Loading dataset

data <- read.csv("C:/Users/Mehedi Hassan Galib/Desktop/R/Cardiotocographic.csv")





Preparing the dataset



Structure of the dataset

str(data)
## 'data.frame':    2126 obs. of  22 variables:
##  $ LB      : int  120 132 133 134 132 134 134 122 122 122 ...
##  $ AC      : num  0 0.00638 0.00332 0.00256 0.00651 ...
##  $ FM      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ UC      : num  0 0.00638 0.00831 0.00768 0.00814 ...
##  $ DL      : num  0 0.00319 0.00332 0.00256 0 ...
##  $ DS      : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ DP      : num  0 0 0 0 0 ...
##  $ ASTV    : int  73 17 16 16 16 26 29 83 84 86 ...
##  $ MSTV    : num  0.5 2.1 2.1 2.4 2.4 5.9 6.3 0.5 0.5 0.3 ...
##  $ ALTV    : int  43 0 0 0 0 0 0 6 5 6 ...
##  $ MLTV    : num  2.4 10.4 13.4 23 19.9 0 0 15.6 13.6 10.6 ...
##  $ Width   : int  64 130 130 117 117 150 150 68 68 68 ...
##  $ Min     : int  62 68 68 53 53 50 50 62 62 62 ...
##  $ Max     : int  126 198 198 170 170 200 200 130 130 130 ...
##  $ Nmax    : int  2 6 5 11 9 5 6 0 0 1 ...
##  $ Nzeros  : int  0 1 1 0 0 3 3 0 0 0 ...
##  $ Mode    : int  120 141 141 137 137 76 71 122 122 122 ...
##  $ Mean    : int  137 136 135 134 136 107 107 122 122 122 ...
##  $ Median  : int  121 140 138 137 138 107 106 123 123 123 ...
##  $ Variance: int  73 12 13 13 11 170 215 3 3 1 ...
##  $ Tendency: int  1 0 0 1 1 0 0 1 1 1 ...
##  $ NSP     : int  2 1 1 1 1 3 3 3 3 3 ...



Converting a variable into Factor and making a new column

data$NSPF <- factor(data$NSP)



Partitioning (split data into training and testing

Training data - 80%

Testing data - 20%

No number after comma means all columns will be included

set.seed(1234)
p_data <-  sample(2, nrow(data), replace = TRUE, prob = c(0.8, 0.2))
train <- data[p_data==1,]
test <- data[p_data==2,]





Loading necessary package

library(party)
## Warning: package 'party' was built under R version 4.0.2
## Loading required package: grid
## Loading required package: mvtnorm
## Loading required package: modeltools
## Loading required package: stats4
## Loading required package: strucchange
## Warning: package 'strucchange' was built under R version 4.0.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.0.2
## 
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
## 
##     as.Date, as.Date.numeric
## Loading required package: sandwich
## Warning: package 'sandwich' was built under R version 4.0.2





Decision Tree (party)

tree <- ctree(NSPF~LB+AC+FM, data = train)
tree
## 
##   Conditional inference tree with 10 terminal nodes
## 
## Response:  NSPF 
## Inputs:  LB, AC, FM 
## Number of observations:  1718 
## 
## 1) AC <= 0.000834028; criterion = 1, statistic = 263.403
##   2) LB <= 136; criterion = 1, statistic = 131.511
##     3) FM <= 0.111898; criterion = 1, statistic = 35.729
##       4)*  weights = 405 
##     3) FM > 0.111898
##       5)*  weights = 11 
##   2) LB > 136
##     6)*  weights = 314 
## 1) AC > 0.000834028
##   7) AC <= 0.002209945; criterion = 1, statistic = 52.155
##     8) LB <= 136; criterion = 0.999, statistic = 17.292
##       9) FM <= 0.0121396; criterion = 1, statistic = 42.826
##         10)*  weights = 103 
##       9) FM > 0.0121396
##         11)*  weights = 7 
##     8) LB > 136
##       12)*  weights = 78 
##   7) AC > 0.002209945
##     13) LB <= 110; criterion = 1, statistic = 18.889
##       14)*  weights = 18 
##     13) LB > 110
##       15) LB <= 147; criterion = 0.965, statistic = 8.877
##         16) FM <= 0.2354892; criterion = 0.986, statistic = 10.725
##           17)*  weights = 742 
##         16) FM > 0.2354892
##           18)*  weights = 12 
##       15) LB > 147
##         19)*  weights = 28





Plotting the Tree

plot(tree)





