Loading the dataset
data.test4 <- read.csv("/Volumes/TOSHIBA EXT/Dropbox/ADULT STUDY/adult_study011615.csv")
# Load the psych package
library(psych)
items <- c("PWB1", "PWB2","PWB3","PWB4","PWB5","PWB9")
scaleKey <- c(-1,-1,-1,-1,-1,-1)
data.test4[,items] <- apply(data.test4[,items], 2, as.numeric)
data.test4$meanPWB <- scoreItems(scaleKey, items = data.test4[, items])$score
library(reshape2); library(car); library(Amelia);library(mitools);library(nlme);library(predictmeans)
##
## Attaching package: 'car'
##
## The following object is masked from 'package:psych':
##
## logit
##
## Loading required package: Rcpp
## ##
## ## Amelia II: Multiple Imputation
## ## (Version 1.7.3, built: 2014-11-14)
## ## Copyright (C) 2005-2015 James Honaker, Gary King and Matthew Blackwell
## ## Refer to http://gking.harvard.edu/amelia/ for more information
## ##
## Loading required package: lme4
## Loading required package: Matrix
##
## Attaching package: 'lme4'
##
## The following object is masked from 'package:nlme':
##
## lmList
#Remove the meanPWB and ID Group and wave from data.test4 and create a new #dataset with only those variables.
data <- data.test4[,c("ID", "GROUP", "wave", "meanPWB")]
#Use dcast to cnage from long-format data to wide format data
data <- dcast(data, ID + GROUP ~ wave, mean, value.var = "meanPWB")
# Changing all NaNs to NA
data[,3:5] <- apply(data[,3:5],2,function(x) recode(x, "NaN = NA") )
Unsing the mapply function we create a new data set with ID Group baseline meanPWB and wave 2 and 3 of meanPWB. So we have a Baseline, which is Time 1 (placed in column 3 one on top of the other) to compare to both Time 2 and 3 (placed in column 4 one on top of the other). In the next line of code we then create a separate column called “wave” which calls the first 89 (which compares Time 2 to Baseline) “wave 1” and then the second 89 we call “wave 2” which compares Time 3 to Baseline. In the third line of code we add names to the new columns of the dataset.
data2 <- as.data.frame(mapply(c,data[,1:4], data[,c(1:3,5)]))
data2$wave <- rep(1:2, each=89)
names(data2) <- c("ID", "GROUP", "BASELINE", "meanPWB", "WAVE")
Intention to treat model (ITT) where we keep the cases who dropped out and did not complete the study (http://en.wikipedia.org/wiki/Intention-to-treat_analysis).
data2[which(data2$GROUP ==2), "GROUP"] <- 1
data2$GROUP <-as.factor(data2$GROUP)
data2$ID <-as.factor(data2$ID)
Imputing missing data
MI <- amelia(data2, 50, idvars = c("ID"), ords = "GROUP")
## -- Imputation 1 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 2 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 3 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 4 --
##
## 1 2 3 4 5 6 7 8 9 10 11 12
##
## -- Imputation 5 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 6 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 7 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 8 --
##
## 1 2 3 4 5 6
##
## -- Imputation 9 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 10 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 11 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 12 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 13 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 14 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 15 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 16 --
##
## 1 2 3 4 5 6
##
## -- Imputation 17 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 18 --
##
## 1 2 3 4 5 6
##
## -- Imputation 19 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 20 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 21 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 22 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 23 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 24 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 25 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 