Updated: 2020-08-15 12:22:28 PDT

Original version created 2020-05-03. See below for revision history

Intro


The spread of the SARS-COV-19 viral disease defies description in terms of a single statistic. To be informed about personal risk we need to know more than how many people have been sick at a national level or even state level, we need information about how many people are currently sick in our communicty and how the number of sick people is changing is changing at a state and even county level. It can be hard to find this information.

This analysis seeks to fill partially that gap. It includes:
1. Several national pictures of disease trends to enable a “large pattern” view of how disease has and is evolving a on country-wide scale.
2. A per capita analysis of disease spread.
3. A more granular analysis of regions, states, and counties to shed light on local disease pattern evolution.
4. Details of the time evolution of growth statistics.


This computed document is constantly evolving, so please “refresh” for the latest updates. If you have suggestions or comments please reach out on twitter @WinstonOnData or facebook.

National Maps

There are plenty of online maps. I’ve deprecated a few of the ones I’ve computer since they are no longer relevant to the analysis of disease trends. They are published:
- here.

Cases and Deaths per Capita

This chart reveals a more interesting pattern of disease spread. I haven’t found one of these online.
Groups of cities (e.g. Chicago, Indianapolis, and Detroit) and paths between connected communities are clearly visible.

Reproduction and Control

\(R_e\) is a measure of disease growth. For recovery to begin disease growth must turn from positive to negative (i.e. from \(log_2\)(\(R_e\)) > 0 to \(log_2\)(\(R_e\)) < 0).

After achieving negative growth growth, the next phase of recovery is maintaining consistently lower levels of disease. Control can be measured as a ratio of current disease levels to maximum disease levels. If disease levels are currently at a maximum, control is 0 %.

\[ control = 100 \times (1 - \frac{active \space disease}{max(active \space disease)} ) \% \]

State Level Data


County Level Data


state R_e cases daily_cases
North Dakota 1.16 8263 154
Kansas 1.14 33733 481
Kentucky 1.13 39960 739
Idaho 1.12 27431 533
Montana 1.12 5459 125
Rhode Island 1.11 18492 107
West Virginia 1.11 8302 140
California 1.10 611246 8793
Illinois 1.10 203483 1900
Vermont 1.10 1477 6
Indiana 1.09 80561 996
Missouri 1.08 58389 1116
South Dakota 1.08 9825 97
Delaware 1.07 15843 98
Georgia 1.07 214036 3512
Nebraska 1.07 29802 298
Iowa 1.06 51194 496
Michigan 1.06 100397 758
Virginia 1.06 83668 895
Arkansas 1.05 51126 772
Texas 1.05 548429 8136
Ohio 1.04 106873 1211
Wisconsin 1.04 64722 862
Minnesota 1.03 63890 706
Oregon 1.03 22760 318
Pennsylvania 1.03 127763 838
Tennessee 1.02 128476 1924
Washington 1.02 68967 747
New Jersey 1.01 187880 376
New York 1.01 428807 654
Oklahoma 1.01 47506 820
Florida 0.99 566645 6980
New Hampshire 0.99 6958 27
North Carolina 0.99 143292 1518
Alabama 0.98 108066 1430
Maryland 0.98 99854 783
Nevada 0.98 60444 864
Utah 0.98 46148 410
Colorado 0.97 52844 425
Mississippi 0.96 71757 945
New Mexico 0.96 23286 193
South Carolina 0.96 105936 1159
Wyoming 0.96 3183 33
Louisiana 0.95 137815 1456
Connecticut 0.91 50701 88
Maine 0.91 4107 14
Massachusetts 0.90 122031 308
Arizona 0.85 193439 1224

National Statistics

Total & Active Cases, and Deaths

These trend charts show the national disease statistics. The raw data are shown. since these showdaily trends that are systematically related ot the M-F work week, possibly due to reporting delays, numbers showsn

Mortality Trend

\(R_e\) Trend

National effective reproduction rate

Distribution of \(R_e\) Values

Howver, there is a wiude dirstubtion of \(R_e\) across regions and counties. The distributions in the graph below looks roughly symmetrical because the x-scale is logarithmic.

Distribution of Baseline Control

Similarly for disease control, when take at the county level, there is a wide distribution of Baseline Control.

Regional Snapshots

Regional snapshots reveal the highly nuanced behavior of disease spread. Each snaphot includes multiple states and selected counties.

How to read the charts

There are four components:
1. State Maps show the number of active cases and with the Reproduction rate encoded as color.
2. State Graphs State-wide trend graphs.
3. Severity Ranking These is a table of counties where the highest number of new cases are expected. Severity is a compounded function \(f(R, cases(t))\). This is useful for finding new (often unexpected) “hot spots.” Added per capita rates.
4. County Graphs encode the R-value in the active number of cases. R is the Reproduction Rate.