Customize the Tree

Confidence level - 99%

minsplit = 500 - the brach will be splitted only when it contains at least 500 data

tree <- ctree(NSPF~LB+AC+FM, data = train, controls = ctree_control(mincriterion = 0.999,
                                                                     minsplit = 500))
tree
## 
##   Conditional inference tree with 5 terminal nodes
## 
## Response:  NSPF 
## Inputs:  LB, AC, FM 
## Number of observations:  1718 
## 
## 1) AC <= 0.000834028; criterion = 1, statistic = 263.403
##   2) LB <= 136; criterion = 1, statistic = 131.511
##     3)*  weights = 416 
##   2) LB > 136
##     4)*  weights = 314 
## 1) AC > 0.000834028
##   5) AC <= 0.002209945; criterion = 1, statistic = 52.155
##     6)*  weights = 188 
##   5) AC > 0.002209945
##     7) LB <= 110; criterion = 1, statistic = 18.889
##       8)*  weights = 18 
##     7) LB > 110
##       9)*  weights = 782
plot(tree)





Probability of the test dataset (values of explanatory variables)

based on tree, applied on test

Predict(tree,test,type="prob")
## [[1]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[2]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[3]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[4]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[5]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[6]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[7]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[8]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[9]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[10]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[11]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[12]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[13]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[14]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[15]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[16]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[17]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[18]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[19]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[20]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[21]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[22]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[23]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[24]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[25]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[26]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[27]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[28]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[29]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[30]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[31]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[32]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[33]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[34]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[35]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[36]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[37]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[38]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[39]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[40]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[41]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[42]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[43]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[44]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[45]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[46]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[47]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[48]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[49]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[50]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[51]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[52]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[53]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[54]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[55]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[56]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[57]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[58]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[59]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[60]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[61]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[62]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[63]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[64]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[65]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[66]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[67]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[68]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[69]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[70]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[71]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[72]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[73]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[74]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[75]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[76]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[77]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[78]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[79]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[80]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[81]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[82]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[83]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[84]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[85]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[86]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[87]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[88]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[89]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[90]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[91]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[92]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[93]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[94]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[95]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[96]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[97]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[98]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[99]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[100]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[101]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[102]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[103]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[104]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[105]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[106]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[107]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[108]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[109]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[110]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[111]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[112]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[113]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[114]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[115]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[116]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[117]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[118]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[119]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[120]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[121]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[122]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[123]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[124]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[125]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[126]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[127]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[128]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[129]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[130]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[131]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[132]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[133]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[134]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[135]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[136]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[137]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[138]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[139]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[140]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[141]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[142]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[143]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[144]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[145]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[146]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[147]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[148]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[149]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[150]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[151]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[152]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[153]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[154]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[155]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[156]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[157]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[158]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[159]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[160]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[161]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[162]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[163]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[164]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[165]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[166]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[167]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[168]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[169]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[170]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[171]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[172]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[173]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[174]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[175]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[176]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[177]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[178]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[179]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[180]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[181]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[182]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[183]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[184]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[185]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[186]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[187]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[188]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[189]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[190]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[191]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[192]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[193]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[194]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[195]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[196]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[197]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[198]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[199]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[200]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[201]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[202]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[203]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[204]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[205]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[206]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[207]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[208]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[209]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[210]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[211]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[212]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[213]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[214]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[215]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[216]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[217]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[218]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[219]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[220]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[221]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[222]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[223]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[224]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[225]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[226]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[227]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[228]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[229]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[230]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[231]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[232]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[233]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[234]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[235]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[236]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[237]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[238]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[239]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[240]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[241]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[242]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[243]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[244]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[245]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[246]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[247]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[248]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[249]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[250]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[251]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[252]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[253]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[254]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[255]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[256]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[257]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[258]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[259]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[260]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[261]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[262]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[263]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[264]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[265]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[266]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[267]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[268]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[269]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[270]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[271]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[272]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[273]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[274]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[275]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[276]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[277]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[278]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[279]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[280]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[281]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[282]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[283]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[284]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[285]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[286]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[287]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[288]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[289]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[290]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[291]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[292]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[293]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[294]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[295]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[296]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[297]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[298]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[299]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[300]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[301]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[302]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[303]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[304]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[305]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[306]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[307]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[308]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[309]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[310]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[311]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[312]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[313]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[314]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[315]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[316]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[317]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[318]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[319]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[320]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[321]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[322]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[323]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[324]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[325]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[326]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[327]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[328]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[329]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[330]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[331]]
## [1] 0.7222222 0.0000000 0.2777778
## 
## [[332]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[333]]
## [1] 0.7222222 0.0000000 0.2777778
## 
## [[334]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[335]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[336]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[337]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[338]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[339]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[340]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[341]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[342]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[343]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[344]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[345]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[346]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[347]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[348]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[349]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[350]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[351]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[352]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[353]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[354]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[355]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[356]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[357]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[358]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[359]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[360]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[361]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[362]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[363]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[364]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[365]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[366]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[367]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[368]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[369]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[370]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[371]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[372]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[373]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[374]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[375]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[376]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[377]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[378]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[379]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[380]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[381]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[382]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[383]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[384]]
## [1] 0.79787234 0.14361702 0.05851064
## 
## [[385]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[386]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[387]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[388]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[389]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[390]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[391]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[392]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[393]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[394]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[395]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[396]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[397]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[398]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[399]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[400]]
## [1] 0.985933504 0.007672634 0.006393862
## 
## [[401]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[402]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[403]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[404]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[405]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[406]]
## [1] 0.69230769 0.08894231 0.21875000
## 
## [[407]]
## [1] 0.4012739 0.4968153 0.1019108
## 
## [[408]]
## [1] 0.4012739 0.4968153 0.1019108





