Berikut ini adalah report yang menjelaskan prediksi tingkat survival penumpang, ketika terjadinya peristiwa karamnya Titanic.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(rsample)
## Loading required package: tidyr
library(tm)
## Loading required package: NLP
library(tidyverse)
## -- Attaching packages --------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.2.1 v purrr 0.3.3
## v tibble 2.1.3 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.4.0
## -- Conflicts ------------------------------------------------------------------ tidyverse_conflicts() --
## x ggplot2::annotate() masks NLP::annotate()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(e1071)
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
##
## lift
titanic<- read.csv("train.csv")
head(titanic)
## PassengerId Survived Pclass
## 1 1 0 3
## 2 2 1 1
## 3 3 1 3
## 4 4 1 1
## 5 5 0 3
## 6 6 0 3
## Name Sex Age SibSp Parch
## 1 Braund, Mr. Owen Harris male 22 1 0
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female 38 1 0
## 3 Heikkinen, Miss. Laina female 26 0 0
## 4 Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35 1 0
## 5 Allen, Mr. William Henry male 35 0 0
## 6 Moran, Mr. James male NA 0 0
## Ticket Fare Cabin Embarked
## 1 A/5 21171 7.2500 S
## 2 PC 17599 71.2833 C85 C
## 3 STON/O2. 3101282 7.9250 S
## 4 113803 53.1000 C123 S
## 5 373450 8.0500 S
## 6 330877 8.4583 Q
glimpse(titanic)
## Observations: 891
## Variables: 12
## $ PassengerId <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
## $ Survived <int> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0...
## $ Pclass <int> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 2, 3...
## $ Name <fct> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bradley ...
## $ Sex <fct> male, female, female, female, male, male, male, male, f...
## $ Age <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, 39, 1...
## $ SibSp <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4, 0, 1...
## $ Parch <int> 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0...
## $ Ticket <fct> A/5 21171, PC 17599, STON/O2. 3101282, 113803, 373450, ...
## $ Fare <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4583, 51.86...
## $ Cabin <fct> , C85, , C123, , , E46, , , , G6, C103, , , , , , , , ,...
## $ Embarked <fct> S, C, S, S, S, Q, S, S, S, C, S, S, S, S, S, S, Q, S, S...
titanic_clean<- titanic %>%
mutate(Survived=as.factor(Survived),
Sex=as.numeric(Sex)-1,
Cabin=as.numeric(Cabin)
) %>%
select(-Name,-Ticket,-Embarked,-PassengerId) %>%
na.omit()
glimpse(titanic_clean)
## Observations: 714
## Variables: 8
## $ Survived <fct> 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1...
## $ Pclass <int> 3, 1, 3, 1, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 3, 2, 2, 3...
## $ Sex <dbl> 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0...
## $ Age <dbl> 22, 38, 26, 35, 35, 54, 2, 27, 14, 4, 58, 20, 39, 14, 55, ...
## $ SibSp <int> 1, 1, 0, 1, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4, 1, 0, 0, 0...
## $ Parch <int> 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0, 0, 0...
## $ Fare <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 51.8625, 21.0750...
## $ Cabin <dbl> 1, 83, 1, 57, 1, 131, 1, 1, 1, 147, 51, 1, 1, 1, 1, 1, 1, ...
prop.table(table(titanic$Survived))
##
## 0 1
## 0.6161616 0.3838384
titanic_up <- upSample(x =titanic_clean[,-1],y = titanic_clean$Survived,yname = "Survived")
prop.table(table(titanic_up$Survived))
##
## 0 1
## 0.5 0.5
library(rsample)
set.seed(100)
splitted <- initial_split(data = titanic_up, prop = 0.80, strata = "Survived")
up_train <- training(splitted)
up_val <- testing(splitted)
prop.table(table(up_train$Survived))
##
## 0 1
## 0.5 0.5
set.seed(417)
ctrl <- trainControl(method = "repeatedcv",number = 9,repeats = 1)
titanic_forest <- train(Survived ~., data = up_train, method = "rf", trControl= ctrl)
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
## margin
## The following object is masked from 'package:dplyr':
##
## combine
# print output
titanic_forest
## Random Forest
##
## 680 samples
## 7 predictor
## 2 classes: '0', '1'
##
## No pre-processing
## Resampling: Cross-Validated (9 fold, repeated 1 times)
## Summary of sample sizes: 605, 605, 604, 604, 604, 604, ...
## Resampling results across tuning parameters:
##
## mtry Accuracy Kappa
## 2 0.8442105 0.6885230
## 4 0.8720663 0.7441567
## 7 0.8617349 0.7235618
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 4.
