rm(list = ls())
#Load in libraries
library(readr)
library(lme4)
## Loading required package: Matrix
## Warning: package 'Matrix' was built under R version 3.5.3
library(car)
## Warning: package 'car' was built under R version 3.5.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 3.5.2
library(emmeans)
## Warning: package 'emmeans' was built under R version 3.5.3
setwd("c:/users/Paul/Documents/Rwork")
scatexperimentdata<- read.csv(file="scatexperimentdata2.csv")
scatexperimentdata$WeekF =as.factor(scatexperimentdata$Week)
str(scatexperimentdata)
## 'data.frame':    48 obs. of  20 variables:
##  $ Week                 : int  1 2 3 4 5 6 7 8 9 10 ...
##  $ Deer                 : Factor w/ 1 level "Excl": 1 1 1 1 1 1 1 1 1 1 ...
##  $ Honeysuckle          : Factor w/ 2 levels "H","NH": 1 1 1 1 1 1 1 1 1 1 ...
##  $ CtotalN              : num  3.26 4.23 7.04 9.84 9.16 ...
##  $ TrtotalN             : num  2.19 2.11 3.99 5.87 7.3 ...
##  $ ConNO3               : num  2.1 3.75 6.51 9.27 8.6 ...
##  $ TrtNO3               : num  1.05 1.66 3.49 5.32 6.76 ...
##  $ CNcummulative        : num  3.26 10.85 22.59 40.08 59.82 ...
##  $ TrtNcummulative      : num  2.19 6.09 11.66 20.56 32.33 ...
##  $ CNitratecummulative  : num  2.1 8.09 18.89 35.3 53.9 ...
##  $ TrtNitratecummulative: num  1.05 3.37 7.98 15.8 26.45 ...
##  $ DNcummulative        : num  -1.06 -4.75 -10.93 -19.52 -27.49 ...
##  $ DNitratecummulative  : num  -1.05 -4.73 -10.92 -19.5 -27.45 ...
##  $ Cmin                 : num  3.26 5.43 7.53 10.02 11.96 ...
##  $ Trtmin               : num  2.19 3.05 3.89 5.14 6.47 ...
##  $ CNitr                : num  2.1 4.05 6.3 8.83 10.78 ...
##  $ TrtNitr              : num  1.05 1.69 2.66 3.95 5.29 ...
##  $ sqDmin               : num  1.14 5.66 13.27 23.81 30.23 ...
##  $ sqDNitr              : num  1.1 5.57 13.23 23.77 30.14 ...
##  $ WeekF                : Factor w/ 24 levels "1","2","3","4",..: 1 2 3 4 5 6 7 8 9 10 ...
attach(scatexperimentdata)
#Col names
#Week= Week as a continous variable,
#WeekF =Week as a factor
#Deer = Exclosure, 
#Honeysuckle = Presence (H) or Absence of honeysuckle (NH),
#Ctotal N =Control total Nitrogen,
#TrttotalN=Treatment total Nitrogen,
#ConNO3 = Control Nitrate content,
#TrtNO3 = Treatment Nitrate content,
#Cncummulative= Accumulated Nitrogen in the control,
#TrtNcummulative = Accumulated Nitrogen in the treatment,
#CNitratecummulative =Accumulated Nitrate in the control,
#TrtNitratecummulate =Accumulated Nitrate in the treatment,
#DNcummulative =Difference in cummulative Nitrogen between control and treatment,
#DNitratecummulative =Difference in cummulative Nitrate content between control and treatment,
#Cmin = mineralization rate in the control,
#Trtmin = minerelization rate in the treatment,
#CNitr =Nitrification rate in the control,
#TrtNitr = Nitrification rate in the treatment
#sqDmin= Square of the Difference in minerelization rate between the treatment and control
#sqDNitr= Square of the Difference in nitrification rate between the treatment and control
##Let's begin with the cummulative variables##########################
#Boxplots of variables
boxplot(CNcummulative,TrtNcummulative)

boxplot(CNcummulative ~ Honeysuckle)

boxplot(TrtNcummulative ~ Honeysuckle)

