | 36611 |
| 24 | Egypt | 92947 | 4691 | 35959 | 52297 |
| 25 | Kazakhstan | 86192 | 793 | 56638 | 28761 |
| 26 | Philippines | 83673 | 1947 | 26617 | 55109 |
| 27 | Ecuador | 82279 | 5584 | 35283 | 41412 |
| 28 | Sweden | 79494 | 5702 | 0 | 73792 |
| 29 | Oman | 77904 | 402 | 58587 | 18915 |
| 30 | Bolivia | 72327 | 2720 | 21971 | 47636 |
| 31 | Hubei, China | 68135 | 4512 | 63623 | 0 |
| 32 | Ukraine | 68030 | 1650 | 37852 | 28528 |
| 33 | Belarus | 67366 | 543 | 60669 | 6154 |
| 34 | Belgium | 66662 | 9833 | 17476 | 39353 |
| 35 | Israel | 66293 | 486 | 32182 | 33625 |
| 36 | Kuwait | 65149 | 442 | 55681 | 9026 |
| 37 | Dominican Republic | 64690 | 1101 | 32014 | 31575 |
| 38 | Panama | 62223 | 1349 | 36181 | 24693 |
| 39 | UAE | 59546 | 347 | 52905 | 6294 |
| 40 | Quebec, Canada | 58897 | 5670 | NA | 53227 |
| 41 | Netherlands | 53374 | 6145 | 0 | 47229 |
| 42 | Singapore | 51197 | 27 | 45893 | 5277 |
| 43 | Portugal | 50410 | 1722 | 35626 | 13062 |
| 44 | Romania | 47053 | 2239 | 26128 | 18686 |
| 45 | Guatemala | 46451 | 1782 | 33494 | 11175 |
| 46 | Poland | 43904 | 1682 | 33043 | 9179 |
| 47 | Nigeria | 41804 | 868 | 18764 | 22172 |
| 48 | Ontario, Canada | 40787 | 2812 | NA | 37975 |
| 49 | Honduras | 40460 | 1214 | 5103 | 34143 |
| 50 | Bahrain | 39921 | 141 | 36531 | 3249 |
| 51 | Armenia | 37629 | 719 | 27357 | 9553 |
| 52 | Afghanistan | 36368 | 1270 | 25358 | 9740 |
| 53 | Switzerland | 34609 | 1978 | 31000 | 1631 |
| 54 | Ghana | 34406 | 168 | 30621 | 3617 |
| 55 | Kyrgyzstan | 33844 | 1329 | 22296 | 10219 |
| 56 | Japan | 32116 | 1001 | 22636 | 8479 |
| 57 | Azerbaijan | 30858 | 430 | 23873 | 6555 |
| 58 | Algeria | 28615 | 1174 | 19233 | 8208 |
| 59 | Ireland | 25929 | 1764 | 23364 | 801 |
| 60 | Serbia | 24520 | 551 | 0 | 23969 |
| 61 | Moldova | 23521 | 753 | 16462 | 6306 |
| 62 | Uzbekistan | 21699 | 124 | 12026 | 9549 |
| 63 | Morocco | 21387 | 327 | 17066 | 3994 |
| 64 | Austria | 20677 | 713 | 18379 | 1585 |
| 65 | Nepal | 19063 | 49 | 13875 | 5139 |
| 66 | Kenya | 18581 | 299 | 7908 | 10374 |
| 67 | Cameroon | 17179 | 391 | 14539 | 2249 |
| 68 | Venezuela | 16571 | 151 | 10195 | 6225 |
| 69 | Costa Rica | 16344 | 125 | 3920 | 12299 |
| 70 | Czechia | 15799 | 374 | 11428 | 3997 |
| 71 | Cote d’Ivoire | 15713 | 98 | 10537 | 5078 |
| 72 | El Salvador | 15446 | 417 | 7903 | 7126 |
| 73 | Ethiopia | 15200 | 239 | 6526 | 8435 |
| 74 | South Korea | 14251 | 300 | 13069 | 882 |
| 75 | Denmark | 13577 | 613 | 12451 | 513 |
| 76 | Sudan | 11496 | 725 | 6001 | 4770 |
| 77 | West Bank and Gaza | 10938 | 79 | 3752 | 7107 |
| 78 | Bulgaria | 10871 | 355 | 5766 | 4750 |
| 79 | Bosnia and Herzegovina | 10766 | 297 | 5220 | 5249 |
| 80 | Alberta, Canada | 10470 | 187 | NA | 10283 |
| 81 | N.Macedonia | 10315 | 471 | 5663 | 4181 |
| 82 | Madagascar | 10104 | 93 | 6613 | 3398 |
| 83 | Senegal | 9805 | 198 | 6591 | 3016 |
