Disini saya akan mencoba belajar tentang “Data Wrangling”. “Data Wrangling” adalah suatu usaha agar data yang saya miliki menjadi bentuk yang dapat digunakan/berguna untuk melakukan “vizualitation” dan “modelling”. Pada bagian ini saya akan belajar tentang merapikan data menggunakan tidyr.
library(tidyverse)
Pada contoh dataset dibawah hanya table1 yang “tidy”(rapi).
Dataset dikatakan “tidy” apabila:
table1
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
table2
## # A tibble: 12 x 4
## country year type count
## <chr> <int> <chr> <int>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583
table3
## # A tibble: 6 x 3
## country year rate
## * <chr> <int> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
table4a
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766
table4b
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 19987071 20595360
## 2 Brazil 172006362 174504898
## 3 China 1272915272 1280428583
table5
## # A tibble: 6 x 4
## country century year rate
## * <chr> <chr> <chr> <chr>
## 1 Afghanistan 19 99 745/19987071
## 2 Afghanistan 20 00 2666/20595360
## 3 Brazil 19 99 37737/172006362
## 4 Brazil 20 00 80488/174504898
## 5 China 19 99 212258/1272915272
## 6 China 20 00 213766/1280428583
Salah satu yang dapat dilakukan pada table.
table1%>%
count(year, wt=cases)
## # A tibble: 2 x 2
## year n
## <int> <int>
## 1 1999 250740
## 2 2000 296920
Kebanyakan data akan “untidy”. Ada dua alasan utama, yaitu:
Kebanyakan orang tidak familiar dengan prinsip “tidy data”.
Data dikumpulkan untuk memfasilitasi beberapa kegunaan lain, seperti untuk membuat memudahkan dalam “entry data”.
Agar data menjadi “tidy” hal yang dilakukan adalah
Gathering
Gathering dilakukan ketika beberapa nama kolom bukanlah nama variabel, tapi “value” adalah variabel. Dalam kasus dibawah terlihat “1999”,“2000” bukan merupakan nama variabel.
# a
table4a
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 745 2666
## 2 Brazil 37737 80488
## 3 China 212258 213766
table4a %>%
gather("1999","2000", key="year", value = "cases")
## # A tibble: 6 x 3
## country year cases
## <chr> <chr> <int>
## 1 Afghanistan 1999 745
## 2 Brazil 1999 37737
## 3 China 1999 212258
## 4 Afghanistan 2000 2666
## 5 Brazil 2000 80488
## 6 China 2000 213766
table4a<-table4a %>%
gather("1999","2000", key="year", value = "cases")
# b
table4b
## # A tibble: 3 x 3
## country `1999` `2000`
## * <chr> <int> <int>
## 1 Afghanistan 19987071 20595360
## 2 Brazil 172006362 174504898
## 3 China 1272915272 1280428583
table4b %>%
gather("1999","2000", key="year", value = "population")
## # A tibble: 6 x 3
## country year population
## <chr> <chr> <int>
## 1 Afghanistan 1999 19987071
## 2 Brazil 1999 172006362
## 3 China 1999 1272915272
## 4 Afghanistan 2000 20595360
## 5 Brazil 2000 174504898
## 6 China 2000 1280428583
table4b<-table4b %>%
gather("1999","2000", key="year", value = "population")
# a gabung b
left_join(table4a, table4b)
## Joining, by = c("country", "year")
## # A tibble: 6 x 4
## country year cases population
## <chr> <chr> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Brazil 1999 37737 172006362
## 3 China 1999 212258 1272915272
## 4 Afghanistan 2000 2666 20595360
## 5 Brazil 2000 80488 174504898
## 6 China 2000 213766 1280428583
Spreading
Spreading dilakukan ketika suatu observasi terhubung dengan beberapa baris. Dalam hal ini misal “cases” dan “population” terhubung dengan beberapa baris pada kolom “count”.
table2
## # A tibble: 12 x 4
## country year type count
## <chr> <int> <chr> <int>
## 1 Afghanistan 1999 cases 745
## 2 Afghanistan 1999 population 19987071
## 3 Afghanistan 2000 cases 2666
## 4 Afghanistan 2000 population 20595360
## 5 Brazil 1999 cases 37737
## 6 Brazil 1999 population 172006362
## 7 Brazil 2000 cases 80488
## 8 Brazil 2000 population 174504898
## 9 China 1999 cases 212258
## 10 China 1999 population 1272915272
## 11 China 2000 cases 213766
## 12 China 2000 population 1280428583
spread(table2, key = type,value = count)
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
Separate
“Separating” dilakukan ketika dalam satu kolom, berisi dua variabel. Contoh pada table3.
