Exploratory Factor Analysis - EFA

library(readxl)
## Warning: package 'readxl' was built under R version 3.6.3
setwd("E:\\mikhilesh\\HU Sem VI ANLY 510 and 506\\ANLY 510 Kao Principals and Applications\\Lecture and other materials")
data <- read_xlsx("lecture 14 EFAexample.xlsx")
summary(data)
##        Q1              Q2              Q3              Q4              Q5      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.00  
##  Median :2.000   Median :2.000   Median :3.000   Median :3.000   Median :3.00  
##  Mean   :2.164   Mean   :2.359   Mean   :2.728   Mean   :2.719   Mean   :2.87  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.00  
##  Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :4.00  
##        Q6              Q7              Q8              Q9             Q10      
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.00  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:1.00  
##  Median :3.000   Median :3.000   Median :2.000   Median :3.000   Median :2.00  
##  Mean   :2.958   Mean   :2.562   Mean   :2.283   Mean   :2.578   Mean   :2.01  
##  3rd Qu.:4.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:2.00  
##  Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :4.00  
##       Q11             Q12             Q13             Q14       
##  Min.   :1.000   Min.   :1.000   Min.   :1.000   Min.   :1.000  
##  1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000   1st Qu.:2.000  
##  Median :2.000   Median :2.000   Median :2.000   Median :3.000  
##  Mean   :2.229   Mean   :2.466   Mean   :2.328   Mean   :2.612  
##  3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000   3rd Qu.:3.000  
##  Max.   :4.000   Max.   :4.000   Max.   :4.000   Max.   :4.000  
##       Q15             Q16      
##  Min.   :1.000   Min.   :1.00  
##  1st Qu.:2.000   1st Qu.:2.00  
##  Median :2.000   Median :3.00  
##  Mean   :2.324   Mean   :2.93  
##  3rd Qu.:3.000   3rd Qu.:3.00  
##  Max.   :4.000   Max.   :4.00
apply(data, 2, shapiro.test)
## $Q1
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.86276, p-value < 2.2e-16
## 
## 
## $Q2
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.87124, p-value < 2.2e-16
## 
## 
## $Q3
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.85818, p-value < 2.2e-16
## 
## 
## $Q4
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.87094, p-value < 2.2e-16
## 
## 
## $Q5
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.84137, p-value < 2.2e-16
## 
## 
## $Q6
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.84949, p-value < 2.2e-16
## 
## 
## $Q7
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.87347, p-value < 2.2e-16
## 
## 
## $Q8
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.85409, p-value < 2.2e-16
## 
## 
## $Q9
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.874, p-value < 2.2e-16
## 
## 
## $Q10
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.83384, p-value < 2.2e-16
## 
## 
## $Q11
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.85747, p-value < 2.2e-16
## 
## 
## $Q12
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.85988, p-value < 2.2e-16
## 
## 
## $Q13
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.87578, p-value < 2.2e-16
## 
## 
## $Q14
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.86893, p-value < 2.2e-16
## 
## 
## $Q15
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.84613, p-value < 2.2e-16
## 
## 
## $Q16
## 
##  Shapiro-Wilk normality test
## 
## data:  newX[, i]
## W = 0.84426, p-value < 2.2e-16
#REVERSE CODE data when you have -ve correlation

#Checking R-Matrix to know if the variables are highly corelated with each others or have similarities
corMat <- cor(data)
corMat
##             Q1         Q2         Q3         Q4         Q5         Q6
## Q1   1.0000000  0.5409363 -0.3656214 -0.2774137 -0.4046785 -0.6021803
## Q2   0.5409363  1.0000000 -0.3848507 -0.3815433 -0.4328253 -0.4540008
## Q3  -0.3656214 -0.3848507  1.0000000  0.4691103  0.5605341  0.4451519
## Q4  -0.2774137 -0.3815433  0.4691103  1.0000000  0.4424801  0.4154419
## Q5  -0.4046785 -0.4328253  0.5605341  0.4424801  1.0000000  0.5332802
## Q6  -0.6021803 -0.4540008  0.4451519  0.4154419  0.5332802  1.0000000
## Q7  -0.4251323 -0.4110314  0.3014960  0.3427030  0.3769419  0.4617225
## Q8   0.3544211  0.3485103 -0.4425779 -0.2177116 -0.4989637 -0.3698887
## Q9  -0.4152407 -0.3698851  0.2567018  0.2555184  0.3411775  0.4767936
## Q10  0.2890325  0.4579999 -0.3233705 -0.2385475 -0.3895095 -0.3331047
## Q11  0.6076953  0.4818159 -0.4047212 -0.3634059 -0.4188613 -0.5973084
## Q12  0.3687996  0.5385576 -0.2808081 -0.3658643 -0.3584818 -0.4154319
## Q13  0.2460532  0.2117046 -0.2760835 -0.1009017 -0.2964166 -0.1672920
## Q14 -0.5043518 -0.3803194  0.3300813  0.2530192  0.3928885  0.5364183
## Q15  0.4355843  0.5499629 -0.4248865 -0.3238739 -0.5186160 -0.4356544
## Q16 -0.6538815 -0.4763842  0.4484483  0.4147263  0.5045460  0.7084155