| 84 | Victoria, Australia | 9304 | 92 | 4123 | 5089 |
| 85 | Norway | 9150 | 255 | 8752 | 143 |
| 86 | Malaysia | 8943 | 124 | 8607 | 212 |
| 87 | Congo (Kinshasa) | 8873 | 208 | 5930 | 2735 |
| 88 | Kosovo | 7652 | 192 | 4129 | 3331 |
| 89 | French Guiana, France | 7562 | 43 | 6106 | 1413 |
| 90 | Finland | 7404 | 329 | 6920 | 155 |
| 91 | Haiti | 7340 | 158 | 4365 | 2817 |
| 92 | Tajikistan | 7276 | 60 | 6065 | 1151 |
| 93 | Gabon | 7189 | 49 | 4682 | 2458 |
| 94 | Guinea | 7126 | 46 | 6312 | 768 |
| 95 | Luxembourg | 6375 | 113 | 4855 | 1407 |
| 96 | Mauritania | 6249 | 156 | 4683 | 1410 |
| 97 | Djibouti | 5068 | 58 | 4992 | 18 |
| 98 | Zambia | 5002 | 142 | 3195 | 1665 |
| 99 | Albania | 4997 | 148 | 2789 | 2060 |
| 100 | Croatia | 4923 | 140 | 4034 | 749 |
| 101 | Paraguay | 4674 | 45 | 3039 | 1590 |
| 102 | Central African Republic | 4599 | 59 | 1546 | 2994 |
| 103 | Hungary | 4456 | 596 | 3331 | 529 |
| 104 | Greece | 4279 | 203 | 1374 | 2702 |
| 105 | Lebanon | 4023 | 54 | 1710 | 2259 |
| 106 | New South Wales, Australia | 3718 | 49 | 2989 | 680 |
| 107 | Malawi | 3709 | 103 | 1667 | 1939 |
| 108 | Nicaragua | 3672 | 116 | 2492 | 1064 |
| 109 | British Columbia, Canada | 3523 | 194 | NA | 3329 |
| 110 | Maldives | 3506 | 15 | 2547 | 944 |
| 111 | Thailand | 3297 | 58 | 3111 | 128 |
| 112 | Somalia | 3212 | 93 | 1562 | 1557 |
| 113 | Congo (Brazzaville) | 3200 | 54 | 829 | 2317 |
| 114 | Equatorial Guinea | 3071 | 51 | 842 | 2178 |
| 115 | Libya | 3017 | 67 | 579 | 2371 |
| 116 | Montenegro | 2949 | 45 | 839 | 2065 |
| 117 | Mayotte, France | 2900 | 38 | 2672 | 190 |
| 118 | Hong Kong, China | 2884 | 23 | 1527 | 1334 |
| 119 | Zimbabwe | 2817 | 40 | 604 | 2173 |
| 120 | Sri Lanka | 2810 | 11 | 2296 | 503 |
| 121 | Cuba | 2555 | 87 | 2352 | 116 |
| 122 | Mali | 2520 | 124 | 1919 | 477 |
| 123 | Eswatini | 2404 | 39 | 1025 | 1340 |
| 124 | Cabo Verde | 2354 | 22 | 1616 | 716 |
| 125 | South Sudan | 2305 | 46 | 1175 | 1084 |
| 126 | Slovakia | 2204 | 28 | 1644 | 532 |
| 127 | Slovenia | 2101 | 117 | 1742 | 242 |
| 128 | Estonia | 2038 | 69 | 1924 | 45 |
| 129 | Lithuania | 2027 | 80 | 1623 | 324 |
| 130 | Guinea-Bissau | 1954 | 26 | 803 | 1125 |
| 131 | Rwanda | 1926 | 5 | 1005 | 916 |
| 132 | Namibia | 1917 | 8 | 104 | 1805 |
| 133 | Iceland | 1857 | 10 | 1823 | 24 |
| 134 | Sierra Leone | 1786 | 66 | 1336 | 384 |
| 135 | Benin | 1770 | 35 | 1036 | 699 |
| 136 | Mozambique | 1720 | 11 | 602 | 1107 |
| 137 | Yemen | 1703 | 484 | 840 | 379 |
| 138 | Guangdong, China | 1674 | 8 | 1648 | 18 |
| 139 | New Zealand | 1559 | 22 | 1514 | 23 |
| 140 | Suriname | 1510 | 24 | 965 | 521 |
| 141 | Tunisia | 1468 | 50 | 1168 | 250 |
| 142 | Henan, China | 1276 | 22 | 1254 | 0 |
| 143 | Zhejiang, China | 1270 | 1 | 1268 | 1 |
| 144 | Latvia | 1220 | 31 | 1052 | 137 |
| 145 | Saskatchewan, Canada | 1218 | 17 | NA | 1201 |
| 146 | Uruguay | 1218 | 35 | 958 | 225 |
| 147 | Jordan | 1182 | 11 | 1042 | 129 |