# model final yang digunakan (karena menggunakan k-fold cross validation)
titanic_forest$finalModel
##
## Call:
## randomForest(x = x, y = y, mtry = param$mtry)
## Type of random forest: classification
## Number of trees: 500
## No. of variables tried at each split: 4
##
## OOB estimate of error rate: 12.21%
## Confusion matrix:
## 0 1 class.error
## 0 300 40 0.1176471
## 1 43 297 0.1264706
# visualize model
plot(titanic_forest)
titanic_prediction <- predict(titanic_forest,up_val)
confusionMatrix(
titanic_prediction,
up_val$Survived,
positive = "1"
)
## Confusion Matrix and Statistics
##
## Reference
## Prediction 0 1
## 0 72 18
## 1 12 66
##
## Accuracy : 0.8214
## 95% CI : (0.755, 0.8762)
## No Information Rate : 0.5
## P-Value [Acc > NIR] : <2e-16
##
## Kappa : 0.6429
##
## Mcnemar's Test P-Value : 0.3613
##
## Sensitivity : 0.7857
## Specificity : 0.8571
## Pos Pred Value : 0.8462
## Neg Pred Value : 0.8000
## Prevalence : 0.5000
## Detection Rate : 0.3929
## Detection Prevalence : 0.4643
## Balanced Accuracy : 0.8214
##
## 'Positive' Class : 1
##
varImp(titanic_forest)
## rf variable importance
##
## Overall
## Sex 100.000
## Age 88.518
## Fare 80.041
## Cabin 33.420
## Pclass 21.289
## SibSp 8.774
## Parch 0.000
titantest<- read.csv("test.csv")
head(titantest)
## PassengerId Pclass Name Sex Age
## 1 892 3 Kelly, Mr. James male 34.5
## 2 893 3 Wilkes, Mrs. James (Ellen Needs) female 47.0
## 3 894 2 Myles, Mr. Thomas Francis male 62.0
## 4 895 3 Wirz, Mr. Albert male 27.0
## 5 896 3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0
## 6 897 3 Svensson, Mr. Johan Cervin male 14.0
## SibSp Parch Ticket Fare Cabin Embarked
## 1 0 0 330911 7.8292 Q
## 2 1 0 363272 7.0000 S
## 3 0 0 240276 9.6875 Q
## 4 0 0 315154 8.6625 S
## 5 1 1 3101298 12.2875 S
## 6 0 0 7538 9.2250 S
glimpse(titantest)
## Observations: 418
## Variables: 11
## $ PassengerId <int> 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, ...
## $ Pclass <int> 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 1, 1, 2, 1, 2, 2, 3, 3...
## $ Name <fct> "Kelly, Mr. James", "Wilkes, Mrs. James (Ellen Needs)",...
## $ Sex <fct> male, female, male, male, female, male, female, male, f...
## $ Age <dbl> 34.5, 47.0, 62.0, 27.0, 22.0, 14.0, 30.0, 26.0, 18.0, 2...
## $ SibSp <int> 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0, 1...
## $ Parch <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ Ticket <fct> 330911, 363272, 240276, 315154, 3101298, 7538, 330972, ...
## $ Fare <dbl> 7.8292, 7.0000, 9.6875, 8.6625, 12.2875, 9.2250, 7.6292...
## $ Cabin <fct> , , , , , , , , , , , , B45, , E31, , , , , , , , , , B...
## $ Embarked <fct> Q, S, Q, S, S, S, Q, S, C, S, S, S, S, S, S, C, Q, C, S...
titantest_clean<- titantest %>%
mutate(Sex=as.numeric(Sex)-1,
Cabin=as.numeric(Cabin)
) %>%
select(-Name,-Ticket,-Embarked,-PassengerId) %>%
na.omit()
glimpse(titantest_clean)
