library(tidyverse)
library(prophet)
library(forecast)
library(gridExtra)
library(Metrics)
library(tvReg)
data <- read_csv("data_library.csv") %>% filter(day!=26)
Parsed with column specification:
cols(
ts = col_datetime(format = ""),
name = col_character(),
reading = col_double(),
units = col_character(),
cumulative = col_double(),
day = col_double(),
wday = col_double(),
is_weekend = col_double(),
month = col_double(),
date = col_date(format = ""),
time = col_character(),
t = col_double(),
rate = col_double(),
occupancy = col_double(),
day_type = col_character()
)
head(data)
tail(data)
train <- data %>% filter(day!=25)
test <- data %>% filter(day==25)
train.df <- train %>% select(ts, rate) %>% rename(ds=ts, y=rate)
y <- ts(train.df$y, start = 1, frequency = 144)
plot(y)

stlf(y) %>% autoplot()

LS0tCnRpdGxlOiAiRm9yZWNhc3QgRXhhbXBsZSIKb3V0cHV0OgogIGh0bWxfbm90ZWJvb2s6CiAgICB0b2M6IHRydWUKICAgIHRvY19mbG9hdDoKICAgICAgdG9jX2NvbGxhcHNlZDogdHJ1ZQotLS0KCmBgYHtyIGVjaG89VFJVRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KbGlicmFyeSh0aWR5dmVyc2UpCmxpYnJhcnkocHJvcGhldCkKbGlicmFyeShmb3JlY2FzdCkKbGlicmFyeShncmlkRXh0cmEpCmxpYnJhcnkoTWV0cmljcykKbGlicmFyeSh0dlJlZykKYGBgCgoKYGBge3J9CmRhdGEgPC0gcmVhZF9jc3YoImRhdGFfbGlicmFyeS5jc3YiKSAlPiUgZmlsdGVyKGRheSE9MjYpCmBgYAoKYGBge3J9CmhlYWQoZGF0YSkKYGBgCgoKYGBge3J9CnRhaWwoZGF0YSkKYGBgCgpgYGB7cn0KdHJhaW4gICAgPC0gZGF0YSAlPiUgZmlsdGVyKGRheSE9MjUpCnRlc3QgICAgIDwtIGRhdGEgJT4lIGZpbHRlcihkYXk9PTI1KQp0cmFpbi5kZiA8LSB0cmFpbiAlPiUgc2VsZWN0KHRzLCByYXRlKSAlPiUgcmVuYW1lKGRzPXRzLCB5PXJhdGUpCmBgYAoKYGBge3J9CnkgPC0gdHModHJhaW4uZGYkeSwgc3RhcnQgPSAxLCBmcmVxdWVuY3kgPSAxNDQpCnBsb3QoeSkKYGBgCgoKYGBge3J9CnN0bGYoeSkgJT4lIGF1dG9wbG90KCkKYGBgCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo=