Loading the dataset
data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
# Load the psych package
library(psych)
items <- c("PWB6", "PWB7","PWB8")
scaleKey <- c(1,1,1)
data.test4[,items] <- apply(data.test4[,items], 2, as.numeric)
data.test4$meanPWB <- scoreItems(scaleKey, items = data.test4[, items])$score
library(reshape2); library(car); library(Amelia);library(mitools);library(nlme);library(predictmeans)
##
## Attaching package: 'car'
##
## The following object is masked from 'package:psych':
##
## logit
##
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.3, built: 2014-11-14)
## ## Copyright (C) 2005-2015 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
## Loading required package: lme4
## Loading required package: Matrix
##
## Attaching package: 'lme4'
##
## The following object is masked from 'package:nlme':
##
## lmList
#Remove the meanPWB and ID Group and wave from data.test4 and create a new #dataset with only those variables.
data <- data.test4[,c("ID", "GROUP", "wave", "meanPWB")]
#Use dcast to cnage from long-format data to wide format data
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "meanPWB")
# Changing all NaNs to NA
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )
Unsing the mapply function we create a new data set with ID Group baseline meanPWB and wave 2 and 3 of meanPWB. So we have a Baseline, which is Time 1 (placed in column 3 one on top of the other) to compare to both Time 2 and 3 (placed in column 4 one on top of the other). In the next line of code we then create a separate column called “wave” which calls the first 89 (which compares Time 2 to Baseline) “wave 1” and then the second 89 we call “wave 2” which compares Time 3 to Baseline. In the third line of code we add names to the new columns of the dataset.
data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "meanPWB", "WAVE")
Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).
data2[which(data2$GROUP ==2), "GROUP"] <- 1
data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)
Imputing missing data
MI <- amelia(data2, 50, idvars = c("ID"), ords = "GROUP")
## -- Imputation 1 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 2 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12
##
## -- Imputation 3 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 4 --
##
## 1 2 3 4 5
##
## -- Imputation 5 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 6 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 7 --
##
## 1 2 3 4 5 6
##
## -- Imputation 8 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
##
## -- Imputation 9 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 10 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 11 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 12 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 13 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 14 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12
##
## -- Imputation 15 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 16 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 17 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 18 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14
##
## -- Imputation 19 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12
##
## -- Imputation 20 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 21 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 22 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 23 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 24 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 25 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 26 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 27 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 28 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 29 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 30 --
##
## 1 2 3 4 5 6
##
## -- Imputation 31 --
##
## 1 2 3 4 5 6
##
## -- Imputation 32 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 33 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 34 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 35 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 36 --
##
## 1 2 3 4
##
## -- Imputation 37 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 38 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 39 