Overview

Berikut ini adalah report yang menjelaskan prediksi tingkat survival penumpang, ketika terjadinya peristiwa karamnya Titanic.

library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(rsample)
## Loading required package: tidyr
library(tm)
## Loading required package: NLP
library(tidyverse)
## -- Attaching packages --------------------------------------------------------------- tidyverse 1.3.0 --
## v ggplot2 3.2.1     v purrr   0.3.3
## v tibble  2.1.3     v stringr 1.4.0
## v readr   1.3.1     v forcats 0.4.0
## -- Conflicts ------------------------------------------------------------------ tidyverse_conflicts() --
## x ggplot2::annotate() masks NLP::annotate()
## x dplyr::filter()     masks stats::filter()
## x dplyr::lag()        masks stats::lag()
library(e1071)
library(caret)
## Loading required package: lattice
## 
## Attaching package: 'caret'
## The following object is masked from 'package:purrr':
## 
##     lift

Data Preparation

  1. Read Data
titanic<- read.csv("train.csv")
head(titanic)
##   PassengerId Survived Pclass
## 1           1        0      3
## 2           2        1      1
## 3           3        1      3
## 4           4        1      1
## 5           5        0      3
## 6           6        0      3
##                                                  Name    Sex Age SibSp Parch
## 1                             Braund, Mr. Owen Harris   male  22     1     0
## 2 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female  38     1     0
## 3                              Heikkinen, Miss. Laina female  26     0     0
## 4        Futrelle, Mrs. Jacques Heath (Lily May Peel) female  35     1     0
## 5                            Allen, Mr. William Henry   male  35     0     0
## 6                                    Moran, Mr. James   male  NA     0     0
##             Ticket    Fare Cabin Embarked
## 1        A/5 21171  7.2500              S
## 2         PC 17599 71.2833   C85        C
## 3 STON/O2. 3101282  7.9250              S
## 4           113803 53.1000  C123        S
## 5           373450  8.0500              S
## 6           330877  8.4583              Q
glimpse(titanic)
## Observations: 891
## Variables: 12
## $ PassengerId <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, ...
## $ Survived    <int> 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0...
## $ Pclass      <int> 3, 1, 3, 1, 3, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 2, 3...
## $ Name        <fct> "Braund, Mr. Owen Harris", "Cumings, Mrs. John Bradley ...
## $ Sex         <fct> male, female, female, female, male, male, male, male, f...
## $ Age         <dbl> 22, 38, 26, 35, 35, NA, 54, 2, 27, 14, 4, 58, 20, 39, 1...
## $ SibSp       <int> 1, 1, 0, 1, 0, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4, 0, 1...
## $ Parch       <int> 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0...
## $ Ticket      <fct> A/5 21171, PC 17599, STON/O2. 3101282, 113803, 373450, ...
## $ Fare        <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 8.4583, 51.86...
## $ Cabin       <fct> , C85, , C123, , , E46, , , , G6, C103, , , , , , , , ,...
## $ Embarked    <fct> S, C, S, S, S, Q, S, S, S, C, S, S, S, S, S, S, Q, S, S...
  1. Membuang variabel yang tidak perlu, mengubah tipe data salah satunya “Sex” dimana male menjadi 1 dan female menjadi 0 dan seterusnya
titanic_clean<- titanic %>% 
  mutate(Survived=as.factor(Survived),
         Sex=as.numeric(Sex)-1,
         Cabin=as.numeric(Cabin)       
         ) %>%
  select(-Name,-Ticket,-Embarked,-PassengerId) %>% 
  na.omit()