## Observations: 331
## Variables: 7
## $ Pclass <int> 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, ...
## $ Sex <dbl> 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, ...
## $ Age <dbl> 34.5, 47.0, 62.0, 27.0, 22.0, 14.0, 30.0, 26.0, 18.0, 21.0, ...
## $ SibSp <int> 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, ...
## $ Parch <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
## $ Fare <dbl> 7.8292, 7.0000, 9.6875, 8.6625, 12.2875, 9.2250, 7.6292, 29....
## $ Cabin <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 1, 62, 1, 1, 1, 1, 1, 1...
titantest_prediction <- predict(titanic_forest,titantest_clean)
titantest_clean %>%
mutate(Survived_pred=titantest_prediction)
## Pclass Sex Age SibSp Parch Fare Cabin Survived_pred
## 1 3 1 34.50 0 0 7.8292 1 0
## 2 3 0 47.00 1 0 7.0000 1 0
## 3 2 1 62.00 0 0 9.6875 1 1
## 4 3 1 27.00 0 0 8.6625 1 1
## 5 3 0 22.00 1 1 12.2875 1 0
## 6 3 1 14.00 0 0 9.2250 1 0
## 7 3 0 30.00 0 0 7.6292 1 1
## 8 2 1 26.00 1 1 29.0000 1 0
## 9 3 0 18.00 0 0 7.2292 1 1
## 10 3 1 21.00 2 0 24.1500 1 0
## 11 1 1 46.00 0 0 26.0000 1 0
## 12 1 0 23.00 1 0 82.2667 14 1
## 13 2 1 63.00 1 0 26.0000 1 0
## 14 1 0 47.00 1 0 61.1750 62 1
## 15 2 0 24.00 1 0 27.7208 1 1
## 16 2 1 35.00 0 0 12.3500 1 0
## 17 3 1 21.00 0 0 7.2250 1 0
## 18 3 0 27.00 1 0 7.9250 1 0
## 19 3 0 45.00 0 0 7.2250 1 1
## 20 1 1 55.00 1 0 59.4000 1 0
## 21 3 1 9.00 0 1 3.1708 1 1
## 22 1 1 21.00 0 1 61.3792 1 0
## 23 1 0 48.00 1 3 262.3750 17 1
## 24 3 1 50.00 1 0 14.5000 1 0
## 25 1 0 22.00 0 1 61.9792 12 1
## 26 3 1 22.50 0 0 7.2250 1 0
## 27 1 1 41.00 0 0 30.5000 4 0
## 28 2 1 50.00 1 0 26.0000 1 0
## 29 2 1 24.00 2 0 31.5000 1 0
## 30 3 0 33.00 1 2 20.5750 1 1
## 31 1 1 30.00 1 0 57.7500 43 0
## 32 3 1 18.50 0 0 7.2292 1 0
## 33 3 0 21.00 0 0 8.6625 1 0
## 34 3 1 25.00 0 0 9.5000 1 0
## 35 3 1 39.00 0 1 13.4167 1 0
## 36 3 1 41.00 0 0 7.8500 1 0
## 37 2 0 30.00 0 0 13.0000 1 1
## 38 1 0 45.00 1 0 52.5542 52 1
## 39 3 1 25.00 0 0 7.9250 1 0
## 40 1 1 45.00 0 0 29.7000 7 1
## 41 1 0 60.00 0 0 76.2917 51 1
## 42 3 0 36.00 0 2 15.9000 1 1
## 43 1 1 24.00 1 0 60.0000 32 1
## 44 2 1 27.00 0 0 15.0333 1 0
## 45 2 0 20.00 2 1 23.0000 1 1
## 46 1 0 28.00 3 2 263.0000 30 1
## 47 3 1 10.00 4 1 29.1250 1 0
## 48 3 1 35.00 0 0 7.8958 1 0
## 49 3 1 25.00 0 0 7.6500 73 0
## 50 1 0 36.00 0 0 262.3750 19 1
## 51 3 1 17.00 0 0 7.8958 1 0
## 52 2 1 32.00 0 0 13.5000 1 0
## 53 3 1 18.00 0 0 7.7500 1 0
## 54 3 0 22.00 0 0 7.7250 1 1
## 55 1 1 13.00 2 2 262.3750 17 1
## 56 3 0 18.00 0 0 7.8792 1 0
## 57 1 1 47.00 0 0 42.4000 1 0
## 58 1 1 31.00 0 0 28.5375 37 1
## 59 1 0 60.00 1 4 263.0000 30 1
## 60 3 0 24.00 0 0 7.7500 1 1
## 61 3 1 21.00 0 0 7.8958 1 0
## 62 3 0 29.00 0 0 7.9250 1 1
## 63 1 1 28.50 0 0 27.7208 61 1
## 64 1 0 35.00 0 0 211.5000 27 1
## 65 1 1 32.50 0 0 211.5000 28 1
## 66 1 0 55.00 2 0 25.7000 23 1
## 67 2 1 30.00 0 0 13.0000 1 0
## 68 3 0 24.00 0 0 7.7500 1 1
## 69 3 1 6.00 1 1 15.2458 1 1
## 70 1 1 67.00 1 0 221.7792 39 0
## 71 1 1 49.00 0 0 26.0000 1 0
## 72 3 0 27.00 0 0 7.8792 1 1
## 73 3 0 18.00 0 0 8.0500 1 1
## 74 2 1 2.00 1 1 23.0000 1 1
## 75 3 0 22.00 1 0 13.9000 1 0
## 76 1 0 27.00 1 2 52.0000 21 1
## 77 1 1 25.00 0 0 26.0000 1 0
## 78 3 1 25.00 0 0 7.7958 1 0
## 79 1 0 76.00 1 0 78.8500 35 1
## 80 3 1 29.00 0 0 7.9250 1 0
## 81 3 0 20.00 0 0 7.8542 1 0
## 82 3 1 33.00 0 0 8.0500 1 0
## 83 1 0 43.00 1 0 55.4417 26 1
## 84 2 1 27.00 1 0 26.0000 1 0
## 85 3 1 26.00 0 0 7.7750 1 0
## 86 3 0 16.00 1 1 8.5167 1 1
## 87 3 1 28.00 0 0 22.5250 1 0
## 88 3 1 21.00 0 0 7.8208 1 0
## 89 2 1 18.50 0 0 13.0000 70 0
## 90 2 1 41.00 0 0 15.0458 1 0
## 91 1 0 36.00 0 0 31.6792 5 1
## 92 3 0 18.50 0 0 7.2833 1 1
## 93 1 0 63.00 1 0 221.7792 39 1
## 94 3 1 18.00 1 0 14.4542 1 0
## 95 3 0 1.00 1 1 16.7000 77 1
## 96 1 1 36.00 0 0 75.2417 40 0
## 97 2 0 29.00 1 0 26.0000 1 1
## 98 2 0 12.00 0 0 15.7500 1 1
## 99 1 0 35.00 1 0 57.7500 31 1
## 100 3 1 28.00 0 0 7.2500 1 0
## 101 3 0 17.00 0 1 16.1000 1 0
## 102 3 1 22.00 0 0 7.7958 1 0
## 103 2 1 42.00 0 0 13.0000 1 0
## 104 3 1 24.00 0 0 8.0500 1 0
## 105 3 1 32.00 0 0 8.0500 1 0
## 106 1 1 53.00 0 0 28.5000 36 1
## 107 3 1 43.00 0 0 7.8958 1 0
## 108 3 1 24.00 0 0 7.8542 1 0
## 109 3 1 26.50 0 0 7.2250 1 0
## 110 2 1 26.00 0 0 13.0000 1 0
## 111 3 0 23.00 0 0 8.0500 1 0
## 112 3 1 40.00 1 6 46.9000 1 0
## 113 3 0 10.00 5 2 46.9000 1 0
## 114 1 0 33.00 0 0 151.5500 1 1
## 115 1 1 61.00 1 3 262.3750 17 0
## 116 2 1 28.00 0 0 26.0000 1 0
## 117 1 1 42.00 0 0 26.5500 1 1
## 118 3 1 31.00 3 0 18.0000 1 0
## 119 3 1 22.00 0 0 8.0500 1 0
## 120 2 1 30.00 1 1 26.0000 1 0
## 121 1 0 23.00 0 