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 40 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 41 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## -- Imputation 42 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12
##
## -- Imputation 43 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12
##
## -- Imputation 44 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
##
## -- Imputation 45 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 46 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12 13
##
## -- Imputation 47 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 48 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 49 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 50 --
##
## 1 2 3 4 5 6 7
Creating new dataset with missing data imputed
data(MI$imputations)
## Warning in data(MI$imputations): data set 'MI$imputations' not found
allimplogreg<-lapply(MI$imputations,function(X) {lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = X, method = "ML", na.action = "na.omit")})
betas<-MIextract(allimplogreg, fun=fixef)
vars<-MIextract(allimplogreg, fun=vcov)
summary(MIcombine(betas,vars))
## Multiple imputation results:
## MIcombine.default(betas, vars)
## results se (lower upper) missInfo
## (Intercept) 1.60793415 0.41486694 0.7919748 2.4238935 38 %
## GROUP1 0.34114782 0.39302151 -0.4311993 1.1134950 33 %
## WAVE 0.10411135 0.17898332 -0.2477955 0.4560182 36 %
## BASELINE 0.61195820 0.07935049 0.4552177 0.7686987 57 %
## GROUP1:WAVE 0.04686015 0.24994526 -0.4446116 0.5383319 37 %
Check results with Imputations using Zelig
library("Zelig")
## Loading required package: boot
##
## Attaching package: 'boot'
##
## The following object is masked from 'package:car':
##
## logit
##
## The following object is masked from 'package:psych':
##
## logit
##
## Loading required package: MASS
## Loading required package: sandwich
## ZELIG (Versions 4.2-1, built: 2013-09-12)
##
## +----------------------------------------------------------------+
## | Please refer to http://gking.harvard.edu/zelig for full |
## | documentation or help.zelig() for help with commands and |
## | models support by Zelig. |
## | |
## | Zelig project citations: |
## | Kosuke Imai, Gary King, and Olivia Lau. (2009). |
## | ``Zelig: Everyone's Statistical Software,'' |
## | http://gking.harvard.edu/zelig |
## | and |
## | Kosuke Imai, Gary King, and Olivia Lau. (2008). |
## | ``Toward A Common Framework for Statistical Analysis |
## | and Development,'' Journal of Computational and |
## | Graphical Statistics, Vol. 17, No. 4 (December) |
## | pp. 892-913. |
## | |
## | To cite individual Zelig models, please use the citation |
## | format printed with each model run and in the documentation. |
## +----------------------------------------------------------------+
##
##
##
## Attaching package: 'Zelig'
##
## The following objects are masked from 'package:psych':
##
## alpha, describe, sim
##
## The following object is masked from 'package:utils':
##
## cite
zelig.fit <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = MI$imputations, model = "ls", cite = FALSE)
summary(zelig.fit)
##
## Model: ls
## Number of multiply imputed data sets: 50
##
## Combined results:
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Coefficients:
## Value Std. Error t-stat p-value
## (Intercept) 1.60130631 0.4182633 3.8284647 1.511604e-04
## GROUP1 0.34121986 0.4184118 0.8155120 4.151093e-01
## WAVE 0.10411135 0.1928079 0.5399746 5.894463e-01
## BASELINE 0.61346082 0.0768415 7.9834570 4.478782e-13
## GROUP1:WAVE 0.04684212 0.2691091 0.1740637 8.618854e-01
##
## For combined results from datasets i to j, use summary(x, subset = i:j).
## For separate results, use print(summary(x), subset = i:j).
Check assumptions with Random Computations
data1=MI$imputations[[1]]
library("Zelig")
zelig.fitdata1 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data1, model = "ls", cite = FALSE)
summary(zelig.fitdata1)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.50633 -0.40505 0.02167 0.47750 2.02231
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.70235 0.37577 4.530 1.09e-05 ***
## GROUP1 0.47365 0.39679 1.194 0.234
## WAVE 0.08302 0.18041 0.460 0.646
## BASELINE 0.58814 0.05546 10.606 < 2e-16 ***
## GROUP1:WAVE -0.01492 0.25096 -0.059 0.953
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8365 on 173 degrees of freedom