glimpse(titanic_clean)
## Observations: 714
## Variables: 8
## $ Survived <fct> 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1...
## $ Pclass   <int> 3, 1, 3, 1, 3, 1, 3, 3, 2, 3, 1, 3, 3, 3, 2, 3, 3, 2, 2, 3...
## $ Sex      <dbl> 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0...
## $ Age      <dbl> 22, 38, 26, 35, 35, 54, 2, 27, 14, 4, 58, 20, 39, 14, 55, ...
## $ SibSp    <int> 1, 1, 0, 1, 0, 0, 3, 0, 1, 1, 0, 0, 1, 0, 0, 4, 1, 0, 0, 0...
## $ Parch    <int> 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 0, 5, 0, 0, 1, 0, 0, 0, 0...
## $ Fare     <dbl> 7.2500, 71.2833, 7.9250, 53.1000, 8.0500, 51.8625, 21.0750...
## $ Cabin    <dbl> 1, 83, 1, 57, 1, 131, 1, 1, 1, 147, 51, 1, 1, 1, 1, 1, 1, ...
  1. Mengetahu proporsi level target
prop.table(table(titanic$Survived))
## 
##         0         1 
## 0.6161616 0.3838384
  1. Melakukan subsampling pada data imbalance
titanic_up <- upSample(x =titanic_clean[,-1],y = titanic_clean$Survived,yname = "Survived")
prop.table(table(titanic_up$Survived))
## 
##   0   1 
## 0.5 0.5

Melakukan cross validation (80% : 30%)

  1. Cross Validasi
library(rsample)

set.seed(100)
splitted <- initial_split(data = titanic_up, prop = 0.80, strata = "Survived")
up_train <- training(splitted)
up_val <- testing(splitted)
  1. Mengecek proporsi kelas target
prop.table(table(up_train$Survived))
## 
##   0   1 
## 0.5 0.5

Membuat model random forest menggunakan data train dengan menerapkan k-fold cross validation

  1. Menentukan trControl
set.seed(417)
ctrl <- trainControl(method = "repeatedcv",number = 9,repeats = 1)
  1. Membuat Model
titanic_forest <- train(Survived ~., data = up_train, method = "rf", trControl= ctrl)

Inspect model random forest

library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
## 
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
## 
##     margin
## The following object is masked from 'package:dplyr':
## 
##     combine
# print output 
titanic_forest
## Random Forest 
## 
## 680 samples
##   7 predictor
##   2 classes: '0', '1' 
## 
## No pre-processing
## Resampling: Cross-Validated (9 fold, repeated 1 times) 
## Summary of sample sizes: 605, 605, 604, 604, 604, 604, ... 
## Resampling results across tuning parameters:
## 
##   mtry  Accuracy   Kappa    
##   2     0.8442105  0.6885230
##   4     0.8720663  0.7441567
##   7     0.8617349  0.7235618
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 4.
# model final yang digunakan (karena menggunakan k-fold cross validation)
titanic_forest$finalModel
## 
## Call:
##  randomForest(x = x, y = y, mtry = param$mtry) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 4
## 
##         OOB estimate of  error rate: 12.21%
## Confusion matrix:
##     0   1 class.error
## 0 300  40   0.1176471
## 1  43 297   0.1264706
# visualize model
plot(titanic_forest)

Melakukan prediksi dengan data validasi

titanic_prediction <- predict(titanic_forest,up_val)

Mengevaluasi model random forest

confusionMatrix(
  titanic_prediction,
  up_val$Survived,
  positive = "1"
)
## Confusion Matrix and Statistics
## 
##           Reference
## Prediction  0  1
##          0 72 18
##          1 12 66
##                                          
##                Accuracy : 0.8214         
##                  95% CI : (0.755, 0.8762)
##     No Information Rate : 0.5            
##     P-Value [Acc > NIR] : <2e-16         
##                                          
##                   Kappa : 0.6429         
##                                          
##  Mcnemar's Test P-Value : 0.3613         
##                                          
##             Sensitivity : 0.7857         
##             Specificity : 0.8571         
##          Pos Pred Value : 0.8462         
##          Neg Pred Value : 0.8000         
##              Prevalence : 0.5000         
##          Detection Rate : 0.3929         
##    Detection Prevalence : 0.4643         
##       Balanced Accuracy : 0.8214         
##                                          
##        'Positive' Class : 1              
## 

Mengetahui faktor yang paling berpengaruh terhadap prediksi menggunakan varimp

varImp(titanic_forest)
## rf variable importance
## 
##        Overall
## Sex    100.000
## Age     88.518
## Fare    80.041
## Cabin   33.420
## Pclass  21.289
## SibSp    8.774
## Parch    0.000