1 83.1583 38 1
## 122 3 0 36.00 0 2 12.1833 1 1
## 123 3 1 13.00 4 2 31.3875 1 0
## 124 3 1 24.00 0 0 7.5500 1 0
## 125 1 0 29.00 0 0 221.7792 48 1
## 126 3 0 23.00 0 0 7.8542 1 0
## 127 1 1 42.00 0 0 26.5500 54 1
## 128 3 0 26.00 0 2 13.7750 1 1
## 129 3 1 7.00 1 1 15.2458 1 1
## 130 2 0 26.00 0 0 13.5000 1 1
## 131 2 1 41.00 0 0 13.0000 1 0
## 132 3 0 26.00 1 1 22.0250 1 0
## 133 1 1 48.00 0 0 50.4958 8 1
## 134 3 1 18.00 2 2 34.3750 1 0
## 135 3 0 22.00 0 0 8.9625 1 0
## 136 3 1 27.00 0 0 7.2250 1 1
## 137 3 1 23.00 1 0 13.9000 1 0
## 138 3 1 40.00 1 5 31.3875 1 0
## 139 2 0 15.00 0 2 39.0000 1 1
## 140 2 0 20.00 0 0 36.7500 1 1
## 141 1 1 54.00 1 0 55.4417 26 0
## 142 2 0 36.00 0 3 39.0000 76 1
## 143 1 0 64.00 0 2 83.1583 65 1
## 144 2 1 30.00 0 0 13.0000 1 0
## 145 1 1 37.00 1 1 83.1583 68 0
## 146 1 0 18.00 1 0 53.1000 56 1
## 147 1 0 27.00 1 1 247.5208 18 1
## 148 2 1 40.00 0 0 16.0000 1 0
## 149 2 0 21.00 0 1 21.0000 1 1
## 150 3 1 17.00 2 0 8.0500 1 0
## 151 2 1 40.00 0 0 13.0000 1 0
## 152 2 1 34.00 1 0 26.0000 1 0
## 153 3 1 11.50 1 1 14.5000 1 1
## 154 2 1 61.00 0 0 12.3500 1 0
## 155 2 1 8.00 0 2 32.5000 1 1
## 156 3 1 33.00 0 0 7.8542 1 0
## 157 1 1 6.00 0 2 134.5000 63 1
## 158 3 0 18.00 0 0 7.7750 1 0
## 159 2 1 23.00 0 0 10.5000 1 0
## 160 3 1 0.33 0 2 14.4000 1 1
## 161 1 1 47.00 1 0 227.5250 41 0
## 162 2 0 8.00 1 1 26.0000 1 1
## 163 2 1 25.00 0 0 10.5000 1 0
## 164 3 0 35.00 0 0 7.7500 1 1
## 165 2 1 24.00 0 0 10.5000 1 0
## 166 1 0 33.00 0 0 27.7208 2 1
## 167 3 1 25.00 0 0 7.8958 1 0
## 168 3 1 32.00 0 0 22.5250 1 0
## 169 2 1 17.00 0 0 73.5000 1 0
## 170 2 0 60.00 1 0 26.0000 1 1
## 171 3 0 38.00 4 2 7.7750 1 1
## 172 1 1 42.00 0 0 42.5000 9 1
## 173 1 1 57.00 1 1 164.8667 1 0
## 174 1 0 50.00 1 1 211.5000 44 1
## 175 2 0 30.00 1 0 13.8583 1 1
## 176 3 1 21.00 0 0 8.0500 1 0
## 177 2 0 22.00 0 0 10.5000 75 1
## 178 3 1 21.00 0 0 7.7958 1 0
## 179 1 0 53.00 0 0 27.4458 1 1
## 180 3 1 23.00 0 0 7.7958 1 0
## 181 3 1 40.50 0 0 15.1000 1 0
## 182 2 1 36.00 0 0 13.0000 1 0
## 183 2 1 14.00 0 0 65.0000 1 0
## 184 1 0 21.00 0 0 26.5500 1 1
## 185 3 1 21.00 1 0 6.4958 1 0
## 186 1 1 39.00 1 0 71.2833 45 0
## 187 3 1 20.00 0 0 7.8542 1 0
## 188 1 1 64.00 1 0 75.2500 58 0
## 189 3 1 20.00 0 0 7.2250 1 1
## 190 2 0 18.00 1 1 13.0000 1 1
## 191 1 0 48.00 1 0 