## Multiple R-squared: 0.4187, Adjusted R-squared: 0.4052
## F-statistic: 31.15 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data1[,3:4], group = data1$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.41 1.15 4.67 4.49 0.99 1.67 6.00 4.33 -0.58
## meanPWB 2 86 4.42 1.10 4.64 4.48 1.02 1.67 6.77 5.11 -0.49
## kurtosis se
## BASELINE -0.64 0.12
## meanPWB -0.29 0.12
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.38 1.12 4.67 4.41 1.24 1.00 6.0 5.00 -0.55
## meanPWB 2 92 4.85 1.04 5.00 4.92 0.99 1.28 7.4 6.12 -0.75
## kurtosis se
## BASELINE -0.10 0.12
## meanPWB 1.32 0.11
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
##
## Attaching package: 'ggplot2'
##
## The following object is masked from 'package:psych':
##
## %+%
library(influence.ME)
##
## Attaching package: 'influence.ME'
##
## The following object is masked from 'package:stats':
##
## influence
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data1)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data1$meanPWB))
sel2 <- which(!is.na(data1$BASELINE))
data1$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data1, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data1, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data1, boxplot(meanPWB ~ WAVE + GROUP))
with(data1, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata1 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data1, method = "ML", na.action = "na.omit")
CookD(fullModeldata1)
plot(fullModeldata1, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata1)
## Linear mixed-effects model fit by maximum likelihood
## Data: data1
## AIC BIC logLik
## 444.3389 466.6114 -215.1694
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.4198965 0.709806
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 1.7099584 0.3734907 87 4.578316 0.0000
## GROUP1 0.4737210 0.3532608 87 1.340995 0.1834
## WAVE 0.0830250 0.1552771 86 0.534689 0.5942
## BASELINE 0.5864158 0.0620877 86 9.444966 0.0000
## GROUP1:WAVE -0.0150085 0.2160072 86 -0.069481 0.9448
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.483
## WAVE -0.624 0.659
## BASELINE -0.733 -0.007 0.000
## GROUP1:WAVE 0.438 -0.917 -0.719 0.014
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -3.01369482 -0.55687626 0.08657019 0.63990176 2.01437269
##
## Number of Observations: 178
## Number of Groups: 89
Another random imputation
data10=MI$imputations[[10]]
library("Zelig")
zelig.fitdata10 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data10, model = "ls", cite = FALSE)
summary(zelig.fitdata10)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.24249 -0.37987 0.07047 0.43611 1.76890
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.89153 0.33363 5.670 5.89e-08 ***
## GROUP1 0.50848 0.35234 1.443 0.1508
## WAVE 0.34334 0.16019 2.143 0.0335 *
## BASELINE 0.49910 0.04923 10.138 < 2e-16 ***
## GROUP1:WAVE -0.21119 0.22283 -0.948 0.3446
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7428 on 173 degrees of freedom
## Multiple R-squared: 0.39, Adjusted R-squared: 0.3759
## F-statistic: 27.65 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data10[,3:4], group = data10$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.41 1.15 4.67 4.49 0.99 1.67 6.00 4.33 -0.58
## meanPWB 2 86 4.61 1.03 4.67 4.70 0.99 1.67 6.14 4.48 -0.79
## kurtosis se
## BASELINE -0.64 0.12
## meanPWB 0.16 0.11
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.36 1.12 4.50 4.39 1.24 1.00 6.08 5.08 -0.50
## meanPWB 2 92 4.78 0.84 4.87 4.81 0.98 2.67 6.08 3.42 -0.34
## kurtosis se
## BASELINE -0.11 0.12
## meanPWB -0.70 0.09
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data10)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data10$meanPWB))
sel2 <- which(!is.na(data10$BASELINE))
data10$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data10, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data10, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data10, boxplot(meanPWB ~ WAVE + GROUP))
with(data10, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata10 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data10, method = "ML", na.action = "na.omit")
CookD(fullModeldata10)
plot(fullModeldata10, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata10)