Prediksi menggunakan data test

  1. Read Data
titantest<- read.csv("test.csv")
head(titantest)
##   PassengerId Pclass                                         Name    Sex  Age
## 1         892      3                             Kelly, Mr. James   male 34.5
## 2         893      3             Wilkes, Mrs. James (Ellen Needs) female 47.0
## 3         894      2                    Myles, Mr. Thomas Francis   male 62.0
## 4         895      3                             Wirz, Mr. Albert   male 27.0
## 5         896      3 Hirvonen, Mrs. Alexander (Helga E Lindqvist) female 22.0
## 6         897      3                   Svensson, Mr. Johan Cervin   male 14.0
##   SibSp Parch  Ticket    Fare Cabin Embarked
## 1     0     0  330911  7.8292              Q
## 2     1     0  363272  7.0000              S
## 3     0     0  240276  9.6875              Q
## 4     0     0  315154  8.6625              S
## 5     1     1 3101298 12.2875              S
## 6     0     0    7538  9.2250              S
  1. Data Preparation
glimpse(titantest)
## Observations: 418
## Variables: 11
## $ PassengerId <int> 892, 893, 894, 895, 896, 897, 898, 899, 900, 901, 902, ...
## $ Pclass      <int> 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 1, 1, 2, 1, 2, 2, 3, 3...
## $ Name        <fct> "Kelly, Mr. James", "Wilkes, Mrs. James (Ellen Needs)",...
## $ Sex         <fct> male, female, male, male, female, male, female, male, f...
## $ Age         <dbl> 34.5, 47.0, 62.0, 27.0, 22.0, 14.0, 30.0, 26.0, 18.0, 2...
## $ SibSp       <int> 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0, 1...
## $ Parch       <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0...
## $ Ticket      <fct> 330911, 363272, 240276, 315154, 3101298, 7538, 330972, ...
## $ Fare        <dbl> 7.8292, 7.0000, 9.6875, 8.6625, 12.2875, 9.2250, 7.6292...
## $ Cabin       <fct> , , , , , , , , , , , , B45, , E31, , , , , , , , , , B...
## $ Embarked    <fct> Q, S, Q, S, S, S, Q, S, C, S, S, S, S, S, S, C, Q, C, S...
titantest_clean<- titantest %>% 
  mutate(Sex=as.numeric(Sex)-1,
         Cabin=as.numeric(Cabin)       
         ) %>%
  select(-Name,-Ticket,-Embarked,-PassengerId) %>% 
  na.omit()