106.4250 46 1
## 192 1 0 55.00 0 0 27.7208 1 1
## 193 2 0 45.00 0 2 30.0000 1 1
## 194 1 1 45.00 1 1 134.5000 63 0
## 195 1 1 41.00 1 0 51.8625 53 0
## 196 2 0 22.00 0 0 21.0000 1 1
## 197 2 1 42.00 1 1 32.5000 1 0
## 198 2 0 29.00 1 0 26.0000 1 1
## 199 2 0 0.92 1 2 27.7500 1 1
## 200 3 1 20.00 0 0 7.9250 1 0
## 201 1 1 27.00 1 0 136.7792 47 0
## 202 3 1 24.00 0 0 9.3250 1 0
## 203 3 1 32.50 0 0 9.5000 1 0
## 204 3 1 28.00 0 0 8.0500 1 0
## 205 2 0 19.00 0 0 13.0000 1 1
## 206 3 1 21.00 0 0 7.7750 1 0
## 207 3 1 36.50 1 0 17.4000 1 0
## 208 3 1 21.00 0 0 7.8542 1 0
## 209 2 0 29.00 0 2 23.0000 1 1
## 210 3 0 1.00 1 1 12.1833 1 1
## 211 2 1 30.00 0 0 12.7375 1 0
## 212 3 1 17.00 0 0 8.6625 1 0
## 213 1 1 46.00 0 0 75.2417 40 0
## 214 1 0 26.00 1 0 136.7792 47 1
## 215 2 0 20.00 1 0 26.0000 1 1
## 216 2 1 28.00 0 0 10.5000 1 0
## 217 2 1 40.00 1 0 26.0000 1 0
## 218 2 1 30.00 1 0 21.0000 1 0
## 219 2 1 22.00 0 0 10.5000 1 0
## 220 3 0 23.00 0 0 8.6625 1 0
## 221 3 1 0.75 1 1 13.7750 1 1
## 222 3 0 9.00 1 1 15.2458 1 1
## 223 3 0 2.00 1 1 20.2125 1 1
## 224 3 1 36.00 0 0 7.2500 1 0
## 225 1 1 24.00 1 0 82.2667 14 1
## 226 3 0 30.00 0 0 6.9500 1 1
## 227 1 1 53.00 1 1 81.8583 6 1
## 228 3 1 36.00 0 0 9.5000 1 0
## 229 3 1 26.00 0 0 7.8958 1 0
## 230 2 0 1.00 1 2 41.5792 1 1
## 231 1 1 30.00 0 0 45.5000 1 0
## 232 3 1 29.00 0 0 7.8542 1 0
## 233 3 1 32.00 0 0 7.7750 1 0
## 234 2 1 43.00 0 1 21.0000 1 0
## 235 3 1 24.00 0 0 8.6625 1 0
## 236 1 0 64.00 1 1 26.5500 11 1
## 237 1 1 30.00 1 2 151.5500 29 1
## 238 3 1 0.83 0 1 9.3500 1 1
## 239 1 1 55.00 1 1 93.5000 20 0
## 240 3 0 45.00 1 0 14.1083 1 0
## 241 3 1 18.00 0 0 8.6625 1 0
## 242 3 1 22.00 0 0 7.2250 1 0
## 243 3 0 37.00 0 0 7.7500 1 1
## 244 1 0 55.00 0 0 135.6333 33 1
## 245 3 0 17.00 0 0 7.7333 1 1
## 246 1 1 57.00 1 0 146.5208 22 0
## 247 2 1 19.00 0 0 10.5000 1 0
## 248 3 1 27.00 0 0 7.8542 1 0
## 249 2 1 22.00 2 0 31.5000 1 0
## 250 3 1 26.00 0 0 7.7750 1 0
## 251 3 1 25.00 0 0 7.2292 72 0
## 252 2 1 26.00 0 0 13.0000 74 1
## 253 1 1 33.00 0 0 26.5500 1 1
## 254 1 0 39.00 0 0 211.3375 1 1
## 255 3 1 23.00 0 0 7.0500 1 0
## 256 2 0 12.00 2 1 39.0000 76 1
## 257 1 1 46.00 0 0 79.2000 1 0
## 258 2 1 29.00 1 0 26.0000 1 0
## 259 2 1 21.00 0 0 13.0000 1 0
## 260 2 0 48.00 0 2 36.7500 1 1
## 261 1 1 39.00 0 0 29.7000 3 0