##             Q7         Q8         Q9        Q10        Q11        Q12
## Q1  -0.4251323  0.3544211 -0.4152407  0.2890325  0.6076953  0.3687996
## Q2  -0.4110314  0.3485103 -0.3698851  0.4579999  0.4818159  0.5385576
## Q3   0.3014960 -0.4425779  0.2567018 -0.3233705 -0.4047212 -0.2808081
## Q4   0.3427030 -0.2177116  0.2555184 -0.2385475 -0.3634059 -0.3658643
## Q5   0.3769419 -0.4989637  0.3411775 -0.3895095 -0.4188613 -0.3584818
## Q6   0.4617225 -0.3698887  0.4767936 -0.3331047 -0.5973084 -0.4154319
## Q7   1.0000000 -0.3342145  0.3052033 -0.2992893 -0.4582815 -0.4691233
## Q8  -0.3342145  1.0000000 -0.2290853  0.3663103  0.3841354  0.3308320
## Q9   0.3052033 -0.2290853  1.0000000 -0.1738292 -0.4169176 -0.3056779
## Q10 -0.2992893  0.3663103 -0.1738292  1.0000000  0.4026391  0.4105560
## Q11 -0.4582815  0.3841354 -0.4169176  0.4026391  1.0000000  0.4715192
## Q12 -0.4691233  0.3308320 -0.3056779  0.4105560  0.4715192  1.0000000
## Q13 -0.2127298  0.2975758 -0.1063857  0.2094700  0.2256271  0.2124407
## Q14  0.3549708 -0.2713426  0.6617897 -0.2329149 -0.4924756 -0.3145705
## Q15 -0.3715010  0.4614843 -0.3169341  0.4136292  0.4931320  0.4692704
## Q16  0.4805563 -0.3869749  0.4523550 -0.3691348 -0.6490574 -0.4246754
##            Q13        Q14        Q15        Q16
## Q1   0.2460532 -0.5043518  0.4355843 -0.6538815
## Q2   0.2117046 -0.3803194  0.5499629 -0.4763842
## Q3  -0.2760835  0.3300813 -0.4248865  0.4484483
## Q4  -0.1009017  0.2530192 -0.3238739  0.4147263
## Q5  -0.2964166  0.3928885 -0.5186160  0.5045460
## Q6  -0.1672920  0.5364183 -0.4356544  0.7084155
## Q7  -0.2127298  0.3549708 -0.3715010  0.4805563
## Q8   0.2975758 -0.2713426  0.4614843 -0.3869749
## Q9  -0.1063857  0.6617897 -0.3169341  0.4523550
## Q10  0.2094700 -0.2329149  0.4136292 -0.3691348
## Q11  0.2256271 -0.4924756  0.4931320 -0.6490574
## Q12  0.2124407 -0.3145705  0.4692704 -0.4246754
## Q13  1.0000000 -0.1777712  0.3218061 -0.2099937
## Q14 -0.1777712  1.0000000 -0.4147098  0.5599550
## Q15  0.3218061 -0.4147098  1.0000000 -0.4692582
## Q16 -0.2099937  0.5599550 -0.4692582  1.0000000

#Looking at the correlation table, we can identify some good/strong ideas about the variables. #So now we can move to next step. And We will use KMO Test to verify if the data is good to go.

#The statistic is a measure of the proportion of variance among variables that might be common variance. General speaking over 0.5 is good.

library(psych)
## Warning: package 'psych' was built under R version 3.6.3
KMO(corMat)
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = corMat)
## Overall MSA =  0.93
## MSA for each item = 
##   Q1   Q2   Q3   Q4   Q5   Q6   Q7   Q8   Q9  Q10  Q11  Q12  Q13  Q14  Q15  Q16 
## 0.92 0.92 0.92 0.90 0.93 0.94 0.96 0.93 0.87 0.93 0.95 0.93 0.91 0.89 0.94 0.94
# When we want to decide how many factors do we need in this study, The best way to do is to use the eigenvalue and the scree plot.

library(nFactors)
## Warning: package 'nFactors' was built under R version 3.6.3
## Loading required package: lattice
## 
## Attaching package: 'nFactors'
## The following object is masked from 'package:lattice':
## 
##     parallel
#Scree of eigen values 
scree <- scree(data)

scree
## Scree of eigen values 
## Call: NULL
## Eigen values of factors  [1]  6.42  0.71  0.37  0.25  0.18  0.05  0.00 -0.03 -0.09 -0.10 -0.14 -0.17
## [13] -0.18 -0.24 -0.28 -0.34
## Eigen values of Principal Components [1] 6.98 1.34 0.99 0.97 0.76 0.73 0.65 0.58 0.48 0.47 0.44 0.41 0.34 0.32 0.28
## [16] 0.27
#We usually select the factors =or> 1
EFA <- fa(r = corMat, fm = "pa")
EFA
## Factor Analysis using method =  pa
## Call: fa(r = corMat, fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       PA1   h2   u2 com
## Q1  -0.71 0.50 0.50   1
## Q2  -0.69 0.47 0.53   1
## Q3   0.60 0.36 0.64   1
## Q4   0.52 0.27 0.73   1
## Q5   0.69 0.47 0.53   1
## Q6   0.76 0.58 0.42   1
## Q7   0.60 0.36 0.64   1
## Q8  -0.55 0.31 0.69   1
## Q9   0.55 0.30 0.70   1
## Q10 -0.52 0.27 0.73   1
## Q11 -0.75 0.56 0.44   1
## Q12 -0.61 0.37 0.63   1
## Q13 -0.34 0.11 0.89   1
## Q14  0.63 0.40 0.60   1
## Q15 -0.68 0.46 0.54   1
## Q16  0.79 0.63 0.37   1
## 
##                 PA1
## SS loadings    6.42
## Proportion Var 0.40
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  120  and the objective function was  7.39
## The degrees of freedom for the model are 104  and the objective function was  1.35 
## 
## The root mean square of the residuals (RMSR) is  0.07 
## The df corrected root mean square of the residuals is  0.07 
## 
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy             
##                                                    PA1
## Correlation of (regression) scores with factors   0.96
## Multiple R square of scores with factors          0.92
## Minimum correlation of possible factor scores     0.85
#OR - we can use data or R-matrix for factor analysis
EFA <- fa(data, fm = "pa")