table3 %>%
separate(rate, into = c("cases", "population"))
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <chr> <chr>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
Menurut hasil kolom cases dan population adalah karakter, Padahal merupakan number. Harus diganti
table3 %>%
separate(rate, into = c("cases", "population"), convert = T)
## # A tibble: 6 x 4
## country year cases population
## <chr> <int> <int> <int>
## 1 Afghanistan 1999 745 19987071
## 2 Afghanistan 2000 2666 20595360
## 3 Brazil 1999 37737 172006362
## 4 Brazil 2000 80488 174504898
## 5 China 1999 212258 1272915272
## 6 China 2000 213766 1280428583
Membagi (separate) tiap dua digit tahun membuat data kurang rapi(tidy), namun dalam satu kasus dapat berguna
table3 %>%
separate(rate, into = c("cases", "population"), convert = T)%>%
separate(year, into = c("century", "year"), sep = 2)
## # A tibble: 6 x 5
## country century year cases population
## <chr> <chr> <chr> <int> <int>
## 1 Afghanistan 19 99 745 19987071
## 2 Afghanistan 20 00 2666 20595360
## 3 Brazil 19 99 37737 172006362
## 4 Brazil 20 00 80488 174504898
## 5 China 19 99 212258 1272915272
## 6 China 20 00 213766 1280428583
Unity
“Unity” adalah kebalikan dari “separate”, yaitu menggabungkan beberapa kolom menjadi satu. Contoh pada table5.
table5
## # A tibble: 6 x 4
## country century year rate
## * <chr> <chr> <chr> <chr>
## 1 Afghanistan 19 99 745/19987071
## 2 Afghanistan 20 00 2666/20595360
## 3 Brazil 19 99 37737/172006362
## 4 Brazil 20 00 80488/174504898
## 5 China 19 99 212258/1272915272
## 6 China 20 00 213766/1280428583
table5 %>%
unite(year, century, year, sep = "")
## # A tibble: 6 x 3
## country year rate
## <chr> <chr> <chr>
## 1 Afghanistan 1999 745/19987071
## 2 Afghanistan 2000 2666/20595360
## 3 Brazil 1999 37737/172006362
## 4 Brazil 2000 80488/174504898
## 5 China 1999 212258/1272915272
## 6 China 2000 213766/1280428583
Dalam missing value ada yang implisit, ada yang eksplisit gunakan code dibawah ini.
stocks<- tibble(
year =c(2015,2015,2015,2015,2017,2017,2017),
qtr =c(1,2,3,4,2,3,4),
return=c(1.88,0.59,0.35,NA,0.92,0.17,2.88)
)
stocks
## # A tibble: 7 x 3
## year qtr return
## <dbl> <dbl> <dbl>
## 1 2015 1 1.88
## 2 2015 2 0.59
## 3 2015 3 0.35
## 4 2015 4 NA
## 5 2017 2 0.92
## 6 2017 3 0.17
## 7 2017 4 2.88
Agar membuat missing value implisit menjadi eksplisit gunakan code dibawah ini.
stocks %>%
spread(year, return)
## # A tibble: 4 x 3
## qtr `2015` `2017`
## <dbl> <dbl> <dbl>
## 1 1 1.88 NA
## 2 2 0.59 0.92
## 3 3 0.35 0.17
## 4 4 NA 2.88
Karena mungkin missing value tidak penting bisa melakukan.
stocks %>%
spread(year, return)%>%
gather(year, return, "2015","2017", na.rm = T)
## # A tibble: 6 x 3
## qtr year return
## <dbl> <chr> <dbl>
## 1 1 2015 1.88
## 2 2 2015 0.59
## 3 3 2015 0.35
## 4 2 2017 0.92
## 5 3 2017 0.17
## 6 4 2017 2.88
Untuk memuat missing value eksplisit pada data “tidy” gunakan code berikut.
