sessionInfo()
## R version 4.0.0 (2020-04-24)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18363)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=English_India.1252 LC_CTYPE=English_India.1252
## [3] LC_MONETARY=English_India.1252 LC_NUMERIC=C
## [5] LC_TIME=English_India.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## loaded via a namespace (and not attached):
## [1] compiler_4.0.0 magrittr_1.5 tools_4.0.0 htmltools_0.4.0
## [5] yaml_2.2.1 Rcpp_1.0.4.6 stringi_1.4.6 rmarkdown_2.1
## [9] knitr_1.28 stringr_1.4.0 xfun_0.13 digest_0.6.25
## [13] rlang_0.4.6 evaluate_0.14
rm(list=ls())
setwd("D:/R/Class/5Reproducible Research/Assessment2")
read <- read.csv("./repdata_data_StormData.csv.bz2")
## Warning in scan(file = file, what = what, sep = sep, quote = quote, dec = dec, :
## EOF within quoted string
names(read)
## [1] "STATE__" "BGN_DATE" "BGN_TIME" "TIME_ZONE" "COUNTY"
## [6] "COUNTYNAME" "STATE" "EVTYPE" "BGN_RANGE" "BGN_AZI"
## [11] "BGN_LOCATI" "END_DATE" "END_TIME" "COUNTY_END" "COUNTYENDN"
## [16] "END_RANGE" "END_AZI" "END_LOCATI" "LENGTH" "WIDTH"
## [21] "F" "MAG" "FATALITIES" "INJURIES" "PROPDMG"
## [26] "PROPDMGEXP" "CROPDMG" "CROPDMGEXP" "WFO" "STATEOFFIC"
## [31] "ZONENAMES" "LATITUDE" "LONGITUDE" "LATITUDE_E" "LONGITUDE_"
## [36] "REMARKS" "REFNUM"
head(read)
## STATE__ BGN_DATE BGN_TIME TIME_ZONE COUNTY COUNTYNAME STATE EVTYPE
## 1 1 4/18/1950 0:00:00 0130 CST 97 MOBILE AL TORNADO
## 2 1 4/18/1950 0:00:00 0145 CST 3 BALDWIN AL TORNADO
## 3 1 2/20/1951 0:00:00 1600 CST 57 FAYETTE AL TORNADO
## 4 1 6/8/1951 0:00:00 0900 CST 89 MADISON AL TORNADO
## 5 1 11/15/1951 0:00:00 1500 CST 43 CULLMAN AL TORNADO
## 6 1 11/15/1951 0:00:00 2000 CST 77 LAUDERDALE AL TORNADO
## BGN_RANGE BGN_AZI BGN_LOCATI END_DATE END_TIME COUNTY_END COUNTYENDN
## 1 0 0 NA
## 2 0 0 NA
## 3 0 0 NA
## 4 0 0 NA
## 5 0 0 NA
## 6 0 0 NA
## END_RANGE END_AZI END_LOCATI LENGTH WIDTH F MAG FATALITIES INJURIES PROPDMG
## 1 0 14.0 100 3 0 0 15 25.0
## 2 0 2.0 150 2 0 0 0 2.5
## 3 0 0.1 123 2 0 0 2 25.0
## 4 0 0.0 100 2 0 0 2 2.5
## 5 0 0.0 150 2 0 0 2 2.5
## 6 0 1.5 177 2 0 0 6 2.5
## PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES LATITUDE LONGITUDE
## 1 K 0 3040 8812
## 2 K 0 3042 8755
## 3 K 0 3340 8742
## 4 K 0 3458 8626
## 5 K 0 3412 8642
## 6 K 0 3450 8748
## LATITUDE_E LONGITUDE_ REMARKS REFNUM
## 1 3051 8806 1
## 2 0 0 2
## 3 0 0 3
## 4 0 0 4
## 5 0 0 5
## 6 0 0 6
summary(read)
## STATE__ BGN_DATE BGN_TIME TIME_ZONE
## Min. : 1.00 Length:281945 Length:281945 Length:281945
## 1st Qu.:20.00 Class :character Class :character Class :character
## Median :31.00 Mode :character Mode :character Mode :character
## Mean :30.72
## 3rd Qu.:45.00
## Max. :78.00
##
## COUNTY COUNTYNAME STATE EVTYPE
## Min. : 0.0 Length:281945 Length:281945 Length:281945
## 1st Qu.: 33.0 Class :character Class :character Class :character
## Median : 81.0 Mode :character Mode :character Mode :character
## Mean :101.2
## 3rd Qu.:133.0
## Max. :840.0
##
## BGN_RANGE BGN_AZI BGN_LOCATI END_DATE
## Min. : 0.00 Length:281945 Length:281945 Length:281945
## 1st Qu.: 0.00 Class :character Class :character Class :character
## Median : 0.00 Mode :character Mode :character Mode :character
## Mean : 0.51
## 3rd Qu.: 0.00
## Max. :3749.00
##
## END_TIME COUNTY_END COUNTYENDN END_RANGE
## Length:281945 Min. :0 Mode:logical Min. : 0.0000
## Class :character 1st Qu.:0 NA's:281945 1st Qu.: 0.0000
## Mode :character Median :0 Median : 0.0000
## Mean :0 Mean : 0.2343
## 3rd Qu.:0 3rd Qu.: 0.0000
## Max. :0 Max. :925.0000
##
## END_AZI END_LOCATI LENGTH WIDTH
## Length:281945 Length:281945 Min. : 0.0000 Min. : 0.00
## Class :character Class :character 1st Qu.: 0.0000 1st Qu.: 0.00
## Mode :character Mode :character Median : 0.0000 Median : 0.00
## Mean : 0.5117 Mean : 13.72
## 3rd Qu.: 0.0000 3rd Qu.: 0.00