glimpse(titantest_clean)
## Observations: 331
## Variables: 7
## $ Pclass <int> 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 1, 1, 2, 1, 2, 2, 3, 3, 3, 1, ...
## $ Sex    <dbl> 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, ...
## $ Age    <dbl> 34.5, 47.0, 62.0, 27.0, 22.0, 14.0, 30.0, 26.0, 18.0, 21.0, ...
## $ SibSp  <int> 0, 1, 0, 0, 1, 0, 0, 1, 0, 2, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, ...
## $ Parch  <int> 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
## $ Fare   <dbl> 7.8292, 7.0000, 9.6875, 8.6625, 12.2875, 9.2250, 7.6292, 29....
## $ Cabin  <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 1, 62, 1, 1, 1, 1, 1, 1...
  1. Melakukan prediksi
titantest_prediction <- predict(titanic_forest,titantest_clean)
titantest_clean %>% 
  mutate(Survived_pred=titantest_prediction)
##     Pclass Sex   Age SibSp Parch     Fare Cabin Survived_pred
## 1        3   1 34.50     0     0   7.8292     1             0
## 2        3   0 47.00     1     0   7.0000     1             0
## 3        2   1 62.00     0     0   9.6875     1             1
## 4        3   1 27.00     0     0   8.6625     1             1
## 5        3   0 22.00     1     1  12.2875     1             0
## 6        3   1 14.00     0     0   9.2250     1             0
## 7        3   0 30.00     0     0   7.6292     1             1
## 8        2   1 26.00     1     1  29.0000     1             0
## 9        3   0 18.00     0     0   7.2292     1             1
## 10       3   1 21.00     2     0  24.1500     1             0
## 11       1   1 46.00     0     0  26.0000     1             0
## 12       1   0 23.00     1     0  82.2667    14             1
## 13       2   1 63.00     1     0  26.0000     1             0
## 14       1   0 47.00     1     0  61.1750    62             1
## 15       2   0 24.00     1     0  27.7208     1             1
## 16       2   1 35.00     0     0  12.3500     1             0
## 17       3   1 21.00     0     0   7.2250     1             0
## 18       3   0 27.00     1     0   7.9250     1             0
## 19       3   0 45.00     0     0   7.2250     1             1
## 20       1   1 55.00     1     0  59.4000     1             0
## 21       3   1  9.00     0     1   3.1708     1             1
## 22       1   1 21.00     0     1  61.3792     1             0
## 23       1   0 48.00     1     3 262.3750    17             1
## 24       3   1 50.00     1     0  14.5000     1             0
## 25       1   0 22.00     0     1  61.9792    12             1
## 26       3   1 22.50     0     0   7.2250     1             0
## 27       1   1 41.00     0     0  30.5000     4             0
## 28       2   1 50.00     1     0  26.0000     1             0
## 29       2   1 24.00     2     0  31.5000     1             0
## 30       3   0 33.00     1     2  20.5750     1             1
## 31       1   1 30.00     1     0  57.7500    43             0
## 32       3   1 18.50     0     0   7.2292     1             0
## 33       3   0 21.00     0     0   8.6625     1             0
## 34       3   1 25.00     0     0   9.5000     1             0
## 35       3   1 39.00     0     1  13.4167     1             0
## 36       3   1 41.00     0     0   7.8500     1             0
## 37       2   0 30.00     0     0  13.0000     1             1
## 38       1   0 45.00     1     0  52.5542    52             1
## 39       3   1 25.00     0     0   7.9250     1             0
## 40       1   1 45.00     0     0  29.7000     7             1
## 41       1   0 60.00     0     0  76.2917    51             1
## 42       3   0 36.00     0     2  15.9000     1             1
## 43       1   1 24.00     1     0  60.0000    32             1
## 44       2   1 27.00     0     0  15.0333     1             0
## 45       2   0 20.00     2     1  23.0000     1             1
## 46       1   0 28.00     3     2 263.0000    30             1
## 47       3   1 10.00     4     1  29.1250     1             0
## 48       3   1 35.00     0     0   7.8958     1             0
## 49       3   1 25.00     0     0   7.6500    73             0
## 50       1   0 36.00     0     0 262.3750    19             1
## 51       3   1 17.00     0     0   7.8958     1             0
## 52       2   1 32.00     0     0  13.5000     1             0
## 53       3   1 18.00     0     0   7.7500     1             0
## 54       3   0 22.00     0     0   7.7250     1             1
## 55       1   1 13.00     2     2 262.3750    17             1
## 56       