#t-test for CNcummulative,TrtNcummulative
#Ho: mean CNcummulative= of TrtNcummulative
#two-sample t.test
t.test(CNcummulative,TrtNcummulative,mu=0,alt="two.sided",conf=0.95,var.eq=F, paired= F)
## 
##  Welch Two Sample t-test
## 
## data:  CNcummulative and TrtNcummulative
## t = -1.8943, df = 76.868, p-value = 0.06195
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -241.77349    6.03807
## sample estimates:
## mean of x mean of y 
##  291.0502  408.9179
t.test(CNitratecummulative,TrtNitratecummulative,mu=0,alt="two.sided",conf=0.95,var.eq=F, paired= F)
## 
##  Welch Two Sample t-test
## 
## data:  CNitratecummulative and TrtNitratecummulative
## t = -1.9513, df = 76.118, p-value = 0.0547
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -238.183661    2.437411
## sample estimates:
## mean of x mean of y 
##  275.5785  393.4517
#SIMPLE LINEAR MODELS OF sqDmin, sqDNitr,Cmin,Trtmin,CNitr, and TrtNitr using Week
#NOTE: Models with "WeekF" do NOT accept "*" and they return "N/A" for the variable "WeekF"
#Sample model using "*" at the end of the codes 
#sqDmin
#with WeekF
sqDminmodel1<-lm(sqDmin~Honeysuckle+WeekF,data=scatexperimentdata)
summary(sqDminmodel1)
## 
## Call:
## lm(formula = sqDmin ~ Honeysuckle + WeekF, data = scatexperimentdata)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.577 -4.196  0.000  4.196  7.577 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -1.978      4.762  -0.415 0.681822    
## HoneysuckleNH   11.955      1.905   6.276 2.10e-06 ***
## WeekF2           6.590      6.599   0.999 0.328364    
## WeekF3          16.070      6.599   2.435 0.023049 *  
## WeekF4          28.415      6.599   4.306 0.000263 ***
## WeekF5          29.930      6.599   4.536 0.000148 ***
## WeekF6          21.925      6.599   3.322 0.002965 ** 
## WeekF7          10.910      6.599   1.653 0.111861    
## WeekF8           1.410      6.599   0.214 0.832689    
## WeekF9          -3.355      6.599  -0.508 0.616009    
## WeekF10         -3.260      6.599  -0.494 0.625982    
## WeekF11          1.060      6.599   0.161 0.873787    
## WeekF12          9.180      6.599   1.391 0.177502    
## WeekF13         21.825      6.599   3.307 0.003076 ** 
## WeekF14         39.795      6.599   6.030 3.77e-06 ***
## WeekF15         63.605      6.599   9.639 1.52e-09 ***
## WeekF16         93.645      6.599  14.191 7.27e-13 ***
## WeekF17        125.285      6.599  18.985 1.50e-15 ***
## WeekF18        156.405      6.599  23.701  < 2e-16 ***
## WeekF19        186.325      6.599  28.235  < 2e-16 ***
## WeekF20        214.675      6.599  32.531  < 2e-16 ***
## WeekF21        240.495      6.599  36.444  < 2e-16 ***
## WeekF22        262.550      6.599  39.786  < 2e-16 ***
## WeekF23        280.895      6.599  42.566  < 2e-16 ***
## WeekF24        295.655      6.599  44.803  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.599 on 23 degrees of freedom
## Multiple R-squared:  0.998,  Adjusted R-squared:  0.9959 
## F-statistic:   476 on 24 and 23 DF,  p-value: < 2.2e-16
anova(sqDminmodel1)
## Analysis of Variance Table
## 
## Response: sqDmin
##             Df Sum Sq Mean Sq F value    Pr(>F)    
## Honeysuckle  1   1715  1715.1  39.384 2.104e-06 ***
## WeekF       23 495758 21554.7 494.974 < 2.2e-16 ***
## Residuals   23   1002    43.5                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid1<-resid(sqDminmodel1)
plot(resid1)

#with Week
sqDminmodel2<-lm(sqDmin~Honeysuckle*Week,data=scatexperimentdata)
summary(sqDminmodel2)
## 
## Call:
## lm(formula = sqDmin ~ Honeysuckle * Week, data = scatexperimentdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -74.918 -51.650   6.636  47.228  63.475 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -70.0976    21.5430  -3.254  0.00219 ** 
## HoneysuckleNH        1.2975    30.4664   0.043  0.96622    
## Week                12.4497     1.5077   8.257 1.73e-10 ***
## HoneysuckleNH:Week   0.8526     2.1322   0.400  0.69119    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 51.13 on 44 degrees of freedom
## Multiple R-squared:  0.7693, Adjusted R-squared:  0.7535 
## F-statistic:  48.9 on 3 and 44 DF,  p-value: 4.632e-14
anova(sqDminmodel2)
## Analysis of Variance Table
## 
## Response: sqDmin
##                  Df Sum Sq Mean Sq  F value    Pr(>F)    
## Honeysuckle       1   1715    1715   0.6561    0.4223    
## Week              1 381321  381321 145.8700 1.452e-15 ***
## Honeysuckle:Week  1    418     418   0.1599    0.6912    
## Residuals        44 115021    2614                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid2<-resid(sqDminmodel2)
plot(resid2)