EFA
## Factor Analysis using method =  pa
## Call: fa(r = data, fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       PA1   h2   u2 com
## Q1  -0.71 0.50 0.50   1
## Q2  -0.69 0.47 0.53   1
## Q3   0.60 0.36 0.64   1
## Q4   0.52 0.27 0.73   1
## Q5   0.69 0.47 0.53   1
## Q6   0.76 0.58 0.42   1
## Q7   0.60 0.36 0.64   1
## Q8  -0.55 0.31 0.69   1
## Q9   0.55 0.30 0.70   1
## Q10 -0.52 0.27 0.73   1
## Q11 -0.75 0.56 0.44   1
## Q12 -0.61 0.37 0.63   1
## Q13 -0.34 0.11 0.89   1
## Q14  0.63 0.40 0.60   1
## Q15 -0.68 0.46 0.54   1
## Q16  0.79 0.63 0.37   1
## 
##                 PA1
## SS loadings    6.42
## Proportion Var 0.40
## 
## Mean item complexity =  1
## Test of the hypothesis that 1 factor is sufficient.
## 
## The degrees of freedom for the null model are  120  and the objective function was  7.39 with Chi Square of  5860.21
## The degrees of freedom for the model are 104  and the objective function was  1.35 
## 
## The root mean square of the residuals (RMSR) is  0.07 
## The df corrected root mean square of the residuals is  0.07 
## 
## The harmonic number of observations is  800 with the empirical chi square  872  with prob <  1.3e-121 
## The total number of observations was  800  with Likelihood Chi Square =  1066.11  with prob <  2.6e-159 
## 
## Tucker Lewis Index of factoring reliability =  0.806
## RMSEA index =  0.108  and the 90 % confidence intervals are  0.102 0.114
## BIC =  370.91
## Fit based upon off diagonal values = 0.97
## Measures of factor score adequacy             
##                                                    PA1
## Correlation of (regression) scores with factors   0.96
## Multiple R square of scores with factors          0.92
## Minimum correlation of possible factor scores     0.85
#perform the rotation (varimax and oblimin) to improve the factor loadings
EFA2 <- fa(r = corMat, nfactors = 2, rotate = "varimax", fm = "pa") #using 2 factor
EFA2
## Factor Analysis using method =  pa
## Call: fa(r = corMat, nfactors = 2, rotate = "varimax", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       PA1   PA2   h2   u2 com
## Q1   0.38 -0.63 0.54 0.46 1.7
## Q2   0.57 -0.40 0.48 0.52 1.8
## Q3  -0.58  0.26 0.41 0.59 1.4
## Q4  -0.44  0.29 0.28 0.72 1.7
## Q5  -0.64  0.32 0.52 0.48 1.5
## Q6  -0.41  0.67 0.62 0.38 1.7
## Q7  -0.44  0.40 0.35 0.65 2.0
## Q8   0.59 -0.19 0.39 0.61 1.2
## Q9  -0.13  0.67 0.47 0.53 1.1
## Q10  0.56 -0.17 0.34 0.66 1.2
## Q11  0.47 -0.59 0.57 0.43 1.9
## Q12  0.53 -0.33 0.38 0.62 1.7
## Q13  0.39 -0.08 0.16 0.84 1.1
## Q14 -0.19  0.74 0.59 0.41 1.1
## Q15  0.64 -0.32 0.51 0.49 1.5
## Q16 -0.44  0.69 0.67 0.33 1.7
## 
##                        PA1  PA2
## SS loadings           3.75 3.52
## Proportion Var        0.23 0.22
## Cumulative Var        0.23 0.45
## Proportion Explained  0.52 0.48
## Cumulative Proportion 0.52 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  120  and the objective function was  7.39
## The degrees of freedom for the model are 89  and the objective function was  0.84 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.05 
## 
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    PA1  PA2
## Correlation of (regression) scores with factors   0.87 0.89
## Multiple R square of scores with factors          0.76 0.78
## Minimum correlation of possible factor scores     0.52 0.57
EFA3 <- fa(r = corMat, nfactors = 3, rotate = "oblimin", fm = "pa") #using 3 factor and oblimin - oblique rotation
## Loading required namespace: GPArotation
EFA3
## Factor Analysis using method =  pa
## Call: fa(r = corMat, nfactors = 3, rotate = "oblimin", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       PA1   PA2   PA3   h2   u2 com