(NOTE: R < 1 implies a shrinking number of active cases, R > 1 implies a growing number of active cases. For R = 1, active cases are stable. ).


Washington and Oregon

WA
county ST case rank severity R_e cases cases/100k daily cases
King WA 1 1 1.0 17390 800 159
Spokane WA 5 2 1.1 4771 960 83
Grant WA 9 3 1.2 1743 1840 40
Pierce WA 3 4 1.0 6690 780 98
Clallam WA 24 5 1.5 135 180 5
Snohomish WA 4 6 1.0 6488 820 58
Clark WA 8 7 1.1 2223 480 33
Yakima WA 2 9 1.0 11175 4480 50
Franklin WA 7 12 0.9 3774 4160 27
Benton WA 6 16 0.8 4023 2070 26
OR
county ST case rank severity R_e cases cases/100k daily cases
Multnomah OR 1 1 1.0 5216 650 66
Marion OR 3 2 1.0 3093 920 38
Washington OR 2 3 1.0 3286 560 41
Malheur OR 6 4 1.2 871 2860 18
Jackson OR 9 5 1.1 537 250 15
Clackamas OR 5 6 1.0 1634 400 20
Umatilla OR 4 7 0.9 2440 3170 32
Lane OR 8 13 1.0 625 170 9
Deschutes OR 7 16 0.9 641 350 8
## Warning: Removed 1 rows containing missing values (geom_col).

California

CA
county ST case rank severity R_e cases cases/100k daily cases
Los Angeles CA 1 1 1.0 219570 2170 2324
Sacramento CA 11 2 1.3 13091 870 318
Riverside CA 2 3 1.2 45090 1890 660
Merced CA 20 4 1.4 6615 2460 246
Stanislaus CA 13 5 1.3 11606 2150 265
Contra Costa CA 14 6 1.3 10518 930 254
San Bernardino CA 4 7 1.1 39162 1830 567
San Joaquin CA 9 8 1.2 14306 1950 258
Orange CA 3 9 1.1 42590 1350 487
Alameda CA 8 10 1.2 14409 880 272
Kern CA 6 14 1.0 26329 2980 488
Fresno CA 7 15 1.0 19196 1960 342
San Diego CA 5 17 1.0 34370 1040 367

Four Corners

AZ
county ST case rank severity R_e cases cases/100k daily cases
Pima AZ 2 1 1.1 19093 1870 234
Maricopa AZ 1 2 0.8 129846 3050 741
Cochise AZ 11 3 1.1 1770 1400 21
Yuma AZ 3 4 0.8 11867 5710 57
Yavapai AZ 10 5 1.0 2137 950 26
Mohave AZ 6 6 0.9 3348 1620 27
Pinal AZ 4 7 0.8 8684 2070 43
Coconino AZ 8 9 0.9 3163 2260 14
Apache AZ 7 10 0.9 3247 4540 15
Navajo AZ 5 11 0.9 5452 5020 14
Santa Cruz AZ 9 13 0.8 2705 5810 7
CO
county ST case rank severity R_e cases cases/100k daily cases
El Paso CO 4 1 1.0 5460 790 65
Adams CO 3 2 1.0 6768 1360 59
Denver CO 1 3 0.9 10533 1520 62
Jefferson CO 5 4 1.0 4378 770 37
Mesa CO 16 5 1.3 355 240 9
Larimer CO 9 6 1.1 1658 490 23
Arapahoe CO 2 7 0.9 7537 1180 44
Weld CO 6 8 1.0 3812 1290 21
Boulder CO 7 9 1.0 2160 670 18
Douglas CO 8 11 0.9 1807 550 13
UT
county ST case rank severity R_e cases cases/100k daily cases
Salt Lake UT 1 1 1.0 21541 1920 174
Utah UT 2 2 1.0 9240 1560 109
Weber UT 4 3 1.0 2932 1180 29
Davis UT 3 4 0.9 3372 990 30
Washington UT 5 5 0.9 2597 1620 20
Wasatch UT 10 6 1.2 587 1920 5
Cache UT 6 7 1.0 1977 1620 12
Tooele UT 9 10 0.9 606 930 5
Summit UT 7 12 0.9 723 1780 2
San Juan UT 8 15 0.7 661 4330 2
NM
county ST case rank severity R_e cases cases/100k daily cases
Lea NM 7 1 1.2 902 1290 24
Eddy NM 13 2 1.3 348 610 10
Doña Ana NM 4 3 1.0 2625 1220 34
Chaves NM 11 4 1.2 526 800 16
Bernalillo NM 1 5 0.9 5338 790 38
Valencia NM 12 6 1.0 480 630 7
Curry NM 10 7 0.9 598 1190 10
Santa Fe NM 9 9 0.9 689 460 9
McKinley NM 2 10 0.9 4099 5630 8
San Juan NM 3 11 0.9 3083 2420 7
Sandoval NM 5 12 0.8 1162 830 6
Cibola NM 8 13 0.6 736 2730 9
Otero NM 6 18 0.5 1109 1690 1