##sqDNitr
#with WeekF
sqDNitrmodel1<-lm(sqDNitr~Honeysuckle + WeekF,data=scatexperimentdata)
summary(sqDNitrmodel1)
## 
## Call:
## lm(formula = sqDNitr ~ Honeysuckle + WeekF, data = scatexperimentdata)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -7.576 -4.175  0.000  4.175  7.576 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -1.956      4.748  -0.412 0.684182    
## HoneysuckleNH   11.932      1.899   6.283 2.07e-06 ***
## WeekF2           6.555      6.579   0.996 0.329460    
## WeekF3          16.040      6.579   2.438 0.022909 *  
## WeekF4          28.355      6.579   4.310 0.000260 ***
## WeekF5          29.785      6.579   4.527 0.000151 ***
## WeekF6          21.710      6.579   3.300 0.003132 ** 
## WeekF7          10.660      6.579   1.620 0.118807    
## WeekF8           1.220      6.579   0.185 0.854515    
## WeekF9          -3.435      6.579  -0.522 0.606592    
## WeekF10         -3.180      6.579  -0.483 0.633422    
## WeekF11          1.255      6.579   0.191 0.850393    
## WeekF12          9.440      6.579   1.435 0.164795    
## WeekF13         22.080      6.579   3.356 0.002734 ** 
## WeekF14         40.025      6.579   6.084 3.32e-06 ***
## WeekF15         63.770      6.579   9.693 1.37e-09 ***
## WeekF16         93.740      6.579  14.248 6.69e-13 ***
## WeekF17        125.245      6.579  19.037 1.41e-15 ***
## WeekF18        156.200      6.579  23.742  < 2e-16 ***
## WeekF19        185.900      6.579  28.256  < 2e-16 ***
## WeekF20        214.010      6.579  32.528  < 2e-16 ***
## WeekF21        239.670      6.579  36.429  < 2e-16 ***
## WeekF22        261.625      6.579  39.766  < 2e-16 ***
## WeekF23        279.900      6.579  42.543  < 2e-16 ***
## WeekF24        294.665      6.579  44.787  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 6.579 on 23 degrees of freedom
## Multiple R-squared:  0.998,  Adjusted R-squared:  0.9959 
## F-statistic: 475.7 on 24 and 23 DF,  p-value: < 2.2e-16
anova(sqDNitrmodel1)
## Analysis of Variance Table
## 
## Response: sqDNitr
##             Df Sum Sq Mean Sq F value    Pr(>F)    
## Honeysuckle  1   1708  1708.5   39.47  2.07e-06 ***
## WeekF       23 492443 21410.6  494.63 < 2.2e-16 ***
## Residuals   23    996    43.3                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid3<-resid(sqDNitrmodel1)
plot(resid3)

#with Week
sqDNitrmodel2<-lm(sqDNitr~Honeysuckle*Week,data=scatexperimentdata)
summary(sqDNitrmodel2)
## 
## Call:
## lm(formula = sqDNitr ~ Honeysuckle * Week, data = scatexperimentdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -74.455 -51.590   6.723  47.037  63.057 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -69.8693    21.4244  -3.261  0.00215 ** 
## HoneysuckleNH        1.3295    30.2987   0.044  0.96520    
## Week                12.4172     1.4994   8.281  1.6e-10 ***
## HoneysuckleNH:Week   0.8482     2.1205   0.400  0.69109    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 50.85 on 44 degrees of freedom
## Multiple R-squared:  0.7703, Adjusted R-squared:  0.7546 
## F-statistic: 49.17 on 3 and 44 DF,  p-value: 4.212e-14
anova(sqDNitrmodel2)
## Analysis of Variance Table
## 
## Response: sqDNitr
##                  Df Sum Sq Mean Sq  F value   Pr(>F)    
## Honeysuckle       1   1708    1708   0.6608   0.4206    
## Week              1 379267  379267 146.6948 1.32e-15 ***
## Honeysuckle:Week  1    414     414   0.1600   0.6911    
## Residuals        44 113758    2585                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid4<-resid(sqDNitrmodel2)
plot(resid4)

##Cmin
#with WeekF
Cminmodel1<-lm(Cmin~Honeysuckle+WeekF,data=scatexperimentdata)
summary(Cminmodel1)
## 
## Call:
## lm(formula = Cmin ~ Honeysuckle + WeekF, data = scatexperimentdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.8810 -0.2052  0.0000  0.2052  0.8810 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.1410     0.3094  13.383 2.43e-12 ***
## HoneysuckleNH   1.5879     0.1238  12.829 5.76e-12 ***
## WeekF2          1.6700     0.4288   3.895  0.00073 ***
## WeekF3          3.8700     0.4288   9.026 5.09e-09 ***
## WeekF4          6.4050     0.4288  14.938 2.49e-13 ***
## WeekF5          8.0500     0.4288  18.775 1.91e-15 ***
## WeekF6          8.9750     0.4288  20.932  < 2e-16 ***
## WeekF7          9.4850     0.4288  22.122  < 2e-16 ***
## WeekF8          9.7450     0.4288  22.728  < 2e-16 ***
## WeekF9         10.3950     0.4288  24.244  < 2e-16 ***
## WeekF10        11.5000     0.4288  26.822  < 2e-16 ***
## WeekF11        12.9300     0.4288  30.157  < 2e-16 ***
## WeekF12        14.6000     0.4288  34.052  < 2e-16 ***
## WeekF13        16.1050     0.4288  37.562  < 2e-16 ***
## WeekF14        17.3650     0.4288  40.501  < 2e-16 ***
## WeekF15        18.4350     0.4288  42.996  < 2e-16 ***
## WeekF16        19.3500     0.4288  45.130  < 2e-16 ***
## WeekF17        20.1400     0.4288  46.973  < 2e-16 ***
## WeekF18        20.8300     0.4288  48.582  < 2e-16 ***
## WeekF19        21.4300     0.4288  49.981  < 2e-16 ***
## WeekF20        21.9550     0.4288  51.206  < 2e-16 ***
## WeekF21        22.4700     0.4288  52.407  < 2e-16 ***
## WeekF22        23.0000     0.4288  53.643  < 2e-16 ***
## WeekF23        23.5400     0.4288  54.903  < 2e-16 ***
## WeekF24        24.0900     0.4288  56.185  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4288 on 23 degrees of freedom
## Multiple R-squared:  0.9983, Adjusted R-squared:  0.9966 
## F-statistic: 567.2 on 24 and 23 DF,  p-value: < 2.2e-16
anova(Cminmodel1)
## Analysis of Variance Table
## 
## Response: Cmin
##             Df  Sum Sq Mean Sq F value    Pr(>F)    
## Honeysuckle  1   30.26  30.258  164.59 5.758e-12 ***
## WeekF       23 2472.43 107.497  584.75 < 2.2e-16 ***
## Residuals   23    4.23   0.184                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid5<-resid(Cminmodel1)
plot(resid5)