26 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 27 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 28 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 29 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 30 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 31 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 32 --
##
## 1 2 3 4 5 6 7 8 9 10 11
##
## -- Imputation 33 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 34 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 35 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 36 --
##
## 1 2 3 4 5
##
## -- Imputation 37 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 38 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 39 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 40 --
##
## 1 2 3 4 5
##
## -- Imputation 41 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 42 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 43 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 44 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 45 --
##
## 1 2 3 4 5 6
##
## -- Imputation 46 --
##
## 1 2 3 4 5 6 7 8 9 10
##
## -- Imputation 47 --
##
## 1 2 3 4 5 6 7 8
##
## -- Imputation 48 --
##
## 1 2 3 4 5 6 7
##
## -- Imputation 49 --
##
## 1 2 3 4 5 6 7 8 9
##
## -- Imputation 50 --
##
## 1 2 3 4 5 6 7 8 9
Creating new dataset with missing data imputed
data(MI$imputations)
## Warning in data(MI$imputations): data set 'MI$imputations' not found
allimplogreg<-lapply(MI$imputations,function(X) {lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = X, method = "ML", na.action = "na.omit")})
betas<-MIextract(allimplogreg, fun=fixef)
vars<-MIextract(allimplogreg, fun=vcov)
summary(MIcombine(betas,vars))
## Multiple imputation results:
## MIcombine.default(betas, vars)
## results se (lower upper) missInfo
## (Intercept) 1.9716470 0.37047461 1.2428440 2.7004500 39 %
## GROUP1 0.1291271 0.32487138 -0.5089366 0.7671909 29 %
## WAVE 0.1672063 0.14403617 -0.1156290 0.4500416 28 %
## BASELINE 0.5490000 0.06573357 0.4194794 0.6785207 47 %
## GROUP1:WAVE 0.1302287 0.20235431 -0.2672015 0.5276589 29 %
Check results with Imputations using Zelig
library("Zelig")
## Loading required package: boot
##
## Attaching package: 'boot'
##
## The following object is masked from 'package:car':
##
## logit
##
## The following object is masked from 'package:psych':
##
## logit
##
## Loading required package: MASS
## Loading required package: sandwich
## ZELIG (Versions 4.2-1, built: 2013-09-12)
##
## +----------------------------------------------------------------+
## | Please refer to http://gking.harvard.edu/zelig for full |
## | documentation or help.zelig() for help with commands and |
## | models support by Zelig. |
## | |
## | Zelig project citations: |
## | Kosuke Imai, Gary King, and Olivia Lau. (2009). |
## | ``Zelig: Everyone's Statistical Software,'' |
## | http://gking.harvard.edu/zelig |
## | and |
## | Kosuke Imai, Gary King, and Olivia Lau. (2008). |
## | ``Toward A Common Framework for Statistical Analysis |
## | and Development,'' Journal of Computational and |
## | Graphical Statistics, Vol. 17, No. 4 (December) |
## | pp. 892-913. |
## | |
## | To cite individual Zelig models, please use the citation |
## | format printed with each model run and in the documentation. |
## +----------------------------------------------------------------+
##
##
##
## Attaching package: 'Zelig'
##
## The following objects are masked from 'package:psych':
##
## alpha, describe, sim
##
## The following object is masked from 'package:utils':
##
## cite
zelig.fit <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = MI$imputations, model = "ls", cite = FALSE)
summary(zelig.fit)
##
## Model: ls
## Number of multiply imputed data sets: 50
##
## Combined results:
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Coefficients:
