Data Characteristics

1. Choose and load any R dataset (except for diamonds!) that has at least two numeric variables and at least two categorical variables. Identify which variables in your data set are numeric, and which are categorical (factors).

The mpg data set has been selected for exploratory analysis.

Description of the Data set
variableName variableDescription
manufacturer: vehicle manufacturer:
model: vehicle model:
displ: engine displacement (in litres)
year: year (YYYY)
cyl: number of cylinders
trans: type of transmission
drv: drive type (f = front-wheel drive, r = rear wheel drive, 4 = 4wd)
cty: city miles per gallon
hwy: highway miles per gallon
fl: fuel type (e = ethanol, d = diesel, r = regular,p = premium, c = CNG):
class: vehicle class

The data set has the following characteristics:

library('ggplot2')
mpg2<-mpg
# rename the colum names
colnames(mpg2)<-c('manufacturer',
                  'model',
                  'engine displacement',
                  'year','number of cylinders',
                  'type of transmission',
                  'drive type',
                  'city miles per gallon',
                  'highway miles per gallon',
                  'fuel type',
                  'class')
# show the characteristics
str(mpg)
## 'data.frame':    234 obs. of  11 variables:
##  $ manufacturer: Factor w/ 15 levels "audi","chevrolet",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ model       : Factor w/ 38 levels "4runner 4wd",..: 2 2 2 2 2 2 2 3 3 3 ...
##  $ displ       : num  1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
##  $ year        : int  1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
##  $ cyl         : int  4 4 4 4 6 6 6 4 4 4 ...
##  $ trans       : Factor w/ 10 levels "auto(av)","auto(l3)",..: 4 9 10 1 4 9 1 9 4 10 ...
##  $ drv         : Factor w/ 3 levels "4","f","r": 2 2 2 2 2 2 2 1 1 1 ...
##  $ cty         : int  18 21 20 21 16 18 18 18 16 20 ...
##  $ hwy         : int  29 29 31 30 26 26 27 26 25 28 ...
##  $ fl          : Factor w/ 5 levels "c","d","e","p",..: 4 4 4 4 4 4 4 4 4 4 ...
##  $ class       : Factor w/ 7 levels "2seater","compact",..: 2 2 2 2 2 2 2 2 2 2 ...

We can see that there are 6 categorical variables (i.e., manufacturer, model, trans, drv, fl , and class) and 5 numerical variables (i.e., displ, year, cyl, cty, and hwy).

Descriptive Statistics

2. Generate summary level descriptive statistics: Show the mean, median, 25th and 75th quartiles, min, and max for each of the applicable variables in your data set.

summary(mpg)
##      manufacturer                 model         displ            year     
##  dodge     :37    caravan 2wd        : 11   Min.   :1.600   Min.   :1999  
##  toyota    :34    ram 1500 pickup 4wd: 10   1st Qu.:2.400   1st Qu.:1999  
##  volkswagen:27    civic              :  9   Median :3.300   Median :2004  
##  ford      :25    dakota pickup 4wd  :  9   Mean   :3.472   Mean   :2004  
##  chevrolet :19    jetta              :  9   3rd Qu.:4.600   3rd Qu.:2008  
##  audi      :18    mustang            :  9   Max.   :7.000   Max.   :2008  
##  (Other)   :74    (Other)            :177                                 
##       cyl               trans    drv          cty             hwy       
##  Min.   :4.000   auto(l4)  :83   4:103   Min.   : 9.00   Min.   :12.00  
##  1st Qu.:4.000   manual(m5):58   f:106   1st Qu.:14.00   1st Qu.:18.00  
##  Median :6.000   auto(l5)  :39   r: 25   Median :17.00   Median :24.00  
##  Mean   :5.889   manual(m6):19           Mean   :16.86   Mean   :23.44  
##  3rd Qu.:8.000   auto(s6)  :16           3rd Qu.:19.00   3rd Qu.:27.00  
##  Max.   :8.000   auto(l6)  : 6           Max.   :35.00   Max.   :44.00  
##                  (Other)   :13                                          
##  fl             class   
##  c:  1   2seater   : 5  
##  d:  5   compact   :47  
##  e:  8   midsize   :41  
##  p: 52   minivan   :11  
##  r:168   pickup    :33  
##          subcompact:35  
##          suv       :62

Categorical Variable Frequency

3. Determine the frequency for one of the categorical variables.

We can tabulate the frequency of the ‘manufacturer’ categorical variable as follows:

# tabulate the frequency
manufacturerFrequency<-table(mpg2$manufacturer)
# create the data.frame
manufacturerFrequencyTable<-data.frame(manufacturerFrequency)
# relabel the columns
colnames(manufacturerFrequencyTable)<-c('manufacturer',
                                        'frequency')
Frequency of Manufacturer
manufacturer frequency
audi 18
chevrolet 19
dodge 37
ford 25
honda 9
hyundai 14
jeep 8
land rover 4
lincoln 3
mercury 4
nissan 13
pontiac 5
subaru 14
toyota 34
volkswagen 27

Frequency for One of the Categorical Variables, by a Different Categorical Variable

4. Determine the frequency for one of the categorical variables, by a different categorical variable.

We can tabulate the frequency of the ‘manufacturer’ categorical variable by the frequency of the ‘number of cylinders’ variable as follows:

# tabulate the frequency
manufacturerByCylinderFrequency<-table(mpg2$manufacturer,
                                       mpg2$'number of cylinders')
Frequency of Manufacturer & Number of Cylinders
4 5 6 8
audi 8 0 9 1
chevrolet 2 0 3 14
dodge 1 0 15 21
ford 0 0 10 15
honda 9 0 0 0
hyundai 8 0 6 0
jeep 0 0 3 5
land rover 0 0 0 4
lincoln 0 0 0 3
mercury 0 0 2 2
nissan 4 0 8 1
pontiac 0 0 4 1
subaru 14 0 0 0
toyota 18 0 13 3
volkswagen 17 4 6 0

Single Numeric Variable Graph

5. Create a graph for a single numeric variable.

We can see that the dispersion of cty is related to the number of cylinders, with the cars with a lower number of cylinders getting better fuel economy (i.e., having a higher cty)

# create a histogram
dplot <- ggplot(mpg, aes(cty, fill = factor(cyl)))
dplot + geom_bar(position = "stack")
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.

Two Numeric Variable Scatterplot

6. Create a scatterplot of two numeric variables.

We can also see that the hwy and cty variables are highly related

# create a scatter plot
qplot(cty, hwy, data=mpg, colour=factor(cyl))

Again we see that a smaller number of cylinders is associated with better cty and hwy.