#with Week
Cminmodel2<-lm(Cmin~Honeysuckle*Week,data=scatexperimentdata)
summary(Cminmodel2)
## 
## Call:
## lm(formula = Cmin ~ Honeysuckle * Week, data = scatexperimentdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1517 -0.6976  0.3211  1.1095  1.4632 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         5.35428    0.53457  10.016 6.36e-13 ***
## HoneysuckleNH       2.46917    0.75600   3.266  0.00212 ** 
## Week                1.05739    0.03741  28.263  < 2e-16 ***
## HoneysuckleNH:Week -0.07050    0.05291  -1.332  0.18956    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.269 on 44 degrees of freedom
## Multiple R-squared:  0.9717, Adjusted R-squared:  0.9698 
## F-statistic: 504.5 on 3 and 44 DF,  p-value: < 2.2e-16
anova(Cminmodel2)
## Analysis of Variance Table
## 
## Response: Cmin
##                  Df  Sum Sq Mean Sq   F value    Pr(>F)    
## Honeysuckle       1   30.26   30.26   18.7979 8.336e-05 ***
## Week              1 2402.98 2402.98 1492.8700 < 2.2e-16 ***
## Honeysuckle:Week  1    2.86    2.86    1.7755    0.1896    
## Residuals        44   70.82    1.61                        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid6<-resid(Cminmodel2)
plot(resid6)

#Trtmin with WeekF
Trtminmodel1<-lm(Trtmin~Honeysuckle+WeekF,data=scatexperimentdata)
summary(Trtminmodel1)
## 
## Call:
## lm(formula = Trtmin ~ Honeysuckle + WeekF, data = scatexperimentdata)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -0.545 -0.195  0.000  0.195  0.545 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     2.1500     0.2552   8.425 1.74e-08 ***
## HoneysuckleNH   1.8800     0.1021  18.418 2.89e-15 ***
## WeekF2          0.3550     0.3536   1.004  0.32583    
## WeekF3          1.3050     0.3536   3.691  0.00121 ** 
## WeekF4          2.6100     0.3536   7.381 1.66e-07 ***
## WeekF5          4.0800     0.3536  11.539 4.81e-11 ***
## WeekF6          5.7300     0.3536  16.205 4.48e-14 ***
## WeekF7          7.4800     0.3536  21.154  < 2e-16 ***
## WeekF8          9.2900     0.3536  26.273  < 2e-16 ***
## WeekF9         11.5250     0.3536  32.594  < 2e-16 ***
## WeekF10        14.1250     0.3536  39.947  < 2e-16 ***
## WeekF11        16.9900     0.3536  48.050  < 2e-16 ***
## WeekF12        20.0600     0.3536  56.732  < 2e-16 ***
## WeekF13        23.0150     0.3536  65.089  < 2e-16 ***
## WeekF14        25.8150     0.3536  73.008  < 2e-16 ***
## WeekF15        28.4900     0.3536  80.573  < 2e-16 ***
## WeekF16        31.0600     0.3536  87.842  < 2e-16 ***
## WeekF17        33.3450     0.3536  94.304  < 2e-16 ***
## WeekF18        35.3350     0.3536  99.932  < 2e-16 ***
## WeekF19        37.0650     0.3536 104.825  < 2e-16 ***
## WeekF20        38.5800     0.3536 109.109  < 2e-16 ***
## WeekF21        39.9450     0.3536 112.970  < 2e-16 ***
## WeekF22        41.1700     0.3536 116.434  < 2e-16 ***
## WeekF23        42.2650     0.3536 119.531  < 2e-16 ***
## WeekF24        43.2450     0.3536 122.303  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3536 on 23 degrees of freedom
## Multiple R-squared:  0.9997, Adjusted R-squared:  0.9995 
## F-statistic:  3617 on 24 and 23 DF,  p-value: < 2.2e-16
anova(Trtminmodel1)
## Analysis of Variance Table
## 
## Response: Trtmin
##             Df  Sum Sq Mean Sq F value    Pr(>F)    
## Honeysuckle  1    42.4   42.41  339.23  2.89e-15 ***
## WeekF       23 10811.5  470.07 3759.74 < 2.2e-16 ***
## Residuals   23     2.9    0.13                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid7<-resid(Trtminmodel1)
plot(resid7)