| 148 | Liberia | 1177 | 72 | 646 | 459 |
| 149 | Georgia | 1145 | 16 | 927 | 202 |
| 150 | Uganda | 1135 | 2 | 989 | 144 |
| 151 | Niger | 1132 | 69 | 1027 | 36 |
| 152 | Burkina Faso | 1105 | 53 | 926 | 126 |
| 153 | Queensland, Australia | 1078 | 6 | 1063 | 9 |
| 154 | Cyprus | 1067 | 19 | 852 | 196 |
| 155 | Nova Scotia, Canada | 1067 | 63 | NA | 1004 |
| 156 | Hunan, China | 1019 | 4 | 1015 | 0 |
| 157 | Angola | 1000 | 47 | 266 | 687 |
| 158 | Anhui, China | 991 | 6 | 985 | 0 |
| 159 | Heilongjiang, China | 947 | 13 | 934 | 0 |
| 160 | Beijing, China | 932 | 9 | 896 | 27 |
| 161 | Jiangxi, China | 932 | 1 | 931 | 0 |
| 162 | Chad | 926 | 75 | 810 | 41 |
| 163 | Andorra | 907 | 52 | 803 | 52 |
| 164 | Togo | 896 | 18 | 612 | 266 |
| 165 | Sao Tome and Principe | 867 | 14 | 759 | 94 |
| 166 | Jamaica | 855 | 10 | 724 | 121 |
| 167 | Shandong, China | 799 | 7 | 785 | 7 |
| 168 | Shanghai, China | 744 | 7 | 720 | 17 |
| 169 | Botswana | 739 | 2 | 63 | 674 |
| 170 | Diamond Princess | 712 | 13 | 651 | 48 |
| 171 | Malta | 708 | 9 | 665 | 34 |
| 172 | San Marino | 699 | 42 | 657 | 0 |
| 173 | Syria | 694 | 40 | 220 | 434 |
| 174 | Western Australia, Australia | 661 | 9 | 647 | 5 |
| 175 | Reunion, France | 657 | 4 | 592 | 61 |
| 176 | Jiangsu, China | 655 | 0 | 654 | 1 |
| 177 | Sichuan, China | 604 | 3 | 596 | 5 |
| 178 | Channel Islands, United Kingdom | 587 | 47 | 533 | 7 |
| 179 | Chongqing, China | 583 | 6 | 577 | 0 |
| 180 | Tanzania | 509 | 21 | 183 | 305 |
| 181 | Lesotho | 505 | 12 | 128 | 365 |
| 182 | Taiwan* | 467 | 7 | 440 | 20 |
| 183 | South Australia, Australia | 448 | 4 | 441 | 3 |
| 184 | Bahamas | 447 | 11 | 91 | 345 |
| 185 | Vietnam | 446 | 0 | 369 | 77 |
| 186 | Manitoba, Canada | 405 | 8 | NA | 397 |
| 187 | Xinjiang, China | 400 | 3 | 75 | 322 |
| 188 | Guyana | 396 | 20 | 181 | 195 |
| 189 | Burundi | 378 | 1 | 301 | 76 |
| 190 | Fujian, China | 366 | 1 | 361 | 4 |
| 191 | Comoros | 354 | 7 | 328 | 19 |
| 192 | Burma | 351 | 6 | 293 | 52 |
| 193 | Hebei, China | 349 | 6 | 343 | 0 |
| 194 | Mauritius | 344 | 10 | 332 | 2 |
| 195 | Isle of Man, United Kingdom | 336 | 24 | 312 | 0 |
| 196 | Gambia | 326 | 8 | 66 | 252 |
| 197 | Shaanxi, China | 323 | 3 | 318 | 2 |
| 198 | Mongolia | 291 | 0 | 225 | 66 |
| 199 | Martinique, France | 269 | 15 | 98 | 156 |
| 200 | Newfoundland and Labrador, Canada | 266 | 3 | NA | 263 |
| 201 | Eritrea | 265 | 0 | 191 | 74 |
| 202 | Inner Mongolia, China | 258 | 1 | 244 | 13 |
| 203 | Guangxi, China | 255 | 2 | 253 | 0 |
| 204 | Tasmania, Australia | 229 | 13 | 215 | 1 |
| 205 | Cambodia | 226 | 0 | 147 | 79 |
| 206 | Faroe Islands, Denmark | 220 | 0 | 188 | 32 |
| 207 | Liaoning, China | 217 | 2 | 160 | 55 |
| 208 | Tianjin, China | 204 | 3 | 195 | 6 |
| 209 | Cayman Islands, United Kingdom | 203 | 1 | 202 | 0 |
| 210 | Guadeloupe, France | 203 | 14 | 176 | 13 |