## Value Std. Error t-stat p-value
## (Intercept) 1.9685921 0.3726396 5.2828317 2.288249e-07
## GROUP1 0.1293501 0.3401852 0.3802343 7.038870e-01
## WAVE 0.1672063 0.1525058 1.0963936 2.732315e-01
## BASELINE 0.5496890 0.0642843 8.5509060 2.522338e-15
## GROUP1:WAVE 0.1302306 0.2140289 0.6084721 5.430634e-01
##
## For combined results from datasets i to j, use summary(x, subset = i:j).
## For separate results, use print(summary(x), subset = i:j).
Check assumptions with Random Computations
data1=MI$imputations[[1]]
library("Zelig")
zelig.fitdata1 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data1, model = "ls", cite = FALSE)
summary(zelig.fitdata1)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.81537 -0.30592 0.06771 0.37360 1.31440
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.02893 0.28583 7.098 3.12e-11 ***
## GROUP1 0.45954 0.28371 1.620 0.1071
## WAVE 0.27730 0.12887 2.152 0.0328 *
## BASELINE 0.50684 0.04521 11.212 < 2e-16 ***
## GROUP1:WAVE -0.05996 0.17926 -0.334 0.7384
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5975 on 173 degrees of freedom
## Multiple R-squared: 0.4441, Adjusted R-squared: 0.4312
## F-statistic: 34.55 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data1[,3:4], group = data1$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.43 1.00 4.50 4.47 0.99 2.33 6.00 3.67 -0.28
## meanPWB 2 86 4.69 0.83 4.71 4.74 0.80 2.33 6.03 3.69 -0.45
## kurtosis se
## BASELINE -0.80 0.11
## meanPWB -0.14 0.09
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.11 0.99 4.00 4.16 0.99 1.00 5.67 4.67 -0.57
## meanPWB 2 92 4.90 0.74 4.95 4.95 0.67 2.67 6.43 3.76 -0.67
## kurtosis se
## BASELINE 0.59 0.10
## meanPWB 0.41 0.08
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
##
## Attaching package: 'ggplot2'
##
## The following object is masked from 'package:psych':
##
## %+%
library(influence.ME)
##
## Attaching package: 'influence.ME'
##
## The following object is masked from 'package:stats':
##
## influence
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data1)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data1$meanPWB))
sel2 <- which(!is.na(data1$BASELINE))
data1$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data1, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data1, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data1, boxplot(meanPWB ~ WAVE + GROUP))
with(data1, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata1 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data1, method = "ML", na.action = "na.omit")
CookD(fullModeldata1)
plot(fullModeldata1, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata1)
## Linear mixed-effects model fit by maximum likelihood
## Data: data1
## AIC BIC logLik
## 321.0479 343.3204 -153.524
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.3340004 0.485254
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 2.0321604 0.28950428 87 7.019449 0.0000
## GROUP1 0.4593385 0.24471358 87 1.877046 0.0639
## WAVE 0.2773020 0.10615411 86 2.612258 0.0106
## BASELINE 0.5061116 0.05190576 86 9.750586 0.0000
## GROUP1:WAVE -0.0599798 0.14766429 86 -0.406190 0.6856
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.483
## WAVE -0.550 0.651
## BASELINE -0.795 0.060 0.000
## GROUP1:WAVE 0.387 -0.904 -0.719 0.010
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.95683850 -0.47154910 0.09122617 0.52258548 1.93272260
##
## Number of Observations: 178
## Number of Groups: 89
Another random imputation
data10=MI$imputations[[10]]
library("Zelig")
zelig.fitdata10 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data10, model = "ls", cite = FALSE)
summary(zelig.fitdata10)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.64045 -0.42092 0.02494 0.42795 1.34005
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.73704 0.29935 5.803 3.05e-08 ***
## GROUP1 0.23822 0.30011 0.794 0.428
## WAVE 0.18562 0.13636 1.361 0.175
## BASELINE 0.58677 0.04683 12.528 < 2e-16 ***
## GROUP1:WAVE 0.06364 0.18969 0.335 0.738
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6323 on 173 degrees of freedom