#with Week
Trtminmodel2<-lm(Trtmin~Honeysuckle*Week,data=scatexperimentdata)
summary(Trtminmodel2)
## 
## Call:
## lm(formula = Trtmin ~ Honeysuckle * Week, data = scatexperimentdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.2493 -1.5946  0.0858  1.5408  3.4893 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -3.24848    0.77663  -4.183 0.000135 ***
## HoneysuckleNH       1.58402    1.09831   1.442 0.156318    
## Week                2.14148    0.05435  39.400  < 2e-16 ***
## HoneysuckleNH:Week  0.02368    0.07687   0.308 0.759501    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.843 on 44 degrees of freedom
## Multiple R-squared:  0.9862, Adjusted R-squared:  0.9853 
## F-statistic:  1051 on 3 and 44 DF,  p-value: < 2.2e-16
anova(Trtminmodel2)
## Analysis of Variance Table
## 
## Response: Trtmin
##                  Df  Sum Sq Mean Sq   F value    Pr(>F)    
## Honeysuckle       1    42.4    42.4   12.4842 0.0009782 ***
## Week              1 10664.6 10664.6 3139.1204 < 2.2e-16 ***
## Honeysuckle:Week  1     0.3     0.3    0.0949 0.7595008    
## Residuals        44   149.5     3.4                        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid8<-resid(Trtminmodel2)
plot(resid8)

#CNitr with weekF
CNitrmodel1<-lm(CNitr~Honeysuckle+WeekF,data=scatexperimentdata)
summary(CNitrmodel1)
## 
## Call:
## lm(formula = CNitr ~ Honeysuckle + WeekF, data = scatexperimentdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.5075 -0.1750  0.0000  0.1750  0.5075 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.48250    0.23873  10.399 3.64e-10 ***
## HoneysuckleNH  1.47500    0.09549  15.446 1.24e-13 ***
## WeekF2         1.90000    0.33080   5.744 7.52e-06 ***
## WeekF3         4.27000    0.33080  12.908 5.08e-12 ***
## WeekF4         6.85500    0.33080  20.723 2.23e-16 ***
## WeekF5         8.52500    0.33080  25.771  < 2e-16 ***
## WeekF6         9.46500    0.33080  28.613  < 2e-16 ***
## WeekF7         9.99000    0.33080  30.200  < 2e-16 ***
## WeekF8        10.26000    0.33080  31.016  < 2e-16 ***
## WeekF9        10.93000    0.33080  33.041  < 2e-16 ***
## WeekF10       12.04000    0.33080  36.397  < 2e-16 ***
## WeekF11       13.48500    0.33080  40.765  < 2e-16 ***
## WeekF12       15.18000    0.33080  45.889  < 2e-16 ***
## WeekF13       16.69000    0.33080  50.454  < 2e-16 ***
## WeekF14       17.94500    0.33080  54.248  < 2e-16 ***
## WeekF15       18.99500    0.33080  57.422  < 2e-16 ***
## WeekF16       19.88000    0.33080  60.097  < 2e-16 ***
## WeekF17       20.64500    0.33080  62.410  < 2e-16 ***
## WeekF18       21.31000    0.33080  64.420  < 2e-16 ***
## WeekF19       21.89000    0.33080  66.174  < 2e-16 ***
## WeekF20       22.39500    0.33080  67.700  < 2e-16 ***
## WeekF21       22.89500    0.33080  69.212  < 2e-16 ***
## WeekF22       23.41000    0.33080  70.769  < 2e-16 ***
## WeekF23       23.93500    0.33080  72.356  < 2e-16 ***
## WeekF24       24.47000    0.33080  73.973  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.3308 on 23 degrees of freedom
## Multiple R-squared:  0.999,  Adjusted R-squared:  0.998 
## F-statistic: 964.4 on 24 and 23 DF,  p-value: < 2.2e-16
anova(CNitrmodel1)
## Analysis of Variance Table
## 
## Response: CNitr
##             Df  Sum Sq Mean Sq F value    Pr(>F)    
## Honeysuckle  1   26.11  26.107  238.59 1.236e-13 ***
## WeekF       23 2506.59 108.982  995.94 < 2.2e-16 ***
## Residuals   23    2.52   0.109                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid9<-resid(CNitrmodel1)
plot(resid9)