## Q1  -0.55  0.25 -0.02 0.54 0.46 1.4
## Q2  -0.13  0.62 -0.05 0.55 0.45 1.1
## Q3   0.03  0.07  0.77 0.56 0.44 1.0
## Q4   0.13 -0.13  0.35 0.28 0.72 1.5
## Q5   0.08 -0.01  0.74 0.63 0.37 1.0
## Q6   0.61 -0.07  0.20 0.63 0.37 1.2
## Q7   0.24 -0.39  0.06 0.37 0.63 1.7
## Q8   0.06  0.21 -0.51 0.39 0.61 1.4
## Q9   0.75  0.05 -0.06 0.47 0.53 1.0
## Q10  0.11  0.52 -0.21 0.36 0.64 1.4
## Q11 -0.45  0.36 -0.05 0.58 0.42 1.9
## Q12 -0.04  0.74  0.06 0.53 0.47 1.0
## Q13  0.09  0.17 -0.32 0.16 0.84 1.7
## Q14  0.82  0.07  0.00 0.60 0.40 1.0
## Q15 -0.05  0.44 -0.32 0.51 0.49 1.9
## Q16  0.61 -0.15  0.16 0.67 0.33 1.3
## 
##                        PA1  PA2  PA3
## SS loadings           3.06 2.46 2.32
## Proportion Var        0.19 0.15 0.15
## Cumulative Var        0.19 0.35 0.49
## Proportion Explained  0.39 0.31 0.30
## Cumulative Proportion 0.39 0.70 1.00
## 
##  With factor correlations of 
##       PA1   PA2   PA3
## PA1  1.00 -0.60  0.59
## PA2 -0.60  1.00 -0.62
## PA3  0.59 -0.62  1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 3 factors are sufficient.
## 
## The degrees of freedom for the null model are  120  and the objective function was  7.39
## The degrees of freedom for the model are 75  and the objective function was  0.59 
## 
## The root mean square of the residuals (RMSR) is  0.04 
## The df corrected root mean square of the residuals is  0.05 
## 
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    PA1  PA2  PA3
## Correlation of (regression) scores with factors   0.94 0.91 0.91
## Multiple R square of scores with factors          0.87 0.82 0.83
## Minimum correlation of possible factor scores     0.75 0.64 0.67
print(EFA3, cut = 0.4, digits = 2)
## Factor Analysis using method =  pa
## Call: fa(r = corMat, nfactors = 3, rotate = "oblimin", fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       PA1   PA2   PA3   h2   u2 com
## Q1  -0.55             0.54 0.46 1.4
## Q2         0.62       0.55 0.45 1.1
## Q3               0.77 0.56 0.44 1.0
## Q4                    0.28 0.72 1.5
## Q5               0.74 0.63 0.37 1.0
## Q6   0.61             0.63 0.37 1.2
## Q7                    0.37 0.63 1.7
## Q8              -0.51 0.39 0.61 1.4
## Q9   0.75             0.47 0.53 1.0
## Q10        0.52       0.36 0.64 1.4
## Q11 -0.45             0.58 0.42 1.9
## Q12        0.74       0.53 0.47 1.0
## Q13                   0.16 0.84 1.7
## Q14  0.82             0.60 0.40 1.0
## Q15        0.44       0.51 0.49 1.9
## Q16  0.61             0.67 0.33 1.3
## 
##                        PA1  PA2  PA3
## SS loadings           3.06 2.46 2.32
## Proportion Var        0.19 0.15 0.15
## Cumulative Var        0.19 0.35 0.49
## Proportion Explained  0.39 0.31 0.30
## Cumulative Proportion 0.39 0.70 1.00
## 
##  With factor correlations of 
##       PA1   PA2   PA3
## PA1  1.00 -0.60  0.59
## PA2 -0.60  1.00 -0.62
## PA3  0.59 -0.62  1.00
## 
## Mean item complexity =  1.4
## Test of the hypothesis that 3 factors are sufficient.
## 
## The degrees of freedom for the null model are  120  and the objective function was  7.39
## The degrees of freedom for the model are 75  and the objective function was  0.59 
## 
## The root mean square of the residuals (RMSR) is  0.04 
## The df corrected root mean square of the residuals is  0.05 
## 
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    PA1  PA2  PA3
## Correlation of (regression) scores with factors   0.94 0.91 0.91
## Multiple R square of scores with factors          0.87 0.82 0.83
## Minimum correlation of possible factor scores     0.75 0.64 0.67
library(GPArotation)
EFA4 <- fa(data, nfactors = 2, rotate = "varimax", fm = "pa", scores = TRUE)