3   0 18.00     0     0   7.8792     1             0
## 57       1   1 47.00     0     0  42.4000     1             0
## 58       1   1 31.00     0     0  28.5375    37             1
## 59       1   0 60.00     1     4 263.0000    30             1
## 60       3   0 24.00     0     0   7.7500     1             1
## 61       3   1 21.00     0     0   7.8958     1             0
## 62       3   0 29.00     0     0   7.9250     1             1
## 63       1   1 28.50     0     0  27.7208    61             1
## 64       1   0 35.00     0     0 211.5000    27             1
## 65       1   1 32.50     0     0 211.5000    28             1
## 66       1   0 55.00     2     0  25.7000    23             1
## 67       2   1 30.00     0     0  13.0000     1             0
## 68       3   0 24.00     0     0   7.7500     1             1
## 69       3   1  6.00     1     1  15.2458     1             1
## 70       1   1 67.00     1     0 221.7792    39             0
## 71       1   1 49.00     0     0  26.0000     1             0
## 72       3   0 27.00     0     0   7.8792     1             1
## 73       3   0 18.00     0     0   8.0500     1             1
## 74       2   1  2.00     1     1  23.0000     1             1
## 75       3   0 22.00     1     0  13.9000     1             0
## 76       1   0 27.00     1     2  52.0000    21             1
## 77       1   1 25.00     0     0  26.0000     1             0
## 78       3   1 25.00     0     0   7.7958     1             0
## 79       1   0 76.00     1     0  78.8500    35             1
## 80       3   1 29.00     0     0   7.9250     1             0
## 81       3   0 20.00     0     0   7.8542     1             0
## 82       3   1 33.00     0     0   8.0500     1             0
## 83       1   0 43.00     1     0  55.4417    26             1
## 84       2   1 27.00     1     0  26.0000     1             0
## 85       3   1 26.00     0     0   7.7750     1             0
## 86       3   0 16.00     1     1   8.5167     1             1
## 87       3   1 28.00     0     0  22.5250     1             0
## 88       3   1 21.00     0     0   7.8208     1             0
## 89       2   1 18.50     0     0  13.0000    70             0
## 90       2   1 41.00     0     0  15.0458     1             0
## 91       1   0 36.00     0     0  31.6792     5             1
## 92       3   0 18.50     0     0   7.2833     1             1
## 93       1   0 63.00     1     0 221.7792    39             1
## 94       3   1 18.00     1     0  14.4542     1             0
## 95       3   0  1.00     1     1  16.7000    77             1
## 96       1   1 36.00     0     0  75.2417    40             0
## 97       2   0 29.00     1     0  26.0000     1             1
## 98       2   0 12.00     0     0  15.7500     1             1
## 99       1   0 35.00     1     0  57.7500    31             1
## 100      3   1 28.00     0     0   7.2500     1             0
## 101      3   0 17.00     0     1  16.1000     1             0
## 102      3   1 22.00     0     0   7.7958     1             0
## 103      2   1 42.00     0     0  13.0000     1             0
## 104      3   1 24.00     0     0   8.0500     1             0
## 105      3   1 32.00     0     0   8.0500     1             0
## 106      1   1 53.00     0     0  28.5000    36             1
## 107      3   1 43.00     0     0   7.8958     1             0
## 108      3   1 24.00     0     0   7.8542     1             0
## 109      3   1 26.50     0     0   7.2250     1             0
## 110      2   1 26.00     0     0  13.0000     1             0
## 111      3   0 23.00     0     0   8.0500     1             0
## 112      3   1 40.00     1     6  46.9000     1             0
## 113      3   0 10.00     5     2  46.9000     1             0
## 114      1   0 33.00     0     0 151.5500     1             1
## 115      1   1 61.00     1     3 262.3750    17             0
## 116      2   1 28.00     0     0  26.0000     1             0
## 117      1   1 42.00     0     0  26.5500     1             1
## 118      3   1 31.00     3     0  18.0000     1             0
## 119      3   1 22.00     0     0   8.0500     1             0
## 120      2   1 30.00     1     1  26.0000     1             0
## 121      1   0 23.00     0     1  83.1583    38             1
## 122      3   0 36.00     0     2  12.1833     1             1
## 123      3   1 13.00     4     2  31.3875     1             0
## 124      3   1 24.00     0     0   7.5500     1             0
## 