## 262 3 0 19.00 1 1 15.7417 1 0
## 263 3 1 27.00 0 0 7.8958 1 0
## 264 1 1 30.00 0 0 26.0000 25 1
## 265 2 1 32.00 0 0 13.0000 1 0
## 266 3 1 39.00 0 2 7.2292 1 0
## 267 2 1 25.00 0 0 31.5000 1 0
## 268 2 1 18.00 0 0 10.5000 1 0
## 269 3 1 32.00 0 0 7.5792 1 0
## 270 1 0 58.00 0 1 512.3292 15 1
## 271 3 0 16.00 0 0 7.6500 1 1
## 272 2 1 26.00 0 0 13.0000 1 0
## 273 3 0 38.00 0 0 7.2292 1 1
## 274 2 1 24.00 0 0 13.5000 1 0
## 275 2 0 31.00 0 0 21.0000 1 1
## 276 1 0 45.00 0 1 63.3583 50 1
## 277 2 1 25.00 0 0 10.5000 1 0
## 278 2 1 18.00 0 0 73.5000 1 0
## 279 2 1 49.00 1 2 65.0000 1 0
## 280 3 0 0.17 1 2 20.5750 1 1
## 281 1 1 50.00 0 0 26.0000 69 1
## 282 1 0 59.00 2 0 51.4792 23 1
## 283 3 0 30.00 1 0 15.5500 1 0
## 284 3 1 14.50 8 2 69.5500 1 0
## 285 2 0 24.00 1 1 37.0042 1 1
## 286 2 0 31.00 0 0 21.0000 1 1
## 287 3 1 27.00 0 0 8.6625 1 1
## 288 1 0 25.00 1 0 55.4417 67 1
## 289 3 0 22.00 0 0 39.6875 1 0
## 290 1 0 45.00 0 1 59.4000 1 1
## 291 2 1 29.00 0 0 13.8583 1 0
## 292 2 1 21.00 1 0 11.5000 1 0
## 293 1 0 31.00 0 0 134.5000 64 1
## 294 1 1 49.00 0 0 0.0000 16 0
## 295 2 1 44.00 0 0 13.0000 1 0
## 296 1 0 54.00 1 1 81.8583 6 1
## 297 1 0 45.00 0 0 262.3750 1 1
## 298 3 0 22.00 2 0 8.6625 1 0
## 299 2 1 21.00 0 0 11.5000 1 0
## 300 1 1 55.00 0 0 50.0000 34 0
## 301 3 1 5.00 4 2 31.3875 1 0
## 302 3 1 26.00 0 0 7.8792 1 0
## 303 3 0 19.00 1 0 16.1000 1 0
## 304 2 0 24.00 1 2 65.0000 1 1
## 305 3 1 24.00 0 0 7.7750 1 0
## 306 2 1 57.00 0 0 13.0000 1 0
## 307 3 1 21.00 0 0 7.7500 1 0
## 308 3 1 6.00 3 1 21.0750 1 0
## 309 1 1 23.00 0 0 93.5000 10 1
## 310 1 0 51.00 0 1 39.4000 55 1
## 311 3 1 13.00 0 2 20.2500 1 1
## 312 2 1 47.00 0 0 10.5000 1 0
## 313 3 1 29.00 3 1 22.0250 1 0
## 314 1 0 18.00 1 0 60.0000 32 1
## 315 3 1 24.00 0 0 7.2500 1 0
## 316 1 0 48.00 1 1 79.2000 13 1
## 317 3 1 22.00 0 0 7.7750 1 0
## 318 3 1 31.00 0 0 7.7333 1 0
## 319 1 0 30.00 0 0 164.8667 42 1
## 320 2 1 38.00 1 0 21.0000 1 0
## 321 1 0 22.00 0 1 59.4000 1 1
## 322 1 1 17.00 0 0 47.1000 1 0
## 323 1 1 43.00 1 0 27.7208 60 0
## 324 2 1 20.00 0 0 13.8625 59 0
## 325 2 1 23.00 1 0 10.5000 1 0
## 326 1 1 50.00 1 1 211.5000 44 0
## 327 3 0 3.00 1 1 13.7750 1 1
## 328 1 0 37.00 1 0 90.0000 43 1
## 329 3 0 28.00 0 0 7.7750 1 1
## 330 1 0 39.00 0 0 108.9000 24 1
## 331 3 1 38.50 0 0 7.2500 1 0