stocks%>%
complete(year, qtr)
## # A tibble: 8 x 3
## year qtr return
## <dbl> <dbl> <dbl>
## 1 2015 1 1.88
## 2 2015 2 0.59
## 3 2015 3 0.35
## 4 2015 4 NA
## 5 2017 1 NA
## 6 2017 2 0.92
## 7 2017 3 0.17
## 8 2017 4 2.88
who
## # A tibble: 7,240 x 60
## country iso2 iso3 year new_sp_m014 new_sp_m1524 new_sp_m2534 new_sp_m3544
## <chr> <chr> <chr> <int> <int> <int> <int> <int>
## 1 Afghan~ AF AFG 1980 NA NA NA NA
## 2 Afghan~ AF AFG 1981 NA NA NA NA
## 3 Afghan~ AF AFG 1982 NA NA NA NA
## 4 Afghan~ AF AFG 1983 NA NA NA NA
## 5 Afghan~ AF AFG 1984 NA NA NA NA
## 6 Afghan~ AF AFG 1985 NA NA NA NA
## 7 Afghan~ AF AFG 1986 NA NA NA NA
## 8 Afghan~ AF AFG 1987 NA NA NA NA
## 9 Afghan~ AF AFG 1988 NA NA NA NA
## 10 Afghan~ AF AFG 1989 NA NA NA NA
## # ... with 7,230 more rows, and 52 more variables: new_sp_m4554 <int>,
## # new_sp_m5564 <int>, new_sp_m65 <int>, new_sp_f014 <int>,
## # new_sp_f1524 <int>, new_sp_f2534 <int>, new_sp_f3544 <int>,
## # new_sp_f4554 <int>, new_sp_f5564 <int>, new_sp_f65 <int>,
## # new_sn_m014 <int>, new_sn_m1524 <int>, new_sn_m2534 <int>,
## # new_sn_m3544 <int>, new_sn_m4554 <int>, new_sn_m5564 <int>,
## # new_sn_m65 <int>, new_sn_f014 <int>, new_sn_f1524 <int>,
## # new_sn_f2534 <int>, new_sn_f3544 <int>, new_sn_f4554 <int>,
## # new_sn_f5564 <int>, new_sn_f65 <int>, new_ep_m014 <int>,
## # new_ep_m1524 <int>, new_ep_m2534 <int>, new_ep_m3544 <int>,
## # new_ep_m4554 <int>, new_ep_m5564 <int>, new_ep_m65 <int>,
## # new_ep_f014 <int>, new_ep_f1524 <int>, new_ep_f2534 <int>,
## # new_ep_f3544 <int>, new_ep_f4554 <int>, new_ep_f5564 <int>,
## # new_ep_f65 <int>, newrel_m014 <int>, newrel_m1524 <int>,
## # newrel_m2534 <int>, newrel_m3544 <int>, newrel_m4554 <int>,
## # newrel_m5564 <int>, newrel_m65 <int>, newrel_f014 <int>,
## # newrel_f1524 <int>, newrel_f2534 <int>, newrel_f3544 <int>,
## # newrel_f4554 <int>, newrel_f5564 <int>, newrel_f65 <int>
who1<-who%>%
gather(
new_sp_m014:newrel_f65, key = "key",
value = "cases",
na.rm = T)
who1
## # A tibble: 76,046 x 6
## country iso2 iso3 year key cases
## <chr> <chr> <chr> <int> <chr> <int>
## 1 Afghanistan AF AFG 1997 new_sp_m014 0
## 2 Afghanistan AF AFG 1998 new_sp_m014 30
## 3 Afghanistan AF AFG 1999 new_sp_m014 8
## 4 Afghanistan AF AFG 2000 new_sp_m014 52
## 5 Afghanistan AF AFG 2001 new_sp_m014 129
## 6 Afghanistan AF AFG 2002 new_sp_m014 90
## 7 Afghanistan AF AFG 2003 new_sp_m014 127
## 8 Afghanistan AF AFG 2004 new_sp_m014 139
## 9 Afghanistan AF AFG 2005 new_sp_m014 151
## 10 Afghanistan AF AFG 2006 new_sp_m014 193
## # ... with 76,036 more rows
who1%>%count(key)
## # A tibble: 56 x 2
## key n
## <chr> <int>
## 1 new_ep_f014 1032
## 2 new_ep_f1524 1021
## 3 new_ep_f2534 1021
## 4 new_ep_f3544 1021
## 5 new_ep_f4554 1017
## 6 new_ep_f5564 1017
## 7 new_ep_f65 1014
## 8 new_ep_m014 1038
## 9 new_ep_m1524 1026
## 10 new_ep_m2534 1020
## # ... with 46 more rows
who2<-who1%>%
mutate(key=stringr::str_replace(key, "newrel","new_rel"))
who2