125      1   0 29.00     0     0 221.7792    48             1
## 126      3   0 23.00     0     0   7.8542     1             0
## 127      1   1 42.00     0     0  26.5500    54             1
## 128      3   0 26.00     0     2  13.7750     1             1
## 129      3   1  7.00     1     1  15.2458     1             1
## 130      2   0 26.00     0     0  13.5000     1             1
## 131      2   1 41.00     0     0  13.0000     1             0
## 132      3   0 26.00     1     1  22.0250     1             0
## 133      1   1 48.00     0     0  50.4958     8             1
## 134      3   1 18.00     2     2  34.3750     1             0
## 135      3   0 22.00     0     0   8.9625     1             0
## 136      3   1 27.00     0     0   7.2250     1             1
## 137      3   1 23.00     1     0  13.9000     1             0
## 138      3   1 40.00     1     5  31.3875     1             0
## 139      2   0 15.00     0     2  39.0000     1             1
## 140      2   0 20.00     0     0  36.7500     1             1
## 141      1   1 54.00     1     0  55.4417    26             0
## 142      2   0 36.00     0     3  39.0000    76             1
## 143      1   0 64.00     0     2  83.1583    65             1
## 144      2   1 30.00     0     0  13.0000     1             0
## 145      1   1 37.00     1     1  83.1583    68             0
## 146      1   0 18.00     1     0  53.1000    56             1
## 147      1   0 27.00     1     1 247.5208    18             1
## 148      2   1 40.00     0     0  16.0000     1             0
## 149      2   0 21.00     0     1  21.0000     1             1
## 150      3   1 17.00     2     0   8.0500     1             0
## 151      2   1 40.00     0     0  13.0000     1             0
## 152      2   1 34.00     1     0  26.0000     1             0
## 153      3   1 11.50     1     1  14.5000     1             1
## 154      2   1 61.00     0     0  12.3500     1             0
## 155      2   1  8.00     0     2  32.5000     1             1
## 156      3   1 33.00     0     0   7.8542     1             0
## 157      1   1  6.00     0     2 134.5000    63             1
## 158      3   0 18.00     0     0   7.7750     1             0
## 159      2   1 23.00     0     0  10.5000     1             0
## 160      3   1  0.33     0     2  14.4000     1             1
## 161      1   1 47.00     1     0 227.5250    41             0
## 162      2   0  8.00     1     1  26.0000     1             1
## 163      2   1 25.00     0     0  10.5000     1             0
## 164      3   0 35.00     0     0   7.7500     1             1
## 165      2   1 24.00     0     0  10.5000     1             0
## 166      1   0 33.00     0     0  27.7208     2             1
## 167      3   1 25.00     0     0   7.8958     1             0
## 168      3   1 32.00     0     0  22.5250     1             0
## 169      2   1 17.00     0     0  73.5000     1             0
## 170      2   0 60.00     1     0  26.0000     1             1
## 171      3   0 38.00     4     2   7.7750     1             1
## 172      1   1 42.00     0     0  42.5000     9             1
## 173      1   1 57.00     1     1 164.8667     1             0
## 174      1   0 50.00     1     1 211.5000    44             1
## 175      2   0 30.00     1     0  13.8583     1             1
## 176      3   1 21.00     0     0   8.0500     1             0
## 177      2   0 22.00     0     0  10.5000    75             1
## 178      3   1 21.00     0     0   7.7958     1             0
## 179      1   0 53.00     0     0  27.4458     1             1
## 180      3   1 23.00     0     0   7.7958     1             0
## 181      3   1 40.50     0     0  15.1000     1             0
## 182      2   1 36.00     0     0  13.0000     1             0
## 183      2   1 14.00     0     0  65.0000     1             0
## 184      1   0 21.00     0     0  26.5500     1             1
## 185      3   1 21.00     1     0   6.4958     1             0
## 186      1   1 39.00     1     0  71.2833    45             0
## 187      3   1 20.00     0     0   7.8542     1             0
## 188      1   1 64.00     1     0  75.2500    58             0
## 189      3   1 20.00     0     0   7.2250     1             1
## 190      2   0 18.00     1     1  13.0000     1             1
## 191      1   0 48.00     1     0 106.4250    46             1
## 192      1   0 55.00     0     0  27.7208     1             1
## 193      2   0 45.00     0     2  30.0000     1             1
## 