Probability of the test dataset (values of response variable)

predict(tree,test)
##   [1] 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
##  [38] 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 1 1 1 2 2 1 1
##  [75] 2 2 2 1 2 2 1 2 2 1 2 2 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2 1 1 1
## [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 1
## [149] 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2 2 1 2 2 2 2 1 2 1 2 2 1 1 1 1 1
## [186] 1 1 1 1 2 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [260] 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 2 1 2 1 1 1 2 1 1 1 1 2 2 2 2 2
## [297] 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
## [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2
## [371] 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
## [408] 2
## Levels: 1 2 3





Decision Tree (rpart)



Loading necessary package

library(rpart)
## Warning: package 'rpart' was built under R version 4.0.2
library(rpart.plot)
## Warning: package 'rpart.plot' was built under R version 4.0.2



Decision Tree

tree1 <- rpart(NSPF~LB+AC+FM, train)
tree1
## n= 1718 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 1718 370 1 (0.78463329 0.13154831 0.08381839)  
##    2) AC>=0.000838599 988  54 1 (0.94534413 0.03340081 0.02125506) *
##    3) AC< 0.000838599 730 316 1 (0.56712329 0.26438356 0.16849315)  
##      6) LB< 136.5 416 128 1 (0.69230769 0.08894231 0.21875000)  
##       12) FM< 0.2049286 405 117 1 (0.71111111 0.09135802 0.19753086) *
##       13) FM>=0.2049286 11   0 3 (0.00000000 0.00000000 1.00000000) *
##      7) LB>=136.5 314 158 2 (0.40127389 0.49681529 0.10191083)  
##       14) FM< 0.001300498 204 102 1 (0.50000000 0.46568627 0.03431373)  
##         28) LB< 144.5 99  34 1 (0.65656566 0.33333333 0.01010101) *
##         29) LB>=144.5 105  43 2 (0.35238095 0.59047619 0.05714286) *
##       15) FM>=0.001300498 110  49 2 (0.21818182 0.55454545 0.22727273)  
##         30) LB< 147 89  35 2 (0.25842697 0.60674157 0.13483146) *
##         31) LB>=147 21   8 3 (0.04761905 0.33333333 0.61904762) *
rpart.plot(tree1)



For more info

tree1 <- rpart(NSPF~LB+AC+FM, train)
tree1
## n= 1718 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 1718 370 1 (0.78463329 0.13154831 0.08381839)  
##    2) AC>=0.000838599 988  54 1 (0.94534413 0.03340081 0.02125506) *
##    3) AC< 0.000838599 730 316 1 (0.56712329 0.26438356 0.16849315)  
##      6) LB< 136.5 416 128 1 (0.69230769 0.08894231 0.21875000)  
##       12) FM< 0.2049286 405 117 1 (0.71111111 0.09135802 0.19753086) *
##       13) FM>=0.2049286 11   0 3 (0.00000000 0.00000000 1.00000000) *
##      7) LB>=136.5 314 158 2 (0.40127389 0.49681529 0.10191083)  
##       14) FM< 0.001300498 204 102 1 (0.50000000 0.46568627 0.03431373)  
##         28) LB< 144.5 99  34 1 (0.65656566 0.33333333 0.01010101) *
##         29) LB>=144.5 105  43 2 (0.35238095 0.59047619 0.05714286) *
##       15) FM>=0.001300498 110  49 2 (0.21818182 0.55454545 0.22727273)  
##         30) LB< 147 89  35 2 (0.25842697 0.60674157 0.13483146) *
##         31) LB>=147 21   8 3 (0.04761905 0.33333333 0.61904762) *
rpart.plot(tree1,extra=1)



For more info

(934 out of 988 patients belong to group 1)

tree1 <- rpart(NSPF~LB+AC+FM, train)
tree1
## n= 1718 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 1718 370 1 (0.78463329 0.13154831 0.08381839)  
##    2) AC>=0.000838599 988  54 1 (0.94534413 0.03340081 0.02125506) *
##    3) AC< 0.000838599 730 316 1 (0.56712329 0.26438356 0.16849315)  
##      6) LB< 136.5 416 128 1 (0.69230769 0.08894231 0.21875000)  
##       12) FM< 0.2049286 405 117 1 (0.71111111 0.09135802 0.19753086) *
##       13) FM>=0.2049286 11   0 3 (0.00000000 0.00000000 1.00000000) *
##      7) LB>=136.5 314 158 2 (0.40127389 0.49681529 0.10191083)  
##       14) FM< 0.001300498 204 102 1 (0.50000000 0.46568627 0.03431373)  
##         28) LB< 144.5 99  34 1 (0.65656566 0.33333333 0.01010101) *
##         29) LB>=144.5 105  43 2 (0.35238095 0.59047619 0.05714286) *
##       15) FM>=0.001300498 110  49 2 (0.21818182 0.55454545 0.22727273)  
##         30) LB< 147 89  35 2 (0.25842697 0.60674157 0.13483146) *
##         31) LB>=147 21   8 3 (0.04761905 0.33333333 0.61904762) *
rpart.plot(tree1,extra=2)