## Multiple R-squared: 0.4867, Adjusted R-squared: 0.4748
## F-statistic: 41 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data10[,3:4], group = data10$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.43 1.00 4.50 4.47 0.99 2.33 6.00 3.67 -0.28
## meanPWB 2 86 4.62 0.89 4.66 4.65 0.75 2.33 6.66 4.32 -0.29
## kurtosis se
## BASELINE -0.80 0.11
## meanPWB -0.27 0.10
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.12 1.03 4.00 4.17 0.99 1.00 6.09 5.09 -0.43
## meanPWB 2 92 4.77 0.85 4.88 4.84 0.76 2.39 6.34 3.95 -0.79
## kurtosis se
## BASELINE 0.32 0.11
## meanPWB 0.22 0.09
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data10)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data10$meanPWB))
sel2 <- which(!is.na(data10$BASELINE))
data10$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data10, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data10, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data10, boxplot(meanPWB ~ WAVE + GROUP))
with(data10, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata10 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data10, method = "ML", na.action = "na.omit")
CookD(fullModeldata10)
plot(fullModeldata10, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata10)
## Linear mixed-effects model fit by maximum likelihood
## Data: data10
## AIC BIC logLik
## 350.6625 372.935 -168.3313
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.1365625 0.6081857
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 1.7420386 0.29968094 87 5.812977 0.0000
## GROUP1 0.2379492 0.29430683 87 0.808507 0.4210
## WAVE 0.1856181 0.13304664 86 1.395135 0.1666
## BASELINE 0.5856377 0.04789882 86 12.226557 0.0000
## GROUP1:WAVE 0.0635785 0.18507927 86 0.343520 0.7320
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.534
## WAVE -0.666 0.678
## BASELINE -0.709 0.039 0.000
## GROUP1:WAVE 0.469 -0.943 -0.719 0.013
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.56804392 -0.64470824 0.03749645 0.62035339 2.17184902
##
## Number of Observations: 178
## Number of Groups: 89
Another random imputation
data15=MI$imputations[[15]]
library("Zelig")
zelig.fitdata15 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data15, model = "ls", cite = FALSE)
summary(zelig.fitdata15)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.63368 -0.30825 0.04471 0.38354 1.46160
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.14417 0.28897 7.420 5.05e-12 ***
## GROUP1 -0.23187 0.28854 -0.804 0.4227
## WAVE 0.07800 0.13107 0.595 0.5526
## BASELINE 0.53673 0.04542 11.818 < 2e-16 ***
## GROUP1:WAVE 0.41924 0.18232 2.299 0.0227 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6078 on 173 degrees of freedom
## Multiple R-squared: 0.4822, Adjusted R-squared: 0.4703
## F-statistic: 40.28 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data15[,3:4], group = data15$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.43 1.00 4.50 4.47 0.99 2.33 6 3.67 -0.28
## meanPWB 2 86 4.64 0.82 4.67 4.69 0.79 2.33 6 3.67 -0.55
## kurtosis se
## BASELINE -0.80 0.11
## meanPWB -0.07 0.09
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.13 1.02 4 4.17 0.99 1.00 6.44 5.44 -0.47
## meanPWB 2 92 4.87 0.84 5 4.95 0.63 1.87 7.32 5.46 -0.90
## kurtosis se
## BASELINE 0.58 0.11
## meanPWB 1.88 0.09
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data15)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data15$meanPWB))
sel2 <- which(!is.na(data15$BASELINE))
data15$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data15, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data15, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data15, boxplot(meanPWB ~ WAVE + GROUP))
with(data15, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata15 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data15, method = "ML", na.action = "na.omit")
CookD(fullModeldata15)
plot(fullModeldata15, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata15)
## Linear mixed-effects model fit by maximum likelihood
## Data: data15
## AIC BIC logLik
## 336.7923 359.0647 -161.3961
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 5.609596e-05 0.5991647
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 2.1441733 0.28896825 87 7.420100 0.0000
## GROUP1 -0.2318735 0.28854135 87 -0.803606 0.4238
## WAVE 0.0780014 0.13107322 86 0.595098 0.5533
## BASELINE 0.5367327 0.04541515 86 11.818360 0.0000
## GROUP1:WAVE 0.4192383 0.18232099 86 2.299452 0.0239
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.545