Mid-Atlantic

NJ
county ST case rank severity R_e cases cases/100k daily cases
Union NJ 6 1 1.2 16970 3070 21
Bergen NJ 1 2 1.1 21248 2280 41
Passaic NJ 5 3 1.1 17959 3560 30
Hudson NJ 3 4 1.1 19967 2990 26
Camden NJ 9 5 1.0 8781 1730 32
Gloucester NJ 16 6 1.1 3367 1160 23
Essex NJ 2 7 1.0 20107 2530 28
Middlesex NJ 4 8 1.0 18251 2210 27
Monmouth NJ 8 9 1.0 10538 1690 27
Ocean NJ 7 13 0.9 10779 1820 21
PA
county ST case rank severity R_e cases cases/100k daily cases
Philadelphia PA 1 1 1.0 31994 2030 130
York PA 13 2 1.2 2762 620 42
Fayette PA 25 3 1.3 607 460 21
Union PA 39 4 1.3 291 650 13
Delaware PA 3 5 1.0 9609 1710 67
Allegheny PA 4 6 0.9 9327 760 89
Northumberland PA 28 7 1.3 525 570 12
Lancaster PA 6 8 1.0 6141 1140 46
Montgomery PA 2 10 1.0 10315 1260 40
Berks PA 7 11 1.0 5522 1330 28
Chester PA 8 16 1.0 5301 1030 31
Bucks PA 5 17 0.9 7355 1170 31
Lehigh PA 9 18 1.0 5053 1390 18
MD
county ST case rank severity R_e cases cases/100k daily cases
Baltimore city MD 4 1 1.0 13323 2170 154
Prince George’s MD 1 2 1.0 24913 2750 150
Montgomery MD 2 3 1.0 18887 1820 96
Baltimore MD 3 4 0.9 13885 1680 138
Anne Arundel MD 5 5 0.9 7641 1350 58
Howard MD 6 6 1.0 4025 1280 35
Charles MD 8 7 1.0 2130 1350 22
Harford MD 9 8 1.0 2098 840 25
Frederick MD 7 9 1.1 3160 1270 14
VA
county ST case rank severity R_e cases cases/100k daily cases
Floyd VA 73 1 2.1 109 700 11
Wise VA 52 2 1.7 201 520 14
Fairfax VA 1 3 1.1 16791 1470 85
Greensville VA 26 4 1.4 541 4640 13
Pittsylvania VA 25 5 1.3 558 900 22
Prince William VA 2 6 1.0 9780 2140 71
Virginia Beach city VA 4 7 0.9 5396 1200 89
Chesterfield VA 5 11 1.0 4573 1350 46
Loudoun VA 3 13 1.1 5437 1410 34
Norfolk city VA 7 16 0.9 3968 1620 55
Henrico VA 6 17 1.0 4058 1250 38
Arlington VA 8 21 1.0 3166 1370 20
Newport News city VA 9 25 0.9 1945 1080 24
WV
county ST case rank severity R_e cases cases/100k daily cases
Logan WV 6 1 1.4 299 880 17
Kanawha WV 1 2 1.1 1034 560 20
Raleigh WV 7 3 1.2 289 380 10
Cabell WV 4 4 1.1 443 460 10
Wood WV 9 5 1.3 265 310 3
Fayette WV 18 6 1.2 163 370 3
Mingo WV 15 7 1.1 200 810 6
Berkeley WV 3 9 1.0 725 640 6
Monongalia WV 2 18 0.9 969 920 4
Jefferson WV 5 19 1.1 301 540 1
Ohio WV 8 23 0.7 277 650 2
DE
county ST case rank severity R_e cases cases/100k daily cases
Sussex DE 2 1 1.2 6006 2740 32
Kent DE 3 2 1.2 2394 1370 19
New Castle DE 1 3 1.0 7444 1340 47