## # A tibble: 76,046 x 6
## country iso2 iso3 year key cases
## <chr> <chr> <chr> <int> <chr> <int>
## 1 Afghanistan AF AFG 1997 new_sp_m014 0
## 2 Afghanistan AF AFG 1998 new_sp_m014 30
## 3 Afghanistan AF AFG 1999 new_sp_m014 8
## 4 Afghanistan AF AFG 2000 new_sp_m014 52
## 5 Afghanistan AF AFG 2001 new_sp_m014 129
## 6 Afghanistan AF AFG 2002 new_sp_m014 90
## 7 Afghanistan AF AFG 2003 new_sp_m014 127
## 8 Afghanistan AF AFG 2004 new_sp_m014 139
## 9 Afghanistan AF AFG 2005 new_sp_m014 151
## 10 Afghanistan AF AFG 2006 new_sp_m014 193
## # ... with 76,036 more rows
who3<-who2%>%
separate(key, c("new","type","sexage"),sep = "_")
who3
## # A tibble: 76,046 x 8
## country iso2 iso3 year new type sexage cases
## <chr> <chr> <chr> <int> <chr> <chr> <chr> <int>
## 1 Afghanistan AF AFG 1997 new sp m014 0
## 2 Afghanistan AF AFG 1998 new sp m014 30
## 3 Afghanistan AF AFG 1999 new sp m014 8
## 4 Afghanistan AF AFG 2000 new sp m014 52
## 5 Afghanistan AF AFG 2001 new sp m014 129
## 6 Afghanistan AF AFG 2002 new sp m014 90
## 7 Afghanistan AF AFG 2003 new sp m014 127
## 8 Afghanistan AF AFG 2004 new sp m014 139
## 9 Afghanistan AF AFG 2005 new sp m014 151
## 10 Afghanistan AF AFG 2006 new sp m014 193
## # ... with 76,036 more rows
who4<-who3%>%
select(-new,-iso2, -iso3)
who4
## # A tibble: 76,046 x 5
## country year type sexage cases
## <chr> <int> <chr> <chr> <int>
## 1 Afghanistan 1997 sp m014 0
## 2 Afghanistan 1998 sp m014 30
## 3 Afghanistan 1999 sp m014 8
## 4 Afghanistan 2000 sp m014 52
## 5 Afghanistan 2001 sp m014 129
## 6 Afghanistan 2002 sp m014 90
## 7 Afghanistan 2003 sp m014 127
## 8 Afghanistan 2004 sp m014 139
## 9 Afghanistan 2005 sp m014 151
## 10 Afghanistan 2006 sp m014 193
## # ... with 76,036 more rows
who5<-who4%>%
separate(sexage,c("sex", "age"), sep = 1)
who5
## # A tibble: 76,046 x 6
## country year type sex age cases
## <chr> <int> <chr> <chr> <chr> <int>
## 1 Afghanistan 1997 sp m 014 0
## 2 Afghanistan 1998 sp m 014 30
## 3 Afghanistan 1999 sp m 014 8
## 4 Afghanistan 2000 sp m 014 52
## 5 Afghanistan 2001 sp m 014 129
## 6 Afghanistan 2002 sp m 014 90
## 7 Afghanistan 2003 sp m 014 127
## 8 Afghanistan 2004 sp m 014 139
## 9 Afghanistan 2005 sp m 014 151
## 10 Afghanistan 2006 sp m 014 193
## # ... with 76,036 more rows
who%>%
gather(new_sp_m014:newrel_f65, key = "key",value = "cases",na.rm = T)%>%
mutate(
key=stringr::str_replace(key, "newrel","new_rel")
)%>%
separate(key, c("new","type","sexage"),sep = "_")%>%
select(-new,-iso2, -iso3)%>%
separate(sexage,c("sex", "age"), sep = 1)
## # A tibble: 76,046 x 6
## country year type sex age cases
## <chr> <int> <chr> <chr> <chr> <int>
## 1 Afghanistan 1997 sp m 014 0
## 2 Afghanistan 1998 sp m 014 30
## 3 Afghanistan 1999 sp m 014 8
## 4 Afghanistan 2000 sp m 014 52
## 5 Afghanistan 2001 sp m 014 129
## 6 Afghanistan 2002 sp m 014 90
## 7 Afghanistan 2003 sp m 014 127
## 8 Afghanistan 2004 sp m 014 139
## 9 Afghanistan 2005 sp m 014 151
## 10 Afghanistan 2006 sp m 014 193
## # ... with 76,036 more rows