#with Week
CNitrmodel2<-lm(CNitr~Honeysuckle*Week,data=scatexperimentdata)
summary(CNitrmodel2)
## 
## Call:
## lm(formula = CNitr ~ Honeysuckle * Week, data = scatexperimentdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.1452 -0.7197  0.3105  1.1302  1.5646 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         4.19065    0.57578   7.278 4.48e-09 ***
## HoneysuckleNH       2.16739    0.81428   2.662   0.0108 *  
## Week                1.05455    0.04030  26.170  < 2e-16 ***
## HoneysuckleNH:Week -0.05539    0.05699  -0.972   0.3364    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.367 on 44 degrees of freedom
## Multiple R-squared:  0.9676, Adjusted R-squared:  0.9654 
## F-statistic: 437.9 on 3 and 44 DF,  p-value: < 2.2e-16
anova(CNitrmodel2)
## Analysis of Variance Table
## 
## Response: CNitr
##                  Df  Sum Sq Mean Sq   F value    Pr(>F)    
## Honeysuckle       1   26.11   26.11   13.9808 0.0005301 ***
## Week              1 2425.18 2425.18 1298.7068 < 2.2e-16 ***
## Honeysuckle:Week  1    1.76    1.76    0.9448 0.3363717    
## Residuals        44   82.16    1.87                        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid10<-resid(CNitrmodel2)
plot(resid10)

#TrtNitr with WeekF
TrtNitrmodel1<-lm(TrtNitr~Honeysuckle+WeekF,data=scatexperimentdata)
summary(TrtNitrmodel1)
## 
## Call:
## lm(formula = TrtNitr ~ Honeysuckle + WeekF, data = scatexperimentdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.6019 -0.2231  0.0000  0.2231  0.6019 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     0.4981     0.2987   1.668 0.108966    
## HoneysuckleNH   1.7637     0.1195  14.761 3.20e-13 ***
## WeekF2          0.5900     0.4139   1.425 0.167468    
## WeekF3          1.6950     0.4139   4.095 0.000444 ***
## WeekF4          3.0550     0.4139   7.381 1.66e-07 ***
## WeekF5          4.5600     0.4139  11.017 1.19e-10 ***
## WeekF6          6.2350     0.4139  15.063 2.09e-13 ***
## WeekF7          8.0050     0.4139  19.340 1.00e-15 ***
## WeekF8          9.8450     0.4139  23.785  < 2e-16 ***
## WeekF9         12.1000     0.4139  29.233  < 2e-16 ***
## WeekF10        14.7150     0.4139  35.551  < 2e-16 ***
## WeekF11        17.5950     0.4139  42.509  < 2e-16 ***
## WeekF12        20.6700     0.4139  49.938  < 2e-16 ***
## WeekF13        23.6200     0.4139  57.065  < 2e-16 ***
## WeekF14        26.4000     0.4139  63.781  < 2e-16 ***
## WeekF15        29.0550     0.4139  70.196  < 2e-16 ***
## WeekF16        31.5900     0.4139  76.320  < 2e-16 ***
## WeekF17        33.8450     0.4139  81.768  < 2e-16 ***
## WeekF18        35.8000     0.4139  86.491  < 2e-16 ***
## WeekF19        37.5000     0.4139  90.598  < 2e-16 ***
## WeekF20        38.9950     0.4139  94.210  < 2e-16 ***
## WeekF21        40.3400     0.4139  97.460  < 2e-16 ***
## WeekF22        41.5450     0.4139 100.371  < 2e-16 ***
## WeekF23        42.6250     0.4139 102.980  < 2e-16 ***
## WeekF24        43.5950     0.4139 105.324  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4139 on 23 degrees of freedom
## Multiple R-squared:  0.9996, Adjusted R-squared:  0.9993 
## F-statistic:  2643 on 24 and 23 DF,  p-value: < 2.2e-16
anova(TrtNitrmodel1)
## Analysis of Variance Table
## 
## Response: TrtNitr
##             Df  Sum Sq Mean Sq F value    Pr(>F)    
## Honeysuckle  1    37.3   37.33  217.89 3.201e-13 ***
## WeekF       23 10830.2  470.88 2748.45 < 2.2e-16 ***
## Residuals   23     3.9    0.17                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid11<-resid(TrtNitrmodel1)
plot(resid11)

#with Week
TrtNitrmodel2<-lm(TrtNitr~Honeysuckle * Week,data=scatexperimentdata)
summary(TrtNitrmodel2)
## 
## Call:
## lm(formula = TrtNitr ~ Honeysuckle * Week, data = scatexperimentdata)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -3.4415 -1.5231  0.0285  1.6274  3.2885 
## 
## Coefficients:
##                    Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        -4.37496    0.75927  -5.762 7.54e-07 ***
## HoneysuckleNH       1.27641    1.07376   1.189    0.241    
## Week                2.13643    0.05314  40.206  < 2e-16 ***
## HoneysuckleNH:Week  0.03899    0.07515   0.519    0.606    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.802 on 44 degrees of freedom
## Multiple R-squared:  0.9869, Adjusted R-squared:  0.986 
## F-statistic:  1101 on 3 and 44 DF,  p-value: < 2.2e-16
anova(TrtNitrmodel2)
## Analysis of Variance Table
## 
## Response: TrtNitr
##                  Df  Sum Sq Mean Sq   F value    Pr(>F)    
## Honeysuckle       1    37.3    37.3   11.4962  0.001482 ** 
## Week              1 10690.4 10690.4 3292.2540 < 2.2e-16 ***
## Honeysuckle:Week  1     0.9     0.9    0.2692  0.606498    
## Residuals        44   142.9     3.2                        
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
resid12<-resid(TrtNitrmodel2)
plot(resid12)