Deep South

AL
county ST case rank severity R_e cases cases/100k daily cases
Clarke AL 35 1 1.6 897 3680 46
Mobile AL 2 2 1.0 11205 2700 218
Jefferson AL 1 3 1.0 14236 2160 194
Washington AL 49 4 1.4 478 2870 17
Montgomery AL 3 5 1.0 7241 3190 82
Jackson AL 28 6 1.1 1155 2220 31
Tuscaloosa AL 5 7 1.0 4561 2210 48
Baldwin AL 6 8 0.9 3919 1880 56
Madison AL 4 11 0.9 5797 1620 60
Shelby AL 7 12 0.9 3699 1750 43
Lee AL 9 13 1.0 2997 1880 30
Marshall AL 8 17 0.9 3369 3540 30
MS
county ST case rank severity R_e cases cases/100k daily cases
Lee MS 10 1 1.2 1654 1950 42
Union MS 37 2 1.2 743 2620 23
Harrison MS 3 3 1.0 2762 1360 55
Stone MS 75 4 1.3 235 1280 9
DeSoto MS 2 5 0.9 3904 2220 53
Tippah MS 56 6 1.2 419 1910 12
Warren MS 16 7 1.1 1174 2490 19
Jackson MS 5 9 0.9 2497 1760 43
Hinds MS 1 11 0.8 5932 2450 56
Washington MS 9 12 1.0 1789 3800 26
Forrest MS 8 17 0.9 1915 2540 24
Jones MS 7 24 0.9 1991 2910 19
Madison MS 4 25 0.9 2539 2450 20
Rankin MS 6 38 0.8 2398 1590 20
LA
county ST case rank severity R_e cases cases/100k daily cases
East Baton Rouge LA 2 1 0.9 12861 2900 146
Lafayette LA 4 2 1.0 8117 3380 121
Jefferson LA 1 3 0.9 15801 3630 108
St. Tammany LA 7 4 1.0 5518 2190 65
West Feliciana LA 53 5 1.5 386 2510 7
St. Landry LA 15 6 1.0 2962 3550 58
Tangipahoa LA 9 7 1.0 3685 2820 46
Ouachita LA 8 8 1.0 5103 3270 52
Orleans LA 3 11 0.9 10971 2820 48
Caddo LA 6 15 0.9 6949 2800 55
Calcasieu LA 5 28 0.7 7116 3550 52

FL and GA

FL
county ST case rank severity R_e cases cases/100k daily cases
Lafayette FL 67 1 3.3 387 4430 62
Baker FL 47 2 1.7 1168 4200 98
Suwannee FL 36 3 1.7 1982 4510 105
Miami-Dade FL 1 4 1.0 142825 5260 1827
Union FL 63 5 1.7 466 3060 30
Dixie FL 56 6 1.5 634 3860 39
Broward FL 2 7 0.9 66076 3460 701
Palm Beach FL 3 9 0.9 38923 2690 387
Hillsborough FL 4 10 0.9 34037 2470 318
Polk FL 9 12 1.0 15240 2280 194
Duval FL 6 13 1.0 24497 2650 231
Orange FL 5 14 0.9 33012 2500 266
Pinellas FL 7 17 0.9 18599 1940 151
Lee FL 8 19 1.0 17184 2390 124
GA
county ST case rank severity R_e cases cases/100k daily cases
Cobb GA 4 1 1.1 14851 1990 282
Gwinnett GA 2 2 1.0 21355 2370 325
Fulton GA 1 3 1.0 21820 2140 320
DeKalb GA 3 4 1.0 14876 2000 208
Cherokee GA 11 5 1.2 3884 1610 97
Bleckley GA 112 6 1.5 280 2190 16
Richmond GA 9 7 1.1 4894 2430 115
Chatham GA 6 12 1.0 6213 2160 102
Clayton GA 7 14 1.1 5393 1940 77
Hall GA 5 17 1.0 6467 3300 82
Muscogee GA 8 21 1.0 5016 2550 61

Texas & Oklahoma

TX
county ST case rank severity R_e cases cases/100k daily cases
Collin TX 13 1 1.4 8799 930 242
Fort Bend TX 10 2 1.3 11236 1520 369
Bee TX 45 3 1.5 1465 4480 103
Harris TX 1 4 1.0 91922 2000 1329
Nueces TX 9 5 1.2 16774 4650 403
Williamson TX 16 6 1.3 7394 1400 165
Brown TX 88 7 1.7 538 1420 20
Tarrant TX 4 9 1.0 36222 1790 573
Dallas TX 2 10 1.0 57208 2210 516
El Paso TX 8 11 1.1 17629 2100 262
Hidalgo TX 6 13 1.1 21467 2530 329
Cameron TX 7 14 0.9 19189 4550 556
Travis TX 5 18 1.0 23936 1990 226
Bexar TX 3 43 0.7 44264 2300 218
OK
county ST case rank severity R_e cases cases/100k daily cases
Pittsburg OK 25 1 1.4 444 1000 27
Tulsa OK 2 2 1.0 11355 1770 191
Oklahoma OK 1 3 1.0 11456 1460 182
Hughes OK 42 4 1.5 162 1200 6
Garfield OK 15 5 1.2 549 880 19
Le Flore OK 26 6 1.2 422 850 19
Haskell OK 54 7 1.4 77 610 4
Rogers OK 5 8 1.0 1100 1210 26
Wagoner OK 7 10 1.0 954 1230 20
Cleveland OK 3 11 0.9 3231 1170 45
Canadian OK 4 18 0.9 1318 960 22
Comanche OK 9 24 1.0 875 710 9
Texas OK 6 35 1.1 1070 5070 3
McCurtain OK 8 38 0.9 883 2680 5