EFA4
## Factor Analysis using method =  pa
## Call: fa(r = data, nfactors = 2, rotate = "varimax", scores = TRUE, 
##     fm = "pa")
## Standardized loadings (pattern matrix) based upon correlation matrix
##       PA1   PA2   h2   u2 com
## Q1   0.38 -0.63 0.54 0.46 1.7
## Q2   0.57 -0.40 0.48 0.52 1.8
## Q3  -0.58  0.26 0.41 0.59 1.4
## Q4  -0.44  0.29 0.28 0.72 1.7
## Q5  -0.64  0.32 0.52 0.48 1.5
## Q6  -0.41  0.67 0.62 0.38 1.7
## Q7  -0.44  0.40 0.35 0.65 2.0
## Q8   0.59 -0.19 0.39 0.61 1.2
## Q9  -0.13  0.67 0.47 0.53 1.1
## Q10  0.56 -0.17 0.34 0.66 1.2
## Q11  0.47 -0.59 0.57 0.43 1.9
## Q12  0.53 -0.33 0.38 0.62 1.7
## Q13  0.39 -0.08 0.16 0.84 1.1
## Q14 -0.19  0.74 0.59 0.41 1.1
## Q15  0.64 -0.32 0.51 0.49 1.5
## Q16 -0.44  0.69 0.67 0.33 1.7
## 
##                        PA1  PA2
## SS loadings           3.75 3.52
## Proportion Var        0.23 0.22
## Cumulative Var        0.23 0.45
## Proportion Explained  0.52 0.48
## Cumulative Proportion 0.52 1.00
## 
## Mean item complexity =  1.5
## Test of the hypothesis that 2 factors are sufficient.
## 
## The degrees of freedom for the null model are  120  and the objective function was  7.39 with Chi Square of  5860.21
## The degrees of freedom for the model are 89  and the objective function was  0.84 
## 
## The root mean square of the residuals (RMSR) is  0.05 
## The df corrected root mean square of the residuals is  0.05 
## 
## The harmonic number of observations is  800 with the empirical chi square  417.24  with prob <  6.1e-44 
## The total number of observations was  800  with Likelihood Chi Square =  667.72  with prob <  1.7e-89 
## 
## Tucker Lewis Index of factoring reliability =  0.864
## RMSEA index =  0.09  and the 90 % confidence intervals are  0.084 0.097
## BIC =  72.79
## Fit based upon off diagonal values = 0.99
## Measures of factor score adequacy             
##                                                    PA1  PA2
## Correlation of (regression) scores with factors   0.87 0.89
## Multiple R square of scores with factors          0.76 0.78
## Minimum correlation of possible factor scores     0.52 0.57
head(EFA4$scores, 10)
##              PA1        PA2
##  [1,]  1.2710614 -1.1323495
##  [2,] -0.6012196  0.4323597
##  [3,]  2.4938431 -1.7911749
##  [4,]  1.6146596 -2.0485713
##  [5,] -0.7770873  1.6301372
##  [6,]  0.8029936  0.2256166
##  [7,] -0.6243222 -0.7722059
##  [8,]  0.8823098 -0.6847066
##  [9,]  1.4684812 -0.9006286
## [10,]  1.2094306 -1.1024223
data <- cbind(data, EFA4$scores)
data
##     Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16           PA1
## 1    2  4  2  2  2  2  1  3  1   4   3   3   4   1   3   2  1.2710613779
## 2    1  1  3  3  3  3  1  2  3   1   1   2   2   3   2   3 -0.6012195833
## 3    4  4  1  1  1  1  1  4  1   4   4   4   4   1   4   1  2.4938430809
## 4    4  4  4  4  1  1  1  4  1   4   4   4   4   1   4   1  1.6146596052
## 5    1  1  4  4  4  4  4  3  4   1   1   3   3   4   1   4 -0.7770873329
## 6    2  2  3  2  2  3  1  2  3   3   2   3   4   2   3   3  0.8029935665
## 7    3  2  3  3  3  2  2  2  3   2   1   2   2   2   2   2 -0.6243222136
## 8    2  3  2  1  2  2  1  2  1   3   3   3   3   2   3   3  0.8823098164
## 9    3  3  1  2  2  2  1  3  1   3   3   4   4   2   3   2  1.4684811896
## 10   4  4  2  3  2  2  2  3  2   3   4   3   3   2   3   2  1.2094306250
## 11   2  1  3  2  2  2  1  3  4   1   2   3   4   3   2   3  0.5108977328
## 12   4  4  2  2  2  1  1  3  1   2   4   4   4   1   4   1  1.2697269547
## 13   2  2  3  3  2  3  1  3  2   2   2   2   2   2   3   3  0.2466260188
## 14   4  3  1  1  3  2  1  3  2   3   3   3   4   2   4   2  1.5016168883
## 15   1  2  2  1  4  4  1  3  4   2   4   4   4   3   1   4  0.6746233487
## 16   3  3  1  1  1  2  1  1  1   4   4   4   4   1   4   1  1.7070411414
## 17   4  3  2  2  2  2  2  4  1   3   2   3   2   1   4   2  1.0332243026
## 18   4  3  2  2  2  3  2  3  3   2   3   3   3   2   4   2  1.3310118897
## 19   3  3  2  2  2  2  1  3  2   3   3   3   3   2   3   2  1.1480684737
## 20   1  1  3  4  3  4  1  3  2   1   2   3   3   3   2   3 -0.2458018050
## 21   3  3  2  2  2  2  2  3  3   3   3   3   4   2   3   2  1.3354806167
## 22   2  3  2  2  4  2  2  3  3   2   3   3   4   3   3   3  0.7920002447
## 23   3  3  3  3  3  3  2  2  2   1   3   3   3   2   3   3 -0.0925297124
## 24   2  3  3  3  2  3  2  2  2   2   2   3   2   3   2   3  0.2048706358
## 25   3  3  2  2  2  2  1  2  2   1   4   4   3   2   3   2  0.7350454167
## 26   2  2  4  3  3  3  2  2  3   1   2   2   1   3   1   