| 211 | Shanxi, China | 201 | 0 | 201 | 0 |
| 212 | Yunnan, China | 190 | 2 | 186 | 2 |
| 213 | Gibraltar, United Kingdom | 186 | 0 | 180 | 6 |
| 214 | Hainan, China | 171 | 6 | 165 | 0 |
| 215 | New Brunswick, Canada | 170 | 2 | NA | 168 |
| 216 | Gansu, China | 167 | 2 | 165 | 0 |
| 217 | Jilin, China | 157 | 2 | 153 | 2 |
| 218 | Bermuda, United Kingdom | 156 | 9 | 141 | 6 |
| 219 | Trinidad and Tobago | 153 | 8 | 128 | 17 |
| 220 | Guizhou, China | 147 | 2 | 145 | 0 |
| 221 | Brunei | 141 | 3 | 138 | 0 |
| 222 | Aruba, Netherlands | 119 | 3 | 102 | 14 |
| 223 | Monaco | 117 | 4 | 104 | 9 |
| 224 | Seychelles | 114 | 0 | 39 | 75 |
| 225 | Sint Maarten, Netherlands | 114 | 15 | 63 | 36 |
| 226 | Australian Capital Territory, Australia | 113 | 3 | 109 | 1 |
| 227 | Barbados | 110 | 7 | 94 | 9 |
| 228 | Bhutan | 99 | 0 | 86 | 13 |
| 229 | Turks and Caicos Islands, United Kingdom | 99 | 2 | 37 | 60 |
| 230 | Liechtenstein | 87 | 1 | 81 | 5 |
| 231 | Antigua and Barbuda | 86 | 3 | 65 | 18 |
| 232 | Ningxia, China | 75 | 0 | 75 | 0 |
| 233 | Papua New Guinea | 63 | 0 | 11 | 52 |
| 234 | French Polynesia, France | 62 | 0 | 60 | 2 |
| 235 | Saint Vincent and the Grenadines | 52 | 0 | 39 | 13 |
| 236 | St Martin, France | 49 | 3 | 41 | 5 |
| 237 | Belize | 48 | 2 | 27 | 19 |
| 238 | Macau, China | 46 | 0 | 46 | 0 |
| 239 | Prince Edward Island, Canada | 36 | 0 | NA | 36 |
| 240 | Northern Territory, Australia | 31 | 0 | 30 | 1 |
| 241 | Curacao, Netherlands | 29 | 1 | 24 | 4 |
| 242 | Fiji | 27 | 0 | 18 | 9 |
| 243 | Saint Lucia | 24 | 0 | 22 | 2 |
| 244 | Timor-Leste | 24 | 0 | 24 | 0 |
| 245 | Grenada | 23 | 0 | 23 | 0 |
| 246 | New Caledonia, France | 22 | 0 | 22 | 0 |
| 247 | Laos | 20 | 0 | 19 | 1 |
| 248 | Dominica | 18 | 0 | 18 | 0 |
| 249 | Qinghai, China | 18 | 0 | 18 | 0 |
| 250 | Saint Kitts and Nevis | 17 | 0 | 15 | 2 |
| 251 | Greenland, Denmark | 14 | 0 | 13 | 1 |
| 252 | Yukon, Canada | 14 | 0 | NA | 14 |
| 253 | Falkland Islands (Malvinas), United Kingdom | 13 | 0 | 13 | 0 |
| 254 | Grand Princess, Canada | 13 | 0 | NA | 13 |
| 255 | Holy See | 12 | 0 | 12 | 0 |
| 256 | Montserrat, United Kingdom | 12 | 1 | 10 | 1 |
| 257 | Bonaire and Sint Eustatius and Saba, Netherlands | 11 | 0 | 7 | 4 |
| 258 | Western Sahara | 10 | 1 | 8 | 1 |
| 259 | MS Zaandam | 9 | 2 | 0 | 7 |
| 260 | British Virgin Islands, United Kingdom | 8 | 1 | 7 | 0 |
| 261 | Saint Barthelemy, France | 7 | 0 | 6 | 1 |
| 262 | Northwest Territories, Canada | 5 | 0 | NA | 5 |
| 263 | Saint Pierre and Miquelon, France | 4 | 0 | 1 | 3 |
| 264 | Anguilla, United Kingdom | 3 | 0 | 3 | 0 |
| 265 | Tibet, China | 1 | 0 | 1 | 0 |
| 266 | Diamond Princess, Canada | 0 | 1 | NA | -1 |
| 267 | Canada | NA | NA | 101686 | NA |
df %>%
filter(cases > 5000) %>%
ggplot()+
geom_text(aes(cases, deaths, label = location), check_overlap = T)+
theme_minimal()+
labs(title = "Cases vs Deaths plot", subtitle = today())