Michigan & Wisconsin

MI
county ST case rank severity R_e cases cases/100k daily cases
Muskegon MI 13 1 1.5 1390 800 31
Macomb MI 3 2 1.1 11304 1300 130
Oakland MI 2 3 1.1 16152 1290 125
Wayne MI 1 4 1.0 28872 1640 133
Saginaw MI 8 5 1.1 2136 1110 25
Bay MI 21 6 1.3 686 650 13
Kent MI 4 7 0.9 7750 1210 46
Washtenaw MI 6 9 1.0 3158 860 20
Ottawa MI 9 16 1.0 1908 670 14
Genesee MI 5 19 0.9 3739 910 18
Jackson MI 7 42 0.7 2461 1550 4
WI
county ST case rank severity R_e cases cases/100k daily cases
Milwaukee WI 1 1 1.0 21978 2300 186
Sawyer WI 48 2 1.6 94 570 7
Oneida WI 40 3 1.5 171 480 9
Waukesha WI 3 4 1.0 4669 1170 92
Lafayette WI 41 5 1.5 163 970 6
Washington WI 11 6 1.1 1213 900 31
Green WI 39 7 1.4 188 510 6
Dane WI 2 9 1.0 4746 900 48
Brown WI 4 10 1.0 4435 1710 37
Outagamie WI 9 16 1.1 1363 740 23
Racine WI 5 19 0.9 3678 1880 37
Walworth WI 8 26 1.0 1425 1380 18
Kenosha WI 6 28 0.9 2778 1650 23
Rock WI 7 39 0.9 1610 1000 9

Minnesota, North Dakota, and South Dakota

MN
county ST case rank severity R_e cases cases/100k daily cases
Watonwan MN 24 1 1.7 350 3190 7
Hennepin MN 1 2 1.0 20200 1630 204
McLeod MN 30 3 1.5 232 650 11
Ramsey MN 2 4 1.0 7979 1470 96
Dakota MN 3 5 1.0 4717 1130 69
St. Louis MN 18 6 1.2 645 320 23
Anoka MN 4 7 1.0 3911 1130 51
Washington MN 6 8 1.1 2272 900 34
Scott MN 9 9 1.0 1681 1170 28
Olmsted MN 7 10 1.1 1813 1180 17
Stearns MN 5 17 0.9 2942 1880 10
Nobles MN 8 22 1.1 1779 8150 3
SD
county ST case rank severity R_e cases cases/100k daily cases
Minnehaha SD 1 1 1.0 4558 2440 30
Yankton SD 10 2 1.4 129 570 3
Codington SD 7 3 1.3 147 530 3
Lincoln SD 3 4 1.0 691 1260 12
Pennington SD 2 5 1.0 926 850 8
Brown SD 5 6 1.1 463 1190 5
Brookings SD 8 7 1.2 146 430 3
Clay SD 9 10 1.1 136 980 2
Union SD 6 13 0.9 224 1480 2
Beadle SD 4 15 1.0 596 3240 1
ND
county ST case rank severity R_e cases cases/100k daily cases
Stark ND 5 1 1.5 347 1120 17
McLean ND 16 2 1.6 91 950 7
Rolette ND 13 3 1.6 97 660 8
Morton ND 4 4 1.3 439 1440 17
Burleigh ND 2 5 1.1 1340 1430 35
Sioux ND 14 6 1.4 96 2180 4
Grand Forks ND 3 7 1.2 728 1030 9
Cass ND 1 8 1.0 3109 1780 15
Ward ND 7 9 1.1 256 370 7
Mountrail ND 9 10 1.2 146 1440 3
Williams ND 6 11 1.1 298 870 6
Benson ND 8 13 0.9 160 2320 5

Connecticut, Massachusetts, and Rhode Island

CT
county ST case rank severity R_e cases cases/100k daily cases
New Haven CT 2 1 1.1 13294 1550 21
Fairfield CT 1 2 0.9 18170 1920 30
New London CT 5 3 1.1 1478 550 6
Hartford CT 3 4 0.8 12892 1440 19
Windham CT 8 5 1.0 757 650 5
Middlesex CT 6 6 1.1 1413 860 3
Litchfield CT 4 7 0.9 1628 890 2
Tolland CT 7 8 0.6 1068 710 2
MA
county ST case rank severity R_e cases cases/100k daily cases
Suffolk MA 2 1 1.0 22129 2790 63
Middlesex MA 1 2 0.9 26693 1670 65
Essex MA 3 3 0.9 18039 2310 52
Norfolk MA 5 4 0.8 10764 1540 33
Bristol MA 6 5 0.9 9465 1690 25
Worcester MA 4 6 0.9 13750 1670 27
Plymouth MA 7 7 0.9 9317 1820 16
Hampden MA 8 8 0.9 7674 1640 17
Barnstable MA 9 10 0.7 1817 850 4
RI
county ST case rank severity R_e cases cases/100k daily cases
Providence RI 1 1 1.1 15593 2460 91
Kent RI 2 2 1.0 1548 940 10
Washington RI 3 3 1.0 621 490 2
Newport RI 4 4 1.0 406 490 2
Bristol RI 5 5 0.9 324 660 1