######################################
##########Repeated Measures
#Cmin
repeated.split.plot.modela <- lmer(Cmin ~ Honeysuckle * Week +
                                     (Week |Honeysuckle),
                                   data = scatexperimentdata,
                                   contrasts = list(Honeysuckle = contr.sum),
                                   REML = TRUE)
# This gives you the correct type 3 Anova; interpret P-values from here!
# Must use the capital "A" Anova function from the "car" package
Anova(repeated.split.plot.modela, type = 3, test.statistic = "F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## 
## Response: Cmin
##                        F Df    Df.res    Pr(>F)    
## (Intercept)      47.2706  1      1818 8.471e-12 ***
## Honeysuckle       1.6596  1      1818    0.1978    
## Week              0.9304  1 113271392    0.3347    
## Honeysuckle:Week  0.0011  1 113271392    0.9735    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#pairwise comparisons of deer*honeysuckle interaction
emmeans(repeated.split.plot.modela, pairwise ~ Honeysuckle*Week)
## $emmeans
##  Honeysuckle Week emmean   SE       df lower.CL upper.CL
##  H           12.5   18.6 18.8 1.21e+09    -18.2     55.4
##  NH          12.5   20.2 18.8 1.21e+09    -16.6     56.9
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast         estimate   SE       df t.ratio p.value
##  H,12.5 - NH,12.5    -1.59 26.5 1.21e+09 -0.060  0.9523 
## 
## Degrees-of-freedom method: kenward-roger
###Trtmin
repeated.split.plot.modelb <- lmer(Trtmin ~ Honeysuckle * Week +
                                     (Week |Honeysuckle),
                                   data = scatexperimentdata,
                                   contrasts = list(Honeysuckle = contr.sum),
                                   REML = TRUE)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : unable to evaluate scaled gradient
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge: degenerate Hessian with 2 negative
## eigenvalues
# This gives you the correct type 3 Anova; interpret P-values from here!
# Must use the capital "A" Anova function from the "car" package
Anova(repeated.split.plot.modelb, type = 3, test.statistic = "F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## 
## Response: Trtmin
##                       F Df    Df.res  Pr(>F)  
## (Intercept)      3.1217  1      1808 0.07742 .
## Honeysuckle      0.3245  1      1808 0.56898  
## Week             1.9592  1 112958433 0.16160  
## Honeysuckle:Week 0.0001  1 112958433 0.99386  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#pairwise comparisons of deer*honeysuckle interaction
emmeans(repeated.split.plot.modelb, pairwise ~ Honeysuckle*Week)
## $emmeans
##  Honeysuckle Week emmean   SE       df lower.CL upper.CL
##  H           12.5   23.5 27.2 1.21e+09    -29.9     76.9
##  NH          12.5   25.4 27.2 1.21e+09    -28.0     78.8
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast         estimate   SE       df t.ratio p.value
##  H,12.5 - NH,12.5    -1.88 38.5 1.21e+09 -0.049  0.9611 
## 
## Degrees-of-freedom method: kenward-roger
#CNitr
repeated.split.plot.modelc <- lmer(CNitr ~ Honeysuckle * Week +
                                     (Week |Honeysuckle),
                                   data = scatexperimentdata,
                                   contrasts = list(Honeysuckle = contr.sum),
                                   REML = TRUE)
# This gives you the correct type 3 Anova; interpret P-values from here!
# Must use the capital "A" Anova function from the "car" package
Anova(repeated.split.plot.modelc, type = 3, test.statistic = "F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## 
## Response: CNitr
##                        F Df    Df.res    Pr(>F)    
## (Intercept)      26.0085  1      1832 3.751e-07 ***
## Honeysuckle       1.0980  1      1832    0.2948    
## Week              0.5759  1 223777097    0.4479    
## Honeysuckle:Week  0.0004  1 223777097    0.9837    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#pairwise comparisons of deer*honeysuckle interaction
emmeans(repeated.split.plot.modelc, pairwise ~ Honeysuckle*Week)
## $emmeans
##  Honeysuckle Week emmean   SE       df lower.CL upper.CL
##  H           12.5   17.4 23.9 2.38e+09    -29.5     64.3
##  NH          12.5   18.8 23.9 2.38e+09    -28.0     65.7
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast         estimate   SE       df t.ratio p.value
##  H,12.5 - NH,12.5    -1.48 33.8 2.38e+09 -0.044  0.9652 
## 
## Degrees-of-freedom method: kenward-roger
####TrtNitr
repeated.split.plot.modeld <- lmer(Cmin ~ Honeysuckle * Week +
                                     (Week |Honeysuckle),
                                   data = scatexperimentdata,
                                   contrasts = list(Honeysuckle = contr.sum),
                                   REML = TRUE)
# This gives you the correct type 3 Anova; interpret P-values from here!
# Must use the capital "A" Anova function from the "car" package
Anova(repeated.split.plot.modeld, type = 3, test.statistic = "F")