## Linear mixed-effects model fit by maximum likelihood
## Data: data10
## AIC BIC logLik
## 406.2107 428.4832 -196.1053
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.2826776 0.6755069
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 1.9035673 0.3322516 87 5.729295 0.0000
## GROUP1 0.5081979 0.3306881 87 1.536789 0.1280
## WAVE 0.3433449 0.1477738 86 2.323449 0.0225
## BASELINE 0.4963737 0.0526280 86 9.431743 0.0000
## GROUP1:WAVE -0.2110830 0.2055581 86 -1.026878 0.3074
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.526
## WAVE -0.667 0.670
## BASELINE -0.699 0.017 0.000
## GROUP1:WAVE 0.486 -0.932 -0.719 -0.010
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.98618429 -0.46326207 0.06400816 0.56598691 2.56552143
##
## Number of Observations: 178
## Number of Groups: 89
Another random imputation
data15=MI$imputations[[15]]
library("Zelig")
zelig.fitdata15 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data15, model = "ls", cite = FALSE)
summary(zelig.fitdata15)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.18551 -0.33840 0.00679 0.47391 1.82379
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.55084 0.32152 4.823 3.08e-06 ***
## GROUP1 -0.02195 0.33965 -0.065 0.949
## WAVE -0.02734 0.15443 -0.177 0.860
## BASELINE 0.67113 0.04742 14.152 < 2e-16 ***
## GROUP1:WAVE 0.34227 0.21482 1.593 0.113
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7161 on 173 degrees of freedom
## Multiple R-squared: 0.5632, Adjusted R-squared: 0.5531
## F-statistic: 55.77 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data15[,3:4], group = data15$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.41 1.15 4.67 4.49 0.99 1.67 6.00 4.33 -0.58
## meanPWB 2 86 4.47 1.16 4.67 4.54 0.99 1.67 6.86 5.19 -0.47
## kurtosis se
## BASELINE -0.64 0.12
## meanPWB -0.41 0.12
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.38 1.13 4.5 4.41 1.23 1.00 6.37 5.37 -0.52
## meanPWB 2 92 4.94 0.94 5.0 5.00 0.99 2.67 6.47 3.81 -0.47
## kurtosis se
## BASELINE -0.04 0.12
## meanPWB -0.40 0.10
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data15)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data15$meanPWB))
sel2 <- which(!is.na(data15$BASELINE))
data15$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data15, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data15, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data15, boxplot(meanPWB ~ WAVE + GROUP))
with(data15, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata15 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data15, method = "ML", na.action = "na.omit")
CookD(fullModeldata15)
plot(fullModeldata15, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata15)
## Linear mixed-effects model fit by maximum likelihood
## Data: data15
## AIC BIC logLik
## 389.5325 411.805 -187.7662
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.3514034 0.6122592
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 1.5645213 0.3194337 87 4.897797 0.0000
## GROUP1 -0.0217530 0.3041370 87 -0.071524 0.9431
## WAVE -0.0273355 0.1339378 86 -0.204091 0.8388
## BASELINE 0.6680227 0.0527979 86 12.652450 0.0000
## GROUP1:WAVE 0.3420845 0.1863293 86 1.835913 0.0698
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.484
## WAVE -0.629 0.661
## BASELINE -0.729 -0.011 0.000
## GROUP1:WAVE 0.440 -0.919 -0.719 0.017
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.57327354 -0.49390244 -0.01965743 0.58478052 2.41406374
##
## Number of Observations: 178
## Number of Groups: 89
Another random imputation
data25=MI$imputations[[25]]
library("Zelig")
zelig.fitdata25 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data25, model = "ls", cite = FALSE)
summary(zelig.fitdata25)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.04944 -0.32486 0.02334 0.41755 1.70181
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.74585 0.31024 5.627 7.25e-08 ***
## GROUP1 0.14660 0.32730 0.448 0.655
## WAVE 0.04578 0.14882 0.308 0.759
## BASELINE 0.59804 0.04584 13.046 < 2e-16 ***
## GROUP1:WAVE 0.23860 0.20701 1.153 0.251
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.69 on 173 degrees of freedom