Probability of the test dataset (values of explanatory variables)

based on tree1, applied on test

predict(tree1,test)
##               1          2          3
## 5    0.94534413 0.03340081 0.02125506
## 14   0.94534413 0.03340081 0.02125506
## 16   0.94534413 0.03340081 0.02125506
## 26   0.71111111 0.09135802 0.19753086
## 28   0.71111111 0.09135802 0.19753086
## 29   0.71111111 0.09135802 0.19753086
## 39   0.94534413 0.03340081 0.02125506
## 40   0.94534413 0.03340081 0.02125506
## 60   0.94534413 0.03340081 0.02125506
## 61   0.94534413 0.03340081 0.02125506
## 72   0.94534413 0.03340081 0.02125506
## 81   0.25842697 0.60674157 0.13483146
## 86   0.94534413 0.03340081 0.02125506
## 90   0.94534413 0.03340081 0.02125506
## 92   0.35238095 0.59047619 0.05714286
## 113  0.94534413 0.03340081 0.02125506
## 116  0.71111111 0.09135802 0.19753086
## 117  0.71111111 0.09135802 0.19753086
## 122  0.71111111 0.09135802 0.19753086
## 123  0.71111111 0.09135802 0.19753086
## 124  0.94534413 0.03340081 0.02125506
## 131  0.35238095 0.59047619 0.05714286
## 135  0.94534413 0.03340081 0.02125506
## 137  0.94534413 0.03340081 0.02125506
## 140  0.94534413 0.03340081 0.02125506
## 142  0.94534413 0.03340081 0.02125506
## 149  0.94534413 0.03340081 0.02125506
## 154  0.94534413 0.03340081 0.02125506
## 156  0.94534413 0.03340081 0.02125506
## 158  0.94534413 0.03340081 0.02125506
## 169  0.94534413 0.03340081 0.02125506
## 185  0.94534413 0.03340081 0.02125506
## 187  0.71111111 0.09135802 0.19753086
## 192  0.94534413 0.03340081 0.02125506
## 194  0.94534413 0.03340081 0.02125506
## 195  0.35238095 0.59047619 0.05714286
## 196  0.35238095 0.59047619 0.05714286
## 197  0.35238095 0.59047619 0.05714286
## 199  0.94534413 0.03340081 0.02125506
## 210  0.71111111 0.09135802 0.19753086
## 216  0.94534413 0.03340081 0.02125506
## 220  0.94534413 0.03340081 0.02125506
## 227  0.94534413 0.03340081 0.02125506
## 234  0.71111111 0.09135802 0.19753086
## 240  0.71111111 0.09135802 0.19753086
## 245  0.71111111 0.09135802 0.19753086
## 249  0.94534413 0.03340081 0.02125506
## 261  0.71111111 0.09135802 0.19753086
## 277  0.71111111 0.09135802 0.19753086
## 283  0.94534413 0.03340081 0.02125506
## 290  0.25842697 0.60674157 0.13483146
## 293  0.25842697 0.60674157 0.13483146
## 302  0.25842697 0.60674157 0.13483146
## 305  0.25842697 0.60674157 0.13483146
## 308  0.71111111 0.09135802 0.19753086
## 311  0.25842697 0.60674157 0.13483146
## 320  0.04761905 0.33333333 0.61904762
## 322  0.04761905 0.33333333 0.61904762
## 330  0.25842697 0.60674157 0.13483146
## 332  0.25842697 0.60674157 0.13483146
## 333  0.25842697 0.60674157 0.13483146
## 339  0.25842697 0.60674157 0.13483146
## 341  0.71111111 0.09135802 0.19753086
## 344  0.25842697 0.60674157 0.13483146
## 349  0.25842697 0.60674157 0.13483146
## 355  0.25842697 0.60674157 0.13483146
## 356  0.25842697 0.60674157 0.13483146
## 365  0.71111111 0.09135802 0.19753086
## 366  0.71111111 0.09135802 0.19753086
## 369  0.71111111 0.09135802 0.19753086
## 371  0.25842697 0.60674157 0.13483146
## 373  0.25842697 0.60674157 0.13483146
## 389  0.94534413 0.03340081 0.02125506
## 390  0.94534413 0.03340081 0.02125506
## 396  0.65656566 0.33333333 0.01010101
## 412  0.35238095 0.59047619 0.05714286
## 413  0.35238095 0.59047619 0.05714286
## 415  0.94534413 0.03340081 0.02125506
## 422  0.65656566 0.33333333 0.01010101
## 425  0.65656566 0.33333333 0.01010101
## 434  0.94534413 0.03340081 0.02125506
## 438  0.35238095 0.59047619 0.05714286
## 441  0.25842697 0.60674157 0.13483146
## 442  