New York

NY
county ST case rank severity R_e cases cases/100k daily cases
New York City NY 1 1 1.0 234082 2770 311
Suffolk NY 2 2 1.0 44073 2960 59
Erie NY 7 3 1.0 9090 990 43
Monroe NY 8 4 1.1 5102 690 30
Westchester NY 4 5 1.0 36381 3760 34
Nassau NY 3 6 0.9 43864 3230 44
Chemung NY 40 7 1.4 182 210 2
Orange NY 6 9 1.0 11230 2970 11
Rockland NY 5 10 1.0 13980 4320 8
Dutchess NY 9 13 0.9 4659 1590 11

Vermont, New Hampshire, and Maine

VT
county ST case rank severity R_e cases cases/100k daily cases
Chittenden VT 1 1 1.2 741 460 2
Bennington VT 5 2 1.3 91 250 1
Windham VT 3 3 1.3 104 240 0
Rutland VT 4 4 0.9 103 170 1
Franklin VT 2 5 0.8 119 240 0
ME
county ST case rank severity R_e cases cases/100k daily cases
Cumberland ME 1 1 1.0 2110 730 5
Androscoggin ME 3 2 1.1 573 530 2
Penobscot ME 5 3 1.1 158 100 1
York ME 2 4 0.8 686 340 2
Kennebec ME 4 5 0.7 173 140 0
NH
county ST case rank severity R_e cases cases/100k daily cases
Hillsborough NH 1 1 1.0 3910 950 12
Rockingham NH 2 2 1.0 1721 560 7
Strafford NH 4 3 1.0 369 290 3
Merrimack NH 3 4 1.1 471 320 1
Cheshire NH 6 5 1.1 105 140 1
Belknap NH 5 6 1.0 120 200 1
Grafton NH 7 7 1.3 105 120 0
Carroll NH 8 8 0.8 97 200 1

Carolinas

SC
county ST case rank severity R_e cases cases/100k daily cases
Richland SC 3 1 1.0 9310 2280 111
Spartanburg SC 8 2 1.1 4332 1430 50
Charleston SC 1 3 0.9 12784 3240 94
Aiken SC 15 4 1.1 2083 1250 45
Florence SC 10 5 1.0 3720 2680 60
Greenville SC 2 6 0.9 11288 2260 82
Greenwood SC 18 7 1.1 1512 2150 24
Beaufort SC 7 9 0.9 4396 2410 63
York SC 9 10 1.0 3786 1460 48
Berkeley SC 6 11 1.0 4396 2100 44
Horry SC 4 13 0.9 8864 2760 58
Lexington SC 5 16 0.9 5167 1800 40
NC
county ST case rank severity R_e cases cases/100k daily cases
Mecklenburg NC 1 1 0.9 23112 2190 179
Wake NC 2 2 1.0 12658 1210 124
Stanly NC 37 3 1.2 1186 1940 27
Cumberland NC 8 4 1.0 3345 1010 54
Pitt NC 18 5 1.1 2205 1240 41
Wilkes NC 43 6 1.3 883 1290 15
Union NC 9 7 1.0 3311 1460 44
Forsyth NC 5 8 1.0 5488 1480 48
Guilford NC 4 9 1.0 5902 1130 58
Durham NC 3 12 1.0 6375 2080 42
Gaston NC 6 13 1.0 3508 1620 40
Johnston NC 7 25 0.9 3471 1820 35

North-Rockies

MT
county ST case rank severity R_e cases cases/100k daily cases
Yellowstone MT 1 1 1.2 1453 920 36
Flathead MT 4 2 1.1 388 400 12
Big Horn MT 3 3 1.0 499 3730 14
Silver Bow MT 9 4 1.2 112 320 5
Missoula MT 5 5 1.1 369 320 9
Glacier MT 12 6 1.2 85 620 3
Gallatin MT 2 7 0.9 1000 950 10
Lewis and Clark MT 8 8 1.0 174 260 4
Cascade MT 7 10 0.8 179 220 2
Lake MT 6 12 0.7 188 630 1
WY
county ST case rank severity R_e cases cases/100k daily cases
Washakie WY 12 1 1.5 91 1120 5
Campbell WY 8 2 1.4 138 290 2
Natrona WY 6 3 1.0 244 300 2
Carbon WY 9 4 0.9 110 710 2
Park WY 7 5 1.0 142 490 2
Laramie WY 1 6 0.8 517 530 4
Fremont WY 2 7 0.9 513 1280 3
Sweetwater WY 5 9 0.9 272 620 2
Uinta WY 4 10 0.7 283 1370 2
Teton WY 3 11 0.6 388 1680 2
ID
county ST case rank severity R_e cases cases/100k daily cases
Shoshone ID 22 1 2.3 160 1280 15
Bonneville ID 5 2 1.3 1348 1200 63
Ada ID 1 3 1.1 9746 2180 148
Canyon ID 2 4 1.0 6339 2990 121
Bingham ID 12 5 1.3 351 770 13
Bannock ID 10 6 1.2 506 590 14
Kootenai ID 3 7 1.0 1983 1290 35
Twin Falls ID 4 8 1.1 1523 1820 26
Jerome ID 8 13 1.1 517 2210 8
Minidoka ID 9 19 0.9 508 2460 6
Cassia ID 7 20 0.9 552 2340 6
Blaine ID 6 23 1.1 582 2650 1