3 -1.0720355424
## 27   3  4  2  2  2  2  2  3  2   3   3   3   4   2   3   2  1.3495334297
## 28   2  2  4  4  3  2  1  2  3   1   2   3   3   3   3   4 -0.1730797380
## 29   4  3  2  2  2  2  1  3  1   3   3   2   3   1   4   2  0.8823775100
## 30   3  3  2  2  3  2  2  3  3   2   3   3   3   2   3   2  0.7320068747
## 31   3  3  3  2  2  3  2  3  2   3   3   3   3   2   3   2  0.9004123477
## 32   4  4  2  3  2  2  2  3  2   3   3   3   2   2   2   2  0.7574903526
## 33   2  3  2  2  2  2  2  3  1   1   2   2   4   2   3   2  0.4390288652
## 34   4  4  1  1  2  2  1  3  4   4   3   3   4   3   4   2  2.6958271385
## 35   3  3  2  3  2  2  3  3  3   3   3   3   3   2   3   2  1.0928703898
## 36   3  3  3  2  3  2  2  2  2   2   3   2   3   2   2   3 -0.2950188580
## 37   4  3  3  3  2  2  3  3  2   2   3   3   3   2   3   2  0.4942839306
## 38   2  2  4  3  3  4  1  2  1   2   2   3   1   2   2   3 -0.8519319388
## 39   3  3  2  2  2  2  2  3  2   3   3   3   2   2   3   2  0.9803451667
## 40   2  2  2  2  3  3  1  2  3   2   2   4   2   3   2   3  0.4025138782
## 41   3  3  2  2  2  2  2  3  2   2   3   3   2   2   3   3  0.7925390889
## 42   1  1  3  2  3  3  1  2  4   2   3   4   4   2   3   2  0.5173614574
## 43   3  3  3  3  3  3  3  2  2   2   2   2   2   2   2   3 -0.5637019796
## 44   3  3  2  2  3  2  2  2  2   3   3   2   2   2   2   2  0.0096966250
## 45   2  2  3  3  3  3  2  2  2   2   2   3   3   2   3   3 -0.0944313518
## 46   3  3  2  2  2  2  3  3  3   3   2   2   2   2   3   3  0.8628633961
## 47   2  2  3  4  3  3  1  2  2   1   2   3   2   2   2   4 -0.6795566675
## 48   2  2  2  2  2  2  1  2  2   1   2   2   1   2   2   3 -0.3150262595
## 49   3  3  2  2  2  3  2  3  2   2   3   3   3   2   3   3  0.9307805086
## 50   3  2  3  3  4  2  1  2  3   1   2   3   2   2   2   3 -0.8304439137
## 51   1  1  4  4  4  4  2  2  2   2   3   3   3   2   3   4 -0.7155276827
## 52   3  2  2  3  2  3  1  4  2   4   2   2   2   2   3   2  1.0544518623
## 53   1  2  3  3  3  3  3  3  3   2   2   2   3   3   3   3  0.3133083973
## 54   3  3  2  3  2  2  2  3  2   2   3   3   4   2   3   2  0.9071820086
## 55   3  3  4  2  2  2  1  2  2   1   2   4   3   2   3   2  0.1725979775
## 56   2  2  2  2  3  3  1  3  4   1   2   2   2   4   2   3  0.4953262367
## 57   1  2  3  2  3  4  1  2  3   2   2   3   2   4   2   3  0.3148685113
## 58   3  3  3  2  2  3  2  2  3   2   3   3   3   3   3   3  0.8573030787
## 59   3  3  2  3  3  2  2  2  2   2   3   4   2   3   3   2  0.5489197909
## 60   1  4  2  1  4  2  1  1  3   1   2   4   2   1   2   2 -0.3827693135
## 61   3  2  2  2  2  2  1  3  2   1   3   3   3   2   3   2  0.5797980672
## 62   3  3  3  3  3  3  4  2  3   2   3   3   2   2   3   3  0.0267001952
## 63   3  3  3  3  3  1  1  1  4   1   3   3   2   2   4   2  0.1505082976
## 64   2  2  2  2  3  3  2  2  3   2   2   3   3   3   3   3  0.5713667697
## 65   4  4  3  3  3  2  1  3  1   2   3   3   2   1   3   1  0.0054548466
## 66   3  3  2  2  3  2  2  2  3   2   4   4   4   4   3   2  1.2621228216
## 67   4  4  1  1  1  1  1  4  1   4   4   4   4   1   4   1  2.4938430809
## 68   2  2  3  3  3  3  3  3  3   1   1   2   1   3   1   3 -0.7553291041
## 69   1  1  4  3  3  4  1  2  3   1   2   2   1   3   3   3 -0.5330066305
## 70   3  3  3  4  3  2  2  2  2   2   3   4   2   2   3   2  0.0357274524
## 71   1  2  2  2  2  2  3  2  3   3   2   2   3   3   3   3  0.8435617242
## 72   2  2  3  3  3  3  2  2  3   2   2   2   3   3   2   3 -0.1628997734
## 73   4  4  2  2  1  2  2  2  3   2   4   3   3   2   3   2  1.3094802717
## 74   3  4  1  1  2  2  1  3  2   2   4   3   3   2   3   2  1.4700318039
## 75   3  3  2  3  2  2  2  3  1   3   4   4   2   2   3   2  0.9694813714
## 76   3  3  2  3  2  2  2  3  2   3   3   3   2   2   3   2  0.9054582468
## 77   3  3  2  2  2  2  2  3  2   2   3   3   2   3   3   2  0.9996704414
## 78   2  2  2  2  3  3  3  3  2   2   2   2   2   2   2   3 -0.1822587307
## 79   3  2  2  3  2  2  3  3  1   2   3   2   3   1   3   2  0.0464837162
## 80   2  3  2  2  2  2  2  3  2   2   3   3   3   2   3   3  0.9208044547
## 81   3  3  3  3  3  4  2  3  2   2   3   3   4   2   3   3  0.4745577665
## 82   3  3  3  2  3  3  2  2  2   2   3   3   2   3   3   3  0.3020294591
## 83   2  3  3  2  2  3  2  3  2   1   2   2   2   2   3   3  0.2209071559
## 84   1  1  3  3  3  4  3  2  2   1   2   2   2   2   2   4 -0.9938475987
## 85   3  3  4  4  3  3  3  2  2   2   2   3   2   2   3   3 -0.4155577537
## 86   4  4  3  3  3  2  2  2  2   2   2   2   1   2   2   2 -0.5088266896
## 87   3  4  2  2  1  2  1  3  2   4   3   3   4   1   4   2  1.9856955897
## 88   2  2  2  2  2  2  1  2  1   2   2   2   2   2   2   2 -0.1785611311
## 89   3  2  2  3  3  3  3  3  3   2   3   2   3   2   3   3  0.3203998724
## 90   2  3  3  2  3  3  3  3  2   2   3   2   3   2   3   3  0.2181658989
## 91   3  3  2  3  2  2  1  3  2   2   3   4   4   2   3   2  1.1272199087
## 92   3  3  3  3  3  3  1  2  2   2   3   3   3   2   3   3  0.1747346663
## 93   2  3  3  3  2  3  1  3  2   3   2   2   2   2   3   3  0.6140905200
## 94   3  3  3  3  2  2  1  3  2   3   4   3   3   2   3   2  0.9180567961
## 95   2  1  4  2  2  3  2  2  3   1   3   3   2   3   3   3  0.0307414416
## 96   2  3  2  3  3  3  3  2  2   2   3   2   3   2   3   2  0.1204132364
## 97   3  3  2  2  3  2  2  2  2   2   2   3   2   2   2   3 -0.0875795072
## 98   3  3  2  2  3  2  2  3  3   2   3   2   3   2   3   2  0.5784274482
## 99   2  4  3  4  3  3  1  2  1   4   2   4   3   1   3   3  0.4129116680
## 100  2  3  2  2  2  3  1  3  2   2   3   3   3   2   3   2  1.0112396869
## 101  3  3  2  1  2  2  2  3  2   3   3   3   2   2   3   3  1.0682319140
## 102  2  2  3  2  3  3  2  2  2   2   2   3   2   3   2   3 -0.1883040435
## 103  1  2  3  3  3  4  4  2  4   2   1   2   3   3   3   4  0.1583424854
## 104  2  3  3  2  3  2  2  2  2   3   3   4   1   2   3   2  0.3120428962
## 105  3  2  4  2  3  2  1  3  2   1   3   3   2   2   3   2 -0.2592182469
## 106  3  3  3  1  2  1  2  3  1   3   4   4   3   2   3   2  0.9653692198
## 107  2  2  3  3  3  3  2  2  2   2   2   2   2   2   2   3 -0.6369015698
## 108  2  2  3  1  4  4  1  1  4   1   3   3   1   4   1   2 -0.5537295185
## 109  4  4  2  2  2  2  1  3  1   3   3   3   2   1   3   2  0.8137247410
## 110  4  4  3  1  2  2  1  2  2   3   4   4   2   1   3   1  0.7986321312
## 111  3  2  2  2  2  2  1  3  2   2   3   3   2   2   3   1  0.6663393116
## 112  3  3  2  3  3  3  2  1  2   2   3   2   2   3   3   3  0.0636971973
## 113  3  4  1  2  1  1  1  4  1   4   4   4   2   2   4   2  2.4765580336
## 114  3  3  2  2  2  2  2  3  2   3   3   3   3   2   3   2  1.0816100002
## 115  3  3  3  4  3  2  2  3  3   3   3   2   2   3   3   3  0.5431514488
## 116  2  3  2  2  1  2  2  3  2   4   2   3   4   3   2   3  1.5945398430
## 117  2  2  3  3  4  3  2  2  4   1   2   1   1   3   2   3 -0.8686119925
## 118  1  1  3  4  3  4  3  2  4   2   2   2   2   4   2   3 -0.1354545150
## 119  2  2  3  2  3  3  3  2  2   2   2   3   1   2   2   3 -0.5761585304
## 120  4  4  1  1  2  1  2  3  2   3   4   4   4   2   3   1  1.7822465499
## 121  1  1  4  4  4  3  2  1  3   1   1   1   1   4   1   4 -1.7995215832
## 122  3  3  2  1  3  3  2  2  2   2   3   3   1   2   3   3  0.2736946042
## 123  2  1  4  4  4  4  4  1  2   1   1   1   1   2   3   3 -1.9530785307
## 124  1  2  3  3  3  4  3  2  3   2   2   2   3   3   2   4 -0.1523813010
## 125  2  2  2  2  3  3  2  3  2   3   3   2   3   3   2   2  0.4564513150
## 126  4  3  2  2  2  2  2  3  2   2   3   3   2   2   3   2  0.7525387292
## 127  2  2  1  2  2  2  2  2  2   1   3   3   3   2   3   2  0.5304742108
## 128  2  4  2  1  3  3  4  4  1   1   2   3   2   2   3   3  0.4753207579
## 129  4  4  2  2  1  2  1  3  2   4   4   4   1   1   4   1  1.8585296368
## 130  2  3  3  1  3  2  3  2  2   2   3   4   1   2   2   2 -0.1679605207
## 131  2  3  2  1  4  4  2  1  2   1   1   3   3   4   1   4 -0.4381363632
## 132  2  2  4  2  4  3  2  2  3   2   2   3   3   3   2   3 -0.4540106689
## 133  3  3  3  3  3  4  4  3  2   3   3   3   2   2   3   3  0.3399170577
## 134  3  3  2  2  3  2  2  2  3   2   3   2   2   2   3   2  0.2491224607
## 135  3  3  3  2  3  2  2  3  4   3   4   3   2   4   2   2  0.9816653735
## 136  3  3  3  3  3  3  1  3  2   2   3   3   2   2   2   2  0.0008842014
## 137  2  3  3  2  3  3  2  2  3   2   2   3   2   3   2   3  0.1309603355
## 138  3  3  1  1  1  2  2  4  1   3   3   1   2   1   3   2  1.1229536665
## 139  2  2  3  3  3  3  2  2  2   2   3   2   1   3   2   3 -0.4549857425
## 140  2  2  3  2  3  3  3  2  3   2   2   3   1   3   2   3 -0.2034215675
## 141  3  3  2  2  2  3  2  3  2   2   2   3   2   3   3   3  0.9865973740
## 142  1  1  3  3  3  3  2  2  4   2   2   2   1   3   2   3 -0.3524817212
## 143  3  2  3  3  3  2  2  2  2   2   3   2   1   2   2   2 -0.7520938683
## 144  3  2  3  2  3  3  1  2  2   2   3   3   2   2   2   3 -0.3059278013
## 145  3  3  2  2  2  2  2  3  2   2   3   3   2   2   3   2  0.7795392615
## 146  3  2  2  3  3  3  3  3  4   2   3   2   2   4   3   3  