0.94534413 0.03340081 0.02125506
## 445  0.25842697 0.60674157 0.13483146
## 447  0.25842697 0.60674157 0.13483146
## 453  0.94534413 0.03340081 0.02125506
## 454  0.71111111 0.09135802 0.19753086
## 462  0.71111111 0.09135802 0.19753086
## 474  0.04761905 0.33333333 0.61904762
## 476  0.04761905 0.33333333 0.61904762
## 493  0.94534413 0.03340081 0.02125506
## 502  0.94534413 0.03340081 0.02125506
## 503  0.94534413 0.03340081 0.02125506
## 506  0.94534413 0.03340081 0.02125506
## 508  0.94534413 0.03340081 0.02125506
## 512  0.94534413 0.03340081 0.02125506
## 513  0.94534413 0.03340081 0.02125506
## 521  0.94534413 0.03340081 0.02125506
## 524  0.94534413 0.03340081 0.02125506
## 526  0.94534413 0.03340081 0.02125506
## 536  0.65656566 0.33333333 0.01010101
## 543  0.94534413 0.03340081 0.02125506
## 547  0.35238095 0.59047619 0.05714286
## 548  0.25842697 0.60674157 0.13483146
## 549  0.25842697 0.60674157 0.13483146
## 550  0.65656566 0.33333333 0.01010101
## 555  0.65656566 0.33333333 0.01010101
## 556  0.94534413 0.03340081 0.02125506
## 560  0.94534413 0.03340081 0.02125506
## 562  0.71111111 0.09135802 0.19753086
## 564  0.94534413 0.03340081 0.02125506
## 566  0.94534413 0.03340081 0.02125506
## 572  0.94534413 0.03340081 0.02125506
## 580  0.71111111 0.09135802 0.19753086
## 581  0.94534413 0.03340081 0.02125506
## 588  0.94534413 0.03340081 0.02125506
## 589  0.71111111 0.09135802 0.19753086
## 591  0.94534413 0.03340081 0.02125506
## 592  0.94534413 0.03340081 0.02125506
## 607  0.94534413 0.03340081 0.02125506
## 612  0.94534413 0.03340081 0.02125506
## 615  0.94534413 0.03340081 0.02125506
## 621  0.94534413 0.03340081 0.02125506
## 624  0.94534413 0.03340081 0.02125506
## 626  0.94534413 0.03340081 0.02125506
## 628  0.94534413 0.03340081 0.02125506
## 631  0.94534413 0.03340081 0.02125506
## 635  0.94534413 0.03340081 0.02125506
## 636  0.25842697 0.60674157 0.13483146
## 638  0.94534413 0.03340081 0.02125506
## 644  0.94534413 0.03340081 0.02125506
## 648  0.71111111 0.09135802 0.19753086
## 650  0.71111111 0.09135802 0.19753086
## 653  0.71111111 0.09135802 0.19753086
## 657  0.94534413 0.03340081 0.02125506
## 660  0.94534413 0.03340081 0.02125506
## 662  0.71111111 0.09135802 0.19753086
## 663  0.65656566 0.33333333 0.01010101
## 672  0.65656566 0.33333333 0.01010101
## 675  0.94534413 0.03340081 0.02125506
## 676  0.94534413 0.03340081 0.02125506
## 678  0.94534413 0.03340081 0.02125506
## 680  0.65656566 0.33333333 0.01010101
## 685  0.94534413 0.03340081 0.02125506
## 687  0.71111111 0.09135802 0.19753086
## 691  0.00000000 0.00000000 1.00000000
## 712  0.94534413 0.03340081 0.02125506
## 713  0.94534413 0.03340081 0.02125506
## 719  0.94534413 0.03340081 0.02125506
## 721  0.71111111 0.09135802 0.19753086
## 723  0.25842697 0.60674157 0.13483146
## 726  0.94534413 0.03340081 0.02125506
## 730  0.94534413 0.03340081 0.02125506
## 731  0.71111111 0.09135802 0.19753086
## 738  0.94534413 0.03340081 0.02125506
## 739  0.94534413 0.03340081 0.02125506
## 740  0.94534413 0.03340081 0.02125506
## 754  0.71111111 0.09135802 0.19753086
## 756  0.71111111 0.09135802 0.19753086
## 758  0.71111111 0.09135802 0.19753086
## 767  0.65656566 0.33333333 0.01010101
## 771  0.71111111 0.09135802 0.19753086
## 772  0.71111111 0.09135802 0.19753086
## 773  0.71111111 0.09135802 0.19753086
## 781  0.71111111 0.09135802 0.19753086
## 787  0.71111111 0.09135802 0.19753086
## 798  0.35238095 0.59047619 0.05714286
## 800  0.35238095 0.59047619 0.05714286
## 802  0.35238095 0.59047619 0.05714286
## 813  0.94534413 