## Warning in FUN(X[[i]], ...): NaNs produced

Midwest

OH
county ST case rank severity R_e cases cases/100k daily cases
Madison OH 37 1 1.7 520 1180 26
Franklin OH 1 2 1.0 19319 1510 189
Cuyahoga OH 2 3 1.0 14152 1130 127
Hamilton OH 3 4 1.0 10014 1230 77
Lawrence OH 44 5 1.3 334 550 12
Montgomery OH 5 6 1.0 4628 870 54
Summit OH 6 7 1.0 3769 700 44
Lucas OH 4 8 0.9 5698 1320 71
Butler OH 7 9 1.0 3110 820 37
Mahoning OH 9 14 1.1 2665 1150 23
Marion OH 8 53 1.0 2959 4530 7
IL
county ST case rank severity R_e cases cases/100k daily cases
Cook IL 1 1 1.0 114592 2190 686
Logan IL 50 2 1.8 176 600 12
Morgan IL 31 3 1.7 355 1030 21
LaSalle IL 17 4 1.3 921 830 40
Jersey IL 54 5 1.6 141 640 9
Tazewell IL 22 6 1.3 664 500 31
Madison IL 9 7 1.2 2932 1100 72
Will IL 5 8 1.1 9717 1410 98
DuPage IL 3 10 1.0 12726 1370 106
Lake IL 2 11 1.0 13147 1870 97
Kane IL 4 12 1.0 10181 1920 79
St. Clair IL 6 13 1.1 4745 1800 71
McHenry IL 8 25 1.1 3408 1110 38
Winnebago IL 7 48 0.8 3846 1340 13
IN
county ST case rank severity R_e cases cases/100k daily cases
Sullivan IN 67 1 1.6 164 790 10
Henry IN 37 2 1.6 445 920 10
Vigo IN 25 3 1.3 788 730 33
Marion IN 1 4 1.0 16689 1770 155
Lake IN 2 5 1.1 7966 1640 76
Allen IN 4 6 1.1 4164 1130 51
St. Joseph IN 5 7 1.1 3765 1400 58
Hamilton IN 6 8 1.1 3025 960 48
Elkhart IN 3 10 1.1 5129 2520 40
Vanderburgh IN 7 13 1.0 2145 1180 38
Hendricks IN 8 15 1.1 2011 1250 22
Johnson IN 9 30 1.0 1860 1230 16

Tennessee and Kentucky

TN
county ST case rank severity R_e cases cases/100k daily cases
Weakley TN 42 1 1.4 589 1750 36
Shelby TN 1 2 0.9 24887 2660 277
Overton TN 69 3 1.5 243 1100 12
Davidson TN 2 4 1.0 23906 3490 193
Hamilton TN 4 5 1.1 6599 1850 88
Knox TN 5 6 1.0 5406 1190 112
Madison TN 19 7 1.2 1313 1340 44
Rutherford TN 3 8 1.0 6928 2260 76
Bradley TN 9 13 1.1 2108 2020 37
Williamson TN 6 15 1.0 3755 1720 44
Wilson TN 8 19 1.0 2446 1840 33
Sumner TN 7 30 1.0 3593 2000 34
KY
county ST case rank severity R_e cases cases/100k daily cases
Jefferson KY 1 1 1.2 9332 1220 216
Clay KY 42 2 1.9 174 840 4
Fayette KY 2 3 1.1 4314 1350 92
Madison KY 12 4 1.4 616 690 24
Hardin KY 8 5 1.3 736 680 21
Rowan KY 72 6 1.6 84 340 2
Bullitt KY 18 7 1.2 425 530 12
Christian KY 9 8 1.2 720 1000 14
Kenton KY 4 12 1.1 1518 920 18
Warren KY 3 14 1.0 2763 2190 27
Shelby KY 7 20 1.1 805 1720 8
Daviess KY 6 21 1.0 812 810 9
Boone KY 5 29 0.9 1148 890 11