## WAVE -0.680 0.681
## BASELINE -0.697 0.043 0.000
## GROUP1:WAVE 0.485 -0.948 -0.719 0.006
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.72659786 -0.51447421 0.07462827 0.64011836 2.43940301
##
## Number of Observations: 178
## Number of Groups: 89
Another random imputation
data25=MI$imputations[[25]]
library("Zelig")
zelig.fitdata25 <- zelig(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data25, model = "ls", cite = FALSE)
summary(zelig.fitdata25)
##
## Call:
## lm(formula = formula, weights = weights, model = F, data = data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.71155 -0.32531 0.07105 0.35041 1.32603
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.09792 0.27761 7.557 2.3e-12 ***
## GROUP1 0.11795 0.27573 0.428 0.669
## WAVE 0.08069 0.12524 0.644 0.520
## BASELINE 0.55199 0.04388 12.579 < 2e-16 ***
## GROUP1:WAVE 0.13237 0.17420 0.760 0.448
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5807 on 173 degrees of freedom
## Multiple R-squared: 0.4867, Adjusted R-squared: 0.4748
## F-statistic: 41.01 on 4 and 173 DF, p-value: < 2.2e-16
Describe the meanPWB variable by the GROUP variable
describeBy(data25[,3:4], group = data25$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.43 1.00 4.5 4.47 0.99 2.33 6.00 3.67 -0.28
## meanPWB 2 86 4.67 0.84 4.8 4.71 0.78 2.33 6.41 4.07 -0.48
## kurtosis se
## BASELINE -0.80 0.11
## meanPWB 0.07 0.09
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 92 4.11 1.00 4.00 4.17 0.99 1.00 5.67 4.67 -0.58
## meanPWB 2 92 4.81 0.76 4.99 4.88 0.63 2.67 6.08 3.42 -0.87
## kurtosis se
## BASELINE 0.57 0.10
## meanPWB 0.53 0.08
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data25)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data25$meanPWB))
sel2 <- which(!is.na(data25$BASELINE))
data25$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data25, geom="boxplot")
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data25, geom="boxplot")
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data25, boxplot(meanPWB ~ WAVE + GROUP))
with(data25, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModeldata25 <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data25, method = "ML", na.action = "na.omit")
CookD(fullModeldata25)
plot(fullModeldata25, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModeldata25)
## Linear mixed-effects model fit by maximum likelihood
## Data: data25
## AIC BIC logLik
## 320.0995 342.372 -153.0498
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.1544576 0.5512481
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 2.0983168 0.27844795 87 7.535759 0.0000
## GROUP1 0.1179220 0.26762551 87 0.440623 0.6606
## WAVE 0.0806946 0.12059099 86 0.669159 0.5052
## BASELINE 0.5518971 0.04544581 86 12.144070 0.0000
## GROUP1:WAVE 0.1323686 0.16773964 86 0.789131 0.4322
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.532
## WAVE -0.650 0.676
## BASELINE -0.724 0.050 0.000
## GROUP1:WAVE 0.464 -0.940 -0.719 0.005
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.9308728 -0.5520893 0.0893892 0.5390023 2.2301829
##
## Number of Observations: 178
## Number of Groups: 89
Check assumptions on model without any imputations
Describe the meanPWB variable by the GROUP variable
describeBy(data2[,3:4], group = data2$GROUP)
## group: 0
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 86 4.43 1.0 4.50 4.47 0.99 2.33 6 3.67 -0.28
## meanPWB 2 59 4.74 0.8 4.83 4.80 0.74 2.33 6 3.67 -0.70
## kurtosis se
## BASELINE -0.80 0.11
## meanPWB 0.47 0.10
## --------------------------------------------------------
## group: 1
## vars n mean sd median trimmed mad min max range skew
## BASELINE 1 88 4.08 1.00 3.92 4.13 0.86 1.00 5.67 4.67 -0.52
## meanPWB 2 54 4.86 0.75 5.00 4.94 0.49 2.67 6.00 3.33 -1.00
## kurtosis se
## BASELINE 0.55 0.11
## meanPWB 0.89 0.10
Create a plot that visualizes meanPWB variable by the GROUP variable
library(ggplot2)
library(influence.ME)
Take a look at the residuals
residual <- lm(meanPWB ~ BASELINE, data=data2)$residual
Plot the residuals to see that they are random
plot(density(residual))# A density plot
qqnorm(residual) # A quantile normal plot to checking normality
qqline(residual)
Checking the different between intervention and control groups residuals. This allows us to control for individual unsystematic differences.