194      1   1 45.00     1     1 134.5000    63             0
## 195      1   1 41.00     1     0  51.8625    53             0
## 196      2   0 22.00     0     0  21.0000     1             1
## 197      2   1 42.00     1     1  32.5000     1             0
## 198      2   0 29.00     1     0  26.0000     1             1
## 199      2   0  0.92     1     2  27.7500     1             1
## 200      3   1 20.00     0     0   7.9250     1             0
## 201      1   1 27.00     1     0 136.7792    47             0
## 202      3   1 24.00     0     0   9.3250     1             0
## 203      3   1 32.50     0     0   9.5000     1             0
## 204      3   1 28.00     0     0   8.0500     1             0
## 205      2   0 19.00     0     0  13.0000     1             1
## 206      3   1 21.00     0     0   7.7750     1             0
## 207      3   1 36.50     1     0  17.4000     1             0
## 208      3   1 21.00     0     0   7.8542     1             0
## 209      2   0 29.00     0     2  23.0000     1             1
## 210      3   0  1.00     1     1  12.1833     1             1
## 211      2   1 30.00     0     0  12.7375     1             0
## 212      3   1 17.00     0     0   8.6625     1             0
## 213      1   1 46.00     0     0  75.2417    40             0
## 214      1   0 26.00     1     0 136.7792    47             1
## 215      2   0 20.00     1     0  26.0000     1             1
## 216      2   1 28.00     0     0  10.5000     1             0
## 217      2   1 40.00     1     0  26.0000     1             0
## 218      2   1 30.00     1     0  21.0000     1             0
## 219      2   1 22.00     0     0  10.5000     1             0
## 220      3   0 23.00     0     0   8.6625     1             0
## 221      3   1  0.75     1     1  13.7750     1             1
## 222      3   0  9.00     1     1  15.2458     1             1
## 223      3   0  2.00     1     1  20.2125     1             1
## 224      3   1 36.00     0     0   7.2500     1             0
## 225      1   1 24.00     1     0  82.2667    14             1
## 226      3   0 30.00     0     0   6.9500     1             1
## 227      1   1 53.00     1     1  81.8583     6             1
## 228      3   1 36.00     0     0   9.5000     1             0
## 229      3   1 26.00     0     0   7.8958     1             0
## 230      2   0  1.00     1     2  41.5792     1             1
## 231      1   1 30.00     0     0  45.5000     1             0
## 232      3   1 29.00     0     0   7.8542     1             0
## 233      3   1 32.00     0     0   7.7750     1             0
## 234      2   1 43.00     0     1  21.0000     1             0
## 235      3   1 24.00     0     0   8.6625     1             0
## 236      1   0 64.00     1     1  26.5500    11             1
## 237      1   1 30.00     1     2 151.5500    29             1
## 238      3   1  0.83     0     1   9.3500     1             1
## 239      1   1 55.00     1     1  93.5000    20             0
## 240      3   0 45.00     1     0  14.1083     1             0
## 241      3   1 18.00     0     0   8.6625     1             0
## 242      3   1 22.00     0     0   7.2250     1             0
## 243      3   0 37.00     0     0   7.7500     1             1
## 244      1   0 55.00     0     0 135.6333    33             1
## 245      3   0 17.00     0     0   7.7333     1             1
## 246      1   1 57.00     1     0 146.5208    22             0
## 247      2   1 19.00     0     0  10.5000     1             0
## 248      3   1 27.00     0     0   7.8542     1             0
## 249      2   1 22.00     2     0  31.5000     1             0
## 250      3   1 26.00     0     0   7.7750     1             0
## 251      3   1 25.00     0     0   7.2292    72             0
## 252      2   1 26.00     0     0  13.0000    74             1
## 253      1   1 33.00     0     0  26.5500     1             1
## 254      1   0 39.00     0     0 211.3375     1             1
## 255      3   1 23.00     0     0   7.0500     1             0
## 256      2   0 12.00     2     1  39.0000    76             1
## 257      1   1 46.00     0     0  79.2000     1             0
## 258      2   1 29.00     1     0  26.0000     1             0
## 259      2   1 21.00     0     0  13.0000     1             0
## 260      2   0 48.00     0     2  36.7500     1             1
## 261      1   1 39.00     0     0  29.7000     3             0
## 262      3   0 19.00     1     1  15.7417     1             0