0.03340081 0.02125506
## 818  0.35238095 0.59047619 0.05714286
## 832  0.35238095 0.59047619 0.05714286
## 833  0.35238095 0.59047619 0.05714286
## 834  0.35238095 0.59047619 0.05714286
## 846  0.94534413 0.03340081 0.02125506
## 848  0.65656566 0.33333333 0.01010101
## 852  0.94534413 0.03340081 0.02125506
## 853  0.65656566 0.33333333 0.01010101
## 860  0.65656566 0.33333333 0.01010101
## 866  0.94534413 0.03340081 0.02125506
## 868  0.94534413 0.03340081 0.02125506
## 871  0.94534413 0.03340081 0.02125506
## 872  0.94534413 0.03340081 0.02125506
## 873  0.94534413 0.03340081 0.02125506
## 886  0.71111111 0.09135802 0.19753086
## 891  0.94534413 0.03340081 0.02125506
## 899  0.94534413 0.03340081 0.02125506
## 900  0.94534413 0.03340081 0.02125506
## 903  0.65656566 0.33333333 0.01010101
## 905  0.35238095 0.59047619 0.05714286
## 918  0.71111111 0.09135802 0.19753086
## 919  0.71111111 0.09135802 0.19753086
## 932  0.71111111 0.09135802 0.19753086
## 941  0.71111111 0.09135802 0.19753086
## 943  0.94534413 0.03340081 0.02125506
## 952  0.65656566 0.33333333 0.01010101
## 954  0.94534413 0.03340081 0.02125506
## 955  0.71111111 0.09135802 0.19753086
## 957  0.71111111 0.09135802 0.19753086
## 963  0.94534413 0.03340081 0.02125506
## 971  0.71111111 0.09135802 0.19753086
## 979  0.94534413 0.03340081 0.02125506
## 982  0.94534413 0.03340081 0.02125506
## 985  0.94534413 0.03340081 0.02125506
## 988  0.94534413 0.03340081 0.02125506
## 993  0.94534413 0.03340081 0.02125506
## 999  0.94534413 0.03340081 0.02125506
## 1001 0.94534413 0.03340081 0.02125506
## 1009 0.94534413 0.03340081 0.02125506
## 1010 0.94534413 0.03340081 0.02125506
## 1012 0.94534413 0.03340081 0.02125506
## 1020 0.94534413 0.03340081 0.02125506
## 1024 0.94534413 0.03340081 0.02125506
## 1027 0.94534413 0.03340081 0.02125506
## 1034 0.94534413 0.03340081 0.02125506
## 1039 0.94534413 0.03340081 0.02125506
## 1041 0.94534413 0.03340081 0.02125506
## 1045 0.71111111 0.09135802 0.19753086
## 1052 0.94534413 0.03340081 0.02125506
## 1058 0.71111111 0.09135802 0.19753086
## 1066 0.94534413 0.03340081 0.02125506
## 1067 0.94534413 0.03340081 0.02125506
## 1082 0.94534413 0.03340081 0.02125506
## 1083 0.94534413 0.03340081 0.02125506
## 1098 0.94534413 0.03340081 0.02125506
## 1114 0.71111111 0.09135802 0.19753086
## 1116 0.71111111 0.09135802 0.19753086
## 1117 0.71111111 0.09135802 0.19753086
## 1124 0.94534413 0.03340081 0.02125506
## 1131 0.94534413 0.03340081 0.02125506
## 1137 0.71111111 0.09135802 0.19753086
## 1140 0.71111111 0.09135802 0.19753086
## 1144 0.94534413 0.03340081 0.02125506
## 1162 0.94534413 0.03340081 0.02125506
## 1166 0.94534413 0.03340081 0.02125506
## 1175 0.94534413 0.03340081 0.02125506
## 1176 0.94534413 0.03340081 0.02125506
## 1184 0.71111111 0.09135802 0.19753086
## 1187 0.94534413 0.03340081 0.02125506
## 1206 0.65656566 0.33333333 0.01010101
## 1208 0.94534413 0.03340081 0.02125506
## 1213 0.94534413 0.03340081 0.02125506
## 1215 0.65656566 0.33333333 0.01010101
## 1216 0.94534413 0.03340081 0.02125506
## 1219 0.71111111 0.09135802 0.19753086
## 1222 0.71111111 0.09135802 0.19753086
## 1230 0.71111111 0.09135802 0.19753086
## 1233 0.94534413 0.03340081 0.02125506
## 1234 0.71111111 0.09135802 0.19753086
## 1236 0.94534413 0.03340081 0.02125506
## 1241 0.94534413 0.03340081 0.02125506
## 1251 0.94534413 0.03340081 0.02125506
## 1254 0.94534413 0.03340081 0.02125506
## 1257 0.94534413 0.03340081 0.02125506
## 1260 0.94534413 0.03340081 0.02125506
## 1261 0.71111111 0.09135802 0.19753086
## 1263 0.94534413 0.03340081 