## Analysis of Deviance Table (Type III Wald F tests with Kenward-Roger df)
## 
## Response: Cmin
##                        F Df    Df.res    Pr(>F)    
## (Intercept)      47.2706  1      1818 8.471e-12 ***
## Honeysuckle       1.6596  1      1818    0.1978    
## Week              0.9304  1 113271392    0.3347    
## Honeysuckle:Week  0.0011  1 113271392    0.9735    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#pairwise comparisons of deer*honeysuckle interaction
emmeans(repeated.split.plot.modeld, pairwise ~ Honeysuckle*Week)
## $emmeans
##  Honeysuckle Week emmean   SE       df lower.CL upper.CL
##  H           12.5   18.6 18.8 1.21e+09    -18.2     55.4
##  NH          12.5   20.2 18.8 1.21e+09    -16.6     56.9
## 
## Degrees-of-freedom method: kenward-roger 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast         estimate   SE       df t.ratio p.value
##  H,12.5 - NH,12.5    -1.59 26.5 1.21e+09 -0.060  0.9523 
## 
## Degrees-of-freedom method: kenward-roger
################Sample Model##################
Sample<-lm(TrtNitr~Honeysuckle*WeekF,data=scatexperimentdata)
summary(Sample)
## 
## Call:
## lm(formula = TrtNitr ~ Honeysuckle * WeekF, data = scatexperimentdata)
## 
## Residuals:
## ALL 48 residuals are 0: no residual degrees of freedom!
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)               1.05         NA      NA       NA
## HoneysuckleNH             0.66         NA      NA       NA
## WeekF2                    0.64         NA      NA       NA
## WeekF3                    1.61         NA      NA       NA
## WeekF4                    2.90         NA      NA       NA
## WeekF5                    4.24         NA      NA       NA
## WeekF6                    5.81         NA      NA       NA
## WeekF7                    7.50         NA      NA       NA
## WeekF8                    9.28         NA      NA       NA
## WeekF9                   11.42         NA      NA       NA
## WeekF10                  13.94         NA      NA       NA
## WeekF11                  16.74         NA      NA       NA
## WeekF12                  19.75         NA      NA       NA
## WeekF13                  22.72         NA      NA       NA
## WeekF14                  25.52         NA      NA       NA
## WeekF15                  28.19         NA      NA       NA
## WeekF16                  30.74         NA      NA       NA
## WeekF17                  33.07         NA      NA       NA
## WeekF18                  35.09         NA      NA       NA
## WeekF19                  36.85         NA      NA       NA
## WeekF20                  38.40         NA      NA       NA
## WeekF21                  39.81         NA      NA       NA
## WeekF22                  41.07         NA      NA       NA
## WeekF23                  42.21         NA      NA       NA
## WeekF24                  43.23         NA      NA       NA
## HoneysuckleNH:WeekF2     -0.10         NA      NA       NA
## HoneysuckleNH:WeekF3      0.17         NA      NA       NA
## HoneysuckleNH:WeekF4      0.31         NA      NA       NA
## HoneysuckleNH:WeekF5      0.64         NA      NA       NA
## HoneysuckleNH:WeekF6      0.85         NA      NA       NA
## HoneysuckleNH:WeekF7      1.01         NA      NA       NA
## HoneysuckleNH:WeekF8      1.13         NA      NA       NA
## HoneysuckleNH:WeekF9      1.36         NA      NA       NA
## HoneysuckleNH:WeekF10     1.55         NA      NA       NA
## HoneysuckleNH:WeekF11     1.71         NA      NA       NA
## HoneysuckleNH:WeekF12     1.84         NA      NA       NA
## HoneysuckleNH:WeekF13     1.80         NA      NA       NA
## HoneysuckleNH:WeekF14     1.76         NA      NA       NA
## HoneysuckleNH:WeekF15     1.73         NA      NA       NA
## HoneysuckleNH:WeekF16     1.70         NA      NA       NA
## HoneysuckleNH:WeekF17     1.55         NA      NA       NA
## HoneysuckleNH:WeekF18     1.42         NA      NA       NA
## HoneysuckleNH:WeekF19     1.30         NA      NA       NA
## HoneysuckleNH:WeekF20     1.19         NA      NA       NA
## HoneysuckleNH:WeekF21     1.06         NA      NA       NA
## HoneysuckleNH:WeekF22     0.95         NA      NA       NA
## HoneysuckleNH:WeekF23     0.83         NA      NA       NA
## HoneysuckleNH:WeekF24     0.73         NA      NA       NA
## 
## Residual standard error: NaN on 0 degrees of freedom
## Multiple R-squared:      1,  Adjusted R-squared:    NaN 
## F-statistic:   NaN on 47 and 0 DF,  p-value: NA
anova(Sample)
## Warning in anova.lm(Sample): ANOVA F-tests on an essentially perfect fit
## are unreliable
## Analysis of Variance Table
## 
## Response: TrtNitr
##                   Df  Sum Sq Mean Sq F value Pr(>F)
## Honeysuckle        1    37.3   37.33               
## WeekF             23 10830.2  470.88               
## Honeysuckle:WeekF 23     3.9    0.17               
## Residuals          0     0.0
sampleresid<-resid(Sample)
plot(sampleresid)