## 263      3   1 27.00     0     0   7.8958     1             0
## 264      1   1 30.00     0     0  26.0000    25             1
## 265      2   1 32.00     0     0  13.0000     1             0
## 266      3   1 39.00     0     2   7.2292     1             0
## 267      2   1 25.00     0     0  31.5000     1             0
## 268      2   1 18.00     0     0  10.5000     1             0
## 269      3   1 32.00     0     0   7.5792     1             0
## 270      1   0 58.00     0     1 512.3292    15             1
## 271      3   0 16.00     0     0   7.6500     1             1
## 272      2   1 26.00     0     0  13.0000     1             0
## 273      3   0 38.00     0     0   7.2292     1             1
## 274      2   1 24.00     0     0  13.5000     1             0
## 275      2   0 31.00     0     0  21.0000     1             1
## 276      1   0 45.00     0     1  63.3583    50             1
## 277      2   1 25.00     0     0  10.5000     1             0
## 278      2   1 18.00     0     0  73.5000     1             0
## 279      2   1 49.00     1     2  65.0000     1             0
## 280      3   0  0.17     1     2  20.5750     1             1
## 281      1   1 50.00     0     0  26.0000    69             1
## 282      1   0 59.00     2     0  51.4792    23             1
## 283      3   0 30.00     1     0  15.5500     1             0
## 284      3   1 14.50     8     2  69.5500     1             0
## 285      2   0 24.00     1     1  37.0042     1             1
## 286      2   0 31.00     0     0  21.0000     1             1
## 287      3   1 27.00     0     0   8.6625     1             1
## 288      1   0 25.00     1     0  55.4417    67             1
## 289      3   0 22.00     0     0  39.6875     1             0
## 290      1   0 45.00     0     1  59.4000     1             1
## 291      2   1 29.00     0     0  13.8583     1             0
## 292      2   1 21.00     1     0  11.5000     1             0
## 293      1   0 31.00     0     0 134.5000    64             1
## 294      1   1 49.00     0     0   0.0000    16             0
## 295      2   1 44.00     0     0  13.0000     1             0
## 296      1   0 54.00     1     1  81.8583     6             1
## 297      1   0 45.00     0     0 262.3750     1             1
## 298      3   0 22.00     2     0   8.6625     1             0
## 299      2   1 21.00     0     0  11.5000     1             0
## 300      1   1 55.00     0     0  50.0000    34             0
## 301      3   1  5.00     4     2  31.3875     1             0
## 302      3   1 26.00     0     0   7.8792     1             0
## 303      3   0 19.00     1     0  16.1000     1             0
## 304      2   0 24.00     1     2  65.0000     1             1
## 305      3   1 24.00     0     0   7.7750     1             0
## 306      2   1 57.00     0     0  13.0000     1             0
## 307      3   1 21.00     0     0   7.7500     1             0
## 308      3   1  6.00     3     1  21.0750     1             0
## 309      1   1 23.00     0     0  93.5000    10             1
## 310      1   0 51.00     0     1  39.4000    55             1
## 311      3   1 13.00     0     2  20.2500     1             1
## 312      2   1 47.00     0     0  10.5000     1             0
## 313      3   1 29.00     3     1  22.0250     1             0
## 314      1   0 18.00     1     0  60.0000    32             1
## 315      3   1 24.00     0     0   7.2500     1             0
## 316      1   0 48.00     1     1  79.2000    13             1
## 317      3   1 22.00     0     0   7.7750     1             0
## 318      3   1 31.00     0     0   7.7333     1             0
## 319      1   0 30.00     0     0 164.8667    42             1
## 320      2   1 38.00     1     0  21.0000     1             0
## 321      1   0 22.00     0     1  59.4000     1             1
## 322      1   1 17.00     0     0  47.1000     1             0
## 323      1   1 43.00     1     0  27.7208    60             0
## 324      2   1 20.00     0     0  13.8625    59             0
## 325      2   1 23.00     1     0  10.5000     1             0
## 326      1   1 50.00     1     1 211.5000    44             0
## 327      3   0  3.00     1     1  13.7750     1             1
## 328      1   0 37.00     1     0  90.0000    43             1
## 329      3   0 28.00     0     0   7.7750     1             1
## 330      1   0 39.00     0     0 108.9000    24             1
## 331      3   1 38.50     0     0   7.2500     1             0