0.02125506
## 1264 0.94534413 0.03340081 0.02125506
## 1279 0.94534413 0.03340081 0.02125506
## 1280 0.94534413 0.03340081 0.02125506
## 1294 0.94534413 0.03340081 0.02125506
## 1296 0.94534413 0.03340081 0.02125506
## 1302 0.71111111 0.09135802 0.19753086
## 1306 0.65656566 0.33333333 0.01010101
## 1313 0.94534413 0.03340081 0.02125506
## 1318 0.71111111 0.09135802 0.19753086
## 1337 0.71111111 0.09135802 0.19753086
## 1341 0.94534413 0.03340081 0.02125506
## 1346 0.94534413 0.03340081 0.02125506
## 1352 0.71111111 0.09135802 0.19753086
## 1365 0.94534413 0.03340081 0.02125506
## 1372 0.65656566 0.33333333 0.01010101
## 1374 0.94534413 0.03340081 0.02125506
## 1376 0.94534413 0.03340081 0.02125506
## 1382 0.71111111 0.09135802 0.19753086
## 1384 0.71111111 0.09135802 0.19753086
## 1387 0.94534413 0.03340081 0.02125506
## 1393 0.65656566 0.33333333 0.01010101
## 1399 0.94534413 0.03340081 0.02125506
## 1403 0.35238095 0.59047619 0.05714286
## 1404 0.94534413 0.03340081 0.02125506
## 1406 0.35238095 0.59047619 0.05714286
## 1416 0.94534413 0.03340081 0.02125506
## 1421 0.94534413 0.03340081 0.02125506
## 1423 0.94534413 0.03340081 0.02125506
## 1432 0.65656566 0.33333333 0.01010101
## 1438 0.94534413 0.03340081 0.02125506
## 1439 0.94534413 0.03340081 0.02125506
## 1444 0.94534413 0.03340081 0.02125506
## 1445 0.94534413 0.03340081 0.02125506
## 1461 0.35238095 0.59047619 0.05714286
## 1462 0.35238095 0.59047619 0.05714286
## 1463 0.35238095 0.59047619 0.05714286
## 1464 0.35238095 0.59047619 0.05714286
## 1465 0.35238095 0.59047619 0.05714286
## 1473 0.94534413 0.03340081 0.02125506
## 1474 0.35238095 0.59047619 0.05714286
## 1482 0.94534413 0.03340081 0.02125506
## 1485 0.94534413 0.03340081 0.02125506
## 1490 0.71111111 0.09135802 0.19753086
## 1493 0.71111111 0.09135802 0.19753086
## 1499 0.94534413 0.03340081 0.02125506
## 1500 0.71111111 0.09135802 0.19753086
## 1504 0.94534413 0.03340081 0.02125506
## 1505 0.94534413 0.03340081 0.02125506
## 1508 0.71111111 0.09135802 0.19753086
## 1526 0.94534413 0.03340081 0.02125506
## 1527 0.71111111 0.09135802 0.19753086
## 1531 0.94534413 0.03340081 0.02125506
## 1539 0.71111111 0.09135802 0.19753086
## 1541 0.94534413 0.03340081 0.02125506
## 1547 0.35238095 0.59047619 0.05714286
## 1561 0.65656566 0.33333333 0.01010101
## 1582 0.94534413 0.03340081 0.02125506
## 1586 0.94534413 0.03340081 0.02125506
## 1593 0.71111111 0.09135802 0.19753086
## 1600 0.94534413 0.03340081 0.02125506
## 1607 0.94534413 0.03340081 0.02125506
## 1624 0.94534413 0.03340081 0.02125506
## 1629 0.94534413 0.03340081 0.02125506
## 1632 0.94534413 0.03340081 0.02125506
## 1636 0.94534413 0.03340081 0.02125506
## 1640 0.94534413 0.03340081 0.02125506
## 1643 0.94534413 0.03340081 0.02125506
## 1646 0.94534413 0.03340081 0.02125506
## 1648 0.94534413 0.03340081 0.02125506
## 1649 0.94534413 0.03340081 0.02125506
## 1651 0.94534413 0.03340081 0.02125506
## 1658 0.71111111 0.09135802 0.19753086
## 1660 0.94534413 0.03340081 0.02125506
## 1671 0.71111111 0.09135802 0.19753086
## 1673 0.94534413 0.03340081 0.02125506
## 1697 0.94534413 0.03340081 0.02125506
## 1707 0.94534413 0.03340081 0.02125506
## 1734 0.94534413 0.03340081 0.02125506
## 1739 0.94534413 0.03340081 0.02125506
## 1746 0.94534413 0.03340081 0.02125506
## 1755 0.94534413 0.03340081 0.02125506
## 1757 0.94534413 0.03340081 0.02125506
## 1760 0.94534413 0.03340081 0.02125506
## 1767 0.71111111 0.09135802 0.19753086
## 1769 0.71111111 0.09135802 0.19753086
## 1771 0.71111111 0.09135802 0.19753086
## 1777 0.71111111 0.09135802 