Missouri and Arkansas

MO
county ST case rank severity R_e cases cases/100k daily cases
Washington MO 56 1 1.7 108 430 7
Polk MO 37 2 1.7 237 750 6
St. Louis MO 1 3 1.0 16215 1620 258
Greene MO 6 4 1.3 1827 630 55
St. Francois MO 20 5 1.4 472 710 19
Pike MO 53 6 1.6 136 740 8
Jackson MO 4 7 1.0 4503 650 96
Jefferson MO 5 9 1.1 2037 910 50
St. Charles MO 3 10 1.0 4526 1160 74
St. Louis city MO 2 12 1.0 5562 1790 79
Boone MO 7 17 1.1 1542 870 28
Clay MO 9 26 1.0 1137 480 21
Jasper MO 8 39 1.0 1327 1110 11
AR
county ST case rank severity R_e cases cases/100k daily cases
Poinsett AR 32 1 1.4 344 1430 20
Logan AR 31 2 1.4 344 1580 19
Pulaski AR 2 3 1.1 5996 1520 96
Sebastian AR 4 4 1.0 2433 1910 56
Jackson AR 54 5 1.4 132 770 8
Saline AR 13 6 1.2 1189 1010 28
Garland AR 14 7 1.1 1171 1190 30
Jefferson AR 5 8 1.1 1676 2380 30
Craighead AR 7 10 1.1 1486 1410 31
Hot Spring AR 6 14 1.2 1586 4730 12
Crittenden AR 8 16 1.0 1460 2980 21
Benton AR 3 23 0.9 4913 1900 30
Pope AR 9 27 1.0 1402 2200 16
Washington AR 1 28 0.8 6443 2820 31

Conclusions

It’s in control some places, but not all places. And many places are completely out-of-control.

Stay Safe!
Be Diligent!
…and PLEASE WEAR A MASK



Built with R Version 4.0.2
This document took 555.8 seconds to compute.
2020-08-15 12:31:44

version history

Today is 2020-08-15.
87 days ago: Multiple states.
79 days ago: \(R_e\) computation.
76 days ago: created color coding for \(R_e\) plots.
71 days ago: Reduced \(t_d\) from 14 to 12 days. 14 was the upper range of what most people are using. Wanted slightly higher bandwidth.
71 days ago: “persistence” time evolution.
64 days ago: “In control” mapping.
64 days ago: “Severity” tables to county analysis. Severity is computed from the number of new cases expected at current \(R_e\) for 6 days in the future. It does not trend \(R_e\), which could be a future enhancement.
56 days ago: Added census API functionality to compute per capita infection rates. Reduced spline spar = 0.65.
51 days ago: Added Per Capita US Map.
49 days ago: Deprecated national map.
45 days ago: added state “Hot 10” analysis.
40 days ago: cleaned up county analysis to show cases and actual data. Moved “Hot 10” analysis to separate web page. Moved “Hot 10” here.
38 days ago: added per capita disease and mortaility to state-level analysis.
26 days ago: changed to county boundaries on national map for per capita disease.
21 days ago: corrected factor of two error in death trend data.
17 days ago: removed “contained and uncontained” analysis, replacing it with county level control map.
12 days ago: added county level “baseline control” and \(R-e\) maps.
8 days ago: fixed normalization error on total disease stats plot.

Appendix: Methods

Disease data are sourced from the NYTimes Github Repo. Population data are sourced from the US Census census.gov

Case growth is assumed to follow a linear-partial differential equation. This type of model is useful in populations where there is still very low immunity and high susceptibility.

\[\frac{\partial}{\partial t} cases(t, t_d) = a \times cases(t, t_d) \] \(cases(t)\) is the number of active cases at \(t\) dependent on recent history, \(t_d\). The constant \(a\) and has units of \(time^{-1}\) and is typically computed on a daily basis

Solution results are often expressed in terms of the Effective Reproduction Rate \(R_e\), where \[a \space = \space ln(R_e).\]

\(R_e\) has a simple interpretation; when \(R_e \space > \space 1\) the number of \(cases(t)\) increases (exponentially) while when \(R_e \space < \space 1\) the number of \(cases(t)\) decreases.

Practically, computing \(a\) can be extremely complicated, depending on how functionally it is related to history \(t_d\). And guessing functional forms can be as much art as science. To avoid that, let’s keep things simple…

Assuming a straight-forward flat time of latent infection \(t_d\) = 12 days, with \[f(t) = \int_{t - t_d}^{t}cases(t')\; dt' ,\] \(R_e\) reduces to a simple computation

\[R_e(t) = \frac{cases(t)}{\int_{t - t_d}^{t}cases(t')\; dt'} \times t_d .\]

Typical range of \(t_d\) range \(7 \geq t_d \geq 14\). The only other numerical treatment is, in order to reduce noise the data, I smooth case data with a reticulated spline to compute derivatives.


DISCLAIMER: Results are for entertainment purposes only. Please consult local authorities for official data and forecasts.