## Multiple R-squared: 0.5307, Adjusted R-squared: 0.5198
## F-statistic: 48.9 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data25[,3:4], group = data25$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.41 1.15 4.67 4.49 0.99 1.67 6 4.33 -0.58
## meanPWB 2 86 4.45 1.06 4.67 4.52 0.99 1.67 6 4.33 -0.59
## kurtosis se
## BASELINE -0.64 0.12
## meanPWB -0.36 0.11
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.38 1.12 4.67 4.42 1.11 1.00 6.00 5.00 -0.56
## meanPWB 2 92 4.94 0.88 5.00 4.97 0.99 2.67 6.91 4.25 -0.26
## kurtosis se
## BASELINE -0.07 0.12
## meanPWB -0.55 0.09
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data25)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data25$meanPWB))
sel2 <- which(!is.na(data25$BASELINE))
data25$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data25, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data25, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data25, boxplot(meanPWB ~ WAVE + GROUP))
with(data25, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata25 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data25, method = "ML", na.action = "na.omit")
CookD(fullModeldata25)
plot(fullModeldata25, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata25)
## Linear mixed-effects model fit by maximum likelihood
## Data: data25
## AIC BIC logLik
## 379.8882 402.1607 -182.9441
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.2661288 0.6260737
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 1.7472448 0.3092580 87 5.649797 0.0000
## GROUP1 0.1466137 0.3066149 87 0.478169 0.6337
## WAVE 0.0457796 0.1369598 86 0.334256 0.7390
## BASELINE 0.5977225 0.0491769 86 12.154538 0.0000
## GROUP1:WAVE 0.2385862 0.1905170 86 1.252309 0.2139
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.509
## WAVE -0.664 0.670
## BASELINE -0.701 -0.005 0.000
## GROUP1:WAVE 0.470 -0.932 -0.719 0.011
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.79041074 -0.50594274 0.01358961 0.67732521 2.30821606
##
## Number of Observations: 178
## Number of Groups: 89
Check assumptions on model without any imputations
Describe the meanPWB variable by the GROUP variable
describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.41 1.15 4.67 4.49 0.99 1.67 6 4.33 -0.58
## meanPWB 2 59 4.59 1.08 4.67 4.69 0.99 1.67 6 4.33 -0.83
## kurtosis se
## BASELINE -0.64 0.12
## meanPWB 0.08 0.14
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 88 4.36 1.13 4.5 4.39 1.24 1.00 6 5.00 -0.53
## meanPWB 2 54 4.93 0.80 5.0 4.98 0.99 2.67 6 3.33 -0.61
## kurtosis se
## BASELINE -0.11 0.12
## meanPWB -0.23 0.11
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data2)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data2$meanPWB))
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data2, boxplot(meanPWB ~ WAVE + GROUP))
with(data2, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModel <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")
CookD(fullModel)
plot(fullModel, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
## Data: data2
## AIC BIC logLik
## 249.0491 267.8885 -117.5246
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.5145779 0.5396038
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 1.7101552 0.4436641 66 3.854617 0.0003
## GROUP1 0.1435482 0.3603730 66 0.398332 0.6917
## WAVE 0.0531790 0.1572023 38 0.338284 0.7370
## BASELINE 0.5962042 0.0832944 66 7.157798 0.0000
## GROUP1:WAVE 0.2218678 0.2297903 38 0.965523 0.3404
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.392
## WAVE -0.447 0.599
## BASELINE -0.835 0.022 -0.048
## GROUP1:WAVE 0.318 -0.884 -0.683 0.019
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.06474848 -0.37527738 0.05915006 0.53436891 1.69783161
##
## Number of Observations: 109
## Number of Groups: 69
Table with P-value
| | Value| Std.Error| DF| t-value| p-value|
|:------------|----------:|----------:|---:|----------:|----------:|
|(Intercept) | 1.7101552| 0.4436641| 66| 3.8546169| 0.0002652|
|GROUP1 | 0.1435482| 0.3603730| 66| 0.3983323| 0.6916709|
|WAVE | 0.0531790| 0.1572023| 38| 0.3382835| 0.7370115|
|BASELINE | 0.5962042| 0.0832944| 66| 7.1577982| 0.0000000|
|GROUP1:WAVE | 0.2218678| 0.2297903| 38| 0.9655229| 0.3403878|
Table with confidence intervals
| est. | lower | upper | |
|---|---|---|---|
| (Intercept) | 1.7101552 | 0.8449063 | 2.5754041 |
| GROUP1 | 0.1435482 | -0.5592635 | 0.8463600 |
| WAVE | 0.0531790 | -0.2576758 | 0.3640337 |
| BASELINE | 0.5962042 | 0.4337607 | 0.7586477 |
| GROUP1:WAVE | 0.2218678 | -0.2325237 | 0.6762592 |