0.19753086
## 1780 0.94534413 0.03340081 0.02125506
## 1783 0.94534413 0.03340081 0.02125506
## 1791 0.71111111 0.09135802 0.19753086
## 1797 0.94534413 0.03340081 0.02125506
## 1810 0.65656566 0.33333333 0.01010101
## 1811 0.65656566 0.33333333 0.01010101
## 1818 0.94534413 0.03340081 0.02125506
## 1820 0.94534413 0.03340081 0.02125506
## 1826 0.25842697 0.60674157 0.13483146
## 1833 0.25842697 0.60674157 0.13483146
## 1834 0.65656566 0.33333333 0.01010101
## 1860 0.94534413 0.03340081 0.02125506
## 1862 0.94534413 0.03340081 0.02125506
## 1863 0.94534413 0.03340081 0.02125506
## 1864 0.94534413 0.03340081 0.02125506
## 1875 0.94534413 0.03340081 0.02125506
## 1877 0.94534413 0.03340081 0.02125506
## 1881 0.65656566 0.33333333 0.01010101
## 1894 0.94534413 0.03340081 0.02125506
## 1900 0.94534413 0.03340081 0.02125506
## 1908 0.94534413 0.03340081 0.02125506
## 1910 0.94534413 0.03340081 0.02125506
## 1921 0.94534413 0.03340081 0.02125506
## 1922 0.94534413 0.03340081 0.02125506
## 1929 0.25842697 0.60674157 0.13483146
## 1930 0.25842697 0.60674157 0.13483146
## 1945 0.71111111 0.09135802 0.19753086
## 1951 0.71111111 0.09135802 0.19753086
## 1954 0.71111111 0.09135802 0.19753086
## 1961 0.94534413 0.03340081 0.02125506
## 1963 0.94534413 0.03340081 0.02125506
## 1964 0.71111111 0.09135802 0.19753086
## 1966 0.94534413 0.03340081 0.02125506
## 1972 0.94534413 0.03340081 0.02125506
## 1974 0.94534413 0.03340081 0.02125506
## 1976 0.94534413 0.03340081 0.02125506
## 1977 0.94534413 0.03340081 0.02125506
## 1980 0.94534413 0.03340081 0.02125506
## 1985 0.94534413 0.03340081 0.02125506
## 1987 0.94534413 0.03340081 0.02125506
## 1998 0.71111111 0.09135802 0.19753086
## 2012 0.71111111 0.09135802 0.19753086
## 2013 0.71111111 0.09135802 0.19753086
## 2021 0.71111111 0.09135802 0.19753086
## 2022 0.71111111 0.09135802 0.19753086
## 2023 0.71111111 0.09135802 0.19753086
## 2026 0.71111111 0.09135802 0.19753086
## 2044 0.71111111 0.09135802 0.19753086
## 2046 0.71111111 0.09135802 0.19753086
## 2053 0.94534413 0.03340081 0.02125506
## 2056 0.71111111 0.09135802 0.19753086
## 2061 0.71111111 0.09135802 0.19753086
## 2066 0.71111111 0.09135802 0.19753086
## 2073 0.94534413 0.03340081 0.02125506
## 2076 0.94534413 0.03340081 0.02125506
## 2089 0.71111111 0.09135802 0.19753086
## 2091 0.71111111 0.09135802 0.19753086
## 2098 0.71111111 0.09135802 0.19753086
## 2102 0.71111111 0.09135802 0.19753086
## 2104 0.71111111 0.09135802 0.19753086
## 2109 0.71111111 0.09135802 0.19753086
## 2116 0.65656566 0.33333333 0.01010101
## 2121 0.65656566 0.33333333 0.01010101





Evaluation of the model (training dataset)

The upper row - actual classification

The 1st column - prediction from model(tree)

from table, 70 - There are 70 patients who are actually suspect, but the model predict them as normal

row=column - number of perfect prediction

error_table<- table(predict(tree),train$NSPF)
print(error_table)
##    
##        1    2    3
##   1 1222   70  112
##   2  126  156   32
##   3    0    0    0





Misclassification Error (based on training dataset)

So the Misclassification Error of the model is about 19%

1-sum(diag(error_table))/sum(error_table)
## [1] 0.1979045





Evaluation of the model (test dataset)

test_ev <- predict(tree,test)
error_table_test <- table(test_ev, test$NSPF)
print(error_table_test)
##        
## test_ev   1   2   3
##       1 274  21  28
##       2  33  48   4
##       3   0   0   0





Misclassification Error (based on test dataset)

1-sum(diag(error_table_test))/sum(error_table_test)
## [1] 0.2107843