data2$residual <- NA
sel1 <- which(!is.na(data2$meanPWB))
sel2 <- which(!is.na(data2$BASELINE))
data2$residual[intersect(sel1,sel2)] <- residual
qplot(GROUP, meanPWB, data=data2, geom="boxplot")
## Warning: Removed 65 rows containing non-finite values (stat_boxplot).
Plot of the difference between intervention and control groups.
qplot(GROUP, residual, data=data2, geom="boxplot")
## Warning: Removed 69 rows containing non-finite values (stat_boxplot).
Two way repeated measures ======================================================== Graphing the Two-Way Interaction. Both meanPWB and the Residuals
# Load the nlme package
library(nlme)
with(data2, boxplot(meanPWB ~ WAVE + GROUP))
with(data2, boxplot(residual ~ WAVE + GROUP))
Comparing Basline to Wave 2 and 3 by Group.
fullModel <- lme(meanPWB ~ GROUP * WAVE + BASELINE, random = ~1 | ID, data = data2, method = "ML", na.action = "na.omit")
CookD(fullModel)
plot(fullModel, which="cook")
Explanation of significance:
We asses the significance of our models by comparing them from the baseline model using the anova() function.
(Intercept): Where everything is 0
GROUP1: Is there a difference between group. If it is significant than there is a difference and the treatment had an effect.
WAVE: Asseses whether the effects gets bigger beteen time 2 and 3 (does not have to be significant)
BASELINE: Should not be significant. If it is then it shows that there is a difference between groups before the treatment.
GROUP1:WAVE: If this is significant then it means that the effect was either fleeting or it happened after the treatment i.e. between time 2 and 3.
summary(fullModel)
## Linear mixed-effects model fit by maximum likelihood
## Data: data2
## AIC BIC logLik
## 204.2625 223.102 -95.13127
##
## Random effects:
## Formula: ~1 | ID
## (Intercept) Residual
## StdDev: 0.4211136 0.4381331
##
## Fixed effects: meanPWB ~ GROUP * WAVE + BASELINE
## Value Std.Error DF t-value p-value
## (Intercept) 2.1628728 0.4051872 66 5.337960 0.0000
## GROUP1 -0.0035302 0.2945290 66 -0.011986 0.9905
## WAVE 0.0815437 0.1276001 38 0.639056 0.5266
## BASELINE 0.5306399 0.0764377 66 6.942122 0.0000
## GROUP1:WAVE 0.2161482 0.1866448 38 1.158072 0.2541
## Correlation:
## (Intr) GROUP1 WAVE BASELI
## GROUP1 -0.422
## WAVE -0.453 0.599
## BASELINE -0.872 0.104 0.022
## GROUP1:WAVE 0.297 -0.879 -0.683 0.000
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -1.96683329 -0.47239535 0.09610513 0.48030483 1.49367351
##
## Number of Observations: 109
## Number of Groups: 69
Table with P-value
| | Value| Std.Error| DF| t-value| p-value|
|:------------|-----------:|----------:|---:|-----------:|----------:|
|(Intercept) | 2.1628728| 0.4051872| 66| 5.3379597| 0.0000012|
|GROUP1 | -0.0035302| 0.2945290| 66| -0.0119859| 0.9904730|
|WAVE | 0.0815437| 0.1276001| 38| 0.6390565| 0.5266198|
|BASELINE | 0.5306399| 0.0764377| 66| 6.9421218| 0.0000000|
|GROUP1:WAVE | 0.2161482| 0.1866448| 38| 1.1580723| 0.2540615|
Table with confidence intervals
| est. | lower | upper | |
|---|---|---|---|
| (Intercept) | 2.1628728 | 1.3726630 | 2.9530826 |
| GROUP1 | -0.0035302 | -0.5779308 | 0.5708704 |
| WAVE | 0.0815437 | -0.1707751 | 0.3338624 |
| BASELINE | 0.5306399 | 0.3815685 | 0.6797114 |
| GROUP1:WAVE | 0.2161482 | -0.1529267 | 0.5852231 |