## Max. :2315.0000 Max. :3330.00
##
## F MAG FATALITIES INJURIES
## Min. :0.00 Min. : 0.00 Min. : 0.0000 Min. : 0.0000
## 1st Qu.:0.00 1st Qu.: 0.00 1st Qu.: 0.0000 1st Qu.: 0.0000
## Median :1.00 Median : 0.00 Median : 0.0000 Median : 0.0000
## Mean :1.11 Mean : 50.95 Mean : 0.0247 Mean : 0.3027
## 3rd Qu.:2.00 3rd Qu.: 75.00 3rd Qu.: 0.0000 3rd Qu.: 0.0000
## Max. :5.00 Max. :999.00 Max. :583.0000 Max. :1700.0000
## NA's :245086
## PROPDMG PROPDMGEXP CROPDMG CROPDMGEXP
## Min. : 0.00 Length:281945 Min. : 0.0000 Length:281945
## 1st Qu.: 0.00 Class :character 1st Qu.: 0.0000 Class :character
## Median : 0.00 Mode :character Median : 0.0000 Mode :character
## Mean : 13.05 Mean : 0.8725
## 3rd Qu.: 0.00 3rd Qu.: 0.0000
## Max. :900.00 Max. :950.0000
##
## WFO STATEOFFIC ZONENAMES LATITUDE
## Length:281945 Length:281945 Length:281945 Min. : 0
## Class :character Class :character Class :character 1st Qu.:2555
## Mode :character Mode :character Mode :character Median :3458
## Mean :2807
## 3rd Qu.:4000
## Max. :5273
##
## LONGITUDE LATITUDE_E LONGITUDE_ REMARKS
## Min. : 0 Min. : 0 Min. : 0 Length:281945
## 1st Qu.: 6959 1st Qu.: 0 1st Qu.: 0 Class :character
## Median : 8819 Median : 0 Median : 0 Mode :character
## Mean : 6893 Mean : 452 Mean : 1114
## 3rd Qu.: 9643 3rd Qu.: 0 3rd Qu.: 0
## Max. :15941 Max. :4902 Max. :15930
##
## REFNUM
## Min. : 1
## 1st Qu.: 70487
## Median :140973
## Mean :140973
## 3rd Qu.:211458
## Max. :283448
## NA's :1
read$EVTYPE <- as.factor(read$EVTYPE)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
forfatalities <- aggregate(FATALITIES ~ EVTYPE,read,"sum")
forfatalities <- arrange(forfatalities,desc(forfatalities[,2]))
forfatalities$EVTYPE <- as.factor(forfatalities$EVTYPE)
ff <- head(forfatalities,8)
ff$EVTYPE <- as.factor(ff$EVTYPE)
forinjuries <- aggregate(INJURIES ~ EVTYPE,read,"sum")
forinjuries <- arrange(forinjuries,desc(forinjuries[,2]))
forinjuries$EVTYPE <- as.factor(forinjuries$EVTYPE)
fi <- head(forinjuries,8)
fi$EVTYPE <- as.factor(fi$EVTYPE)
par(mfrow = c(1, 2), las = 3, cex = 0.7, cex.main = 1.4, cex.lab = 1.2)
barplot(names.arg = ff$EVTYPE , ff$FATALITIES,col= "maroon",main="FATALITIES")
barplot(names.arg = fi$EVTYPE , fi$INJURIES,col= "grey",main="INJURIES")
finalhumandamage <- aggregate(read$FATALITIES+read$INJURIES , by= list(read$EVTYPE),"sum")
finalhumandamage <- arrange(finalhumandamage,desc(finalhumandamage[,2]))
fhd <- head(finalhumandamage,8)
head(fhd)
## Group.1 x
## 1 TORNADO 75580
## 2 TSTM WIND 3943
## 3 ICE STORM 1797
## 4 LIGHTNING 1637
## 5 HEAT 1578
## 6 THUNDERSTORM WINDS 972
par(mfrow = c(1, 1), las = 3, cex = 0.7, cex.main = 1.4, cex.lab = 1.2)
barplot(names.arg = fhd$Group.1,fhd$x,col="darkgreen",main="Final Most Human Damage Causing EVTYPE")
## Thus, the final graph , where we have added the Injuries and Fatalities suggests that the most number of Damages are done by TORNADOs.
forproperties <- aggregate(read$PROPDMG,by=list(read$EVTYPE),"sum")
forproperties <- arrange(forproperties,desc(forproperties[,2]))
forproperties$Group.1 <- as.factor(forproperties$Group.1)
fp <- head(forproperties,8)
forcrops <- aggregate(read$CROPDMG,by=list(read$EVTYPE),"sum")
forcrops <- arrange(forcrops,desc(forcrops[,2]))
forcrops$Group.1 <- as.factor(forcrops$Group.1)
fc <- head(forcrops,8)
par(mfrow = c(1, 2), las = 3, cex = 0.7, cex.main = 1.4, cex.lab = 1.2)
barplot(names.arg= fp$Group.1,fp$x,col="darkblue",main="PROPERTY DAMAGE")
barplot(names.arg= fc$Group.1,fc$x,col="orange",main="CROPS DAMAGE")
finaldamage <- aggregate(read$PROPDMG+read$CROPDMG,by=list(read$EVTYPE),"sum")
finaldamage <- arrange(finaldamage,desc(finaldamage[,2]))
fd <- head(finaldamage,8)
par(mfrow = c(1, 1), las = 3, cex = 0.7, cex.main = 1.4, cex.lab = 1.2)
barplot(names.arg=fd$Group.1,fd$x,col="brown",main="Final most Economic Damage causing EVTYPE")