0.8120031817
## 147  2  2  3  1  3  4  2  2  3   1   3   2   2   3   1   3 -0.5027965633
## 148  3  3  2  2  2  2  2  3  2   3   3   3   3   2   3   2  1.0816100002
## 149  3  2  2  1  3  3  2  2  3   2   3   3   2   2   2   2  0.0602808393
## 150  4  3  1  2  1  1  2  4  1   3   4   4   4   1   4   1  1.9850331863
## 151  3  3  3  2  3  2  1  2  2   3   2   3   1   2   3   3  0.1478717573
## 152  1  2  3  3  3  4  3  2  2   1   2   2   1   3   2   4 -0.7083226563
## 153  4  4  2  2  2  1  2  3  3   3   4   3   2   3   3   1  1.5058132606
## 154  1  3  3  2  3  3  3  3  3   2   2   3   1   3   3   3  0.5059036727
## 155  2  2  4  3  3  3  2  3  2   2   2   3   2   2   2   3 -0.4734562280
## 156  2  2  3  3  3  3  2  3  3   2   2   3   3   3   3   3  0.5063457651
## 157  3  3  3  2  3  2  2  2  3   2   3   3   2   2   2   2 -0.1030983094
## 158  2  3  2  2  3  3  3  1  1   2   2   3   1   1   4   3 -0.2168508967
## 159  1  3  2  3  2  3  3  3  3   2   1   2   3   3   2   4  0.6618686237
## 160  2  2  4  3  3  3  2  2  3   2   2   2   2   3   2   3 -0.4823388457
## 161  2  3  3  2  2  3  2  2  2   3   3   3   2   3   3   3  0.8312388998
## 162  2  1  2  2  2  3  3  3  3   1   1   1   2   3   2   4 -0.0792123460
## 163  3  3  2  2  2  2  2  2  2   2   3   3   2   2   3   3  0.5644989349
## 164  1  1  3  3  3  3  3  1  3   2   2   1   1   3   1   3 -1.2407915161
## 165  3  1  2  2  3  2  2  2  2   2   3   2   2   2   2   2 -0.5244264722
## 166  2  1  4  4  4  4  3  2  1   1   1   1   3   4   1   4 -1.7306457477
## 167  2  2  3  3  4  4  4  2  4   1   2   3   1   4   3   4 -0.1366365350
## 168  2  2  3  3  3  3  3  2  3   2   2   3   3   3   2   3 -0.0757788203
## 169  2  2  3  2  3  3  2  2  2   2   2   3   2   2   2   3 -0.4084352234
## 170  3  3  3  2  4  3  4  1  3   3   3   3   1   3   1   3 -0.6834357063
## 171  3  3  2  3  4  4  2  1  4   2   2   3   2   3   3   4  0.2080121193
## 172  2  2  2  3  2  3  2  3  3   2   2   3   2   3   3   3  0.9246581734
## 173  2  2  3  2  4  3  3  2  3   2   2   2   2   3   3   3 -0.2695132058
## 174  2  2  2  2  3  3  2  3  2   1   2   3   3   2   3   2  0.2128642281
## 175  1  3  3  2  3  4  2  3  3   2   1   3   2   4   2   3  0.5800593069
## 176  1  3  2  1  2  3  3  2  3   2   2   3   1   3   4   3  1.1599536384
## 177  3  3  2  3  3  2  2  3  2   2   3   2   2   2   2   2 -0.0379560461
## 178  2  2  2  3  3  3  3  2  3   2   3   2   3   3   2   3  0.0518654727
## 179  2  3  3  3  3  3  2  3  3   2   2   3   2   3   2   3  0.2841135696
## 180  1  3  3  2  4  3  2  2  3   3   2   4   2   3   3   3  0.4985691543
## 181  3  2  4  1  3  4  1  4  2   1   2   2   3   3   3   4  0.2484287601
## 182  1  2  4  4  3  4  3  1  2   1   2   1   1   3   2   4 -1.3830033954
## 183  2  3  2  3  3  4  2  3  2   2   3   3   4   1   2   3  0.2119753996
## 184  2  2  3  1  4  3  4  2  1   1   2   2   1   2   1   3 -1.6637501599
## 185  3  2  2  2  3  2  2  3  2   1   3   3   2   2   2   1 -0.1899540283
## 186  2  2  3  2  3  2  2  2  2   2   2   3   1   2   2   3 -0.5466766431
## 187  3  3  2  1  3  2  3  2  1   1   4   3   4   2   3   2  0.1706920105
## 188  3  3  2  2  3  3  2  3  1   2   3   3   3   2   3   3  0.4767717224
## 189  1  2  3  4  4  4  3  2  4   3   2   2   3   3   3   3  0.0993665946
## 190  4  4  2  1  2  1  3  2  1   2   4   3   1   1   4   1  0.5262828464
## 191  1  2  4  4  3  3  3  2  3   2   1   2   3   3   2   4 -0.5454685267
## 192  2  2  3  3  4  3  3  2  3   2   2   2   2   3   2   3 -0.6320260836
## 193  2  2  2  2  3  2  2  2  2   3   3   2   2   2   2   2 -0.1299614386
## 194  2  4  3  4  3  3  1  2  3   3   2   3   2   3   3   3  0.7027354284
## 195  3  3  3  2  3  3  3  2  2   2   2   3   2   3   3   3  0.1725215047
## 196  2  2  1  3  3  3  3  2  3   2   2   2   2   3   3   3  0.3933513549
## 197  4  3  2  2  1  1  2  3  2   3   4   3   3   2   3   1  1.3690855385
## 198  3  3  2  2  3  2  2  3  2   2   2   3   3   2   2   3  0.2417254804
## 199  2  2  3  2  3  3  3  2  3   1   2   3   1   3   2   3 -0.4042274728
## 200  2  2  3  2  3  3  2  2  3   2   2   3   1   3   2   3 -0.1369630941
## 201  2  2  2  2  2  3  3  2  2   2   2   2   3   2   3   3  0.2799949099
## 202  3  3  2  2  2  3  3  3  2   3   3   3   4   2   3   3  1.1663927739
## 203  2  2  4  4  3  4  4  2  2   2   3   2   4   2   4   3 -0.1850720253
## 204  3  3  3  2  3  2  3  3  2   2   2   3   2   2   2   3 -0.1441720654
## 205  2  2  3  3  3  3  3  2  2   2   2   3   3   2   2   3 -0.4485157832
## 206  1  1  2  2  3  4  4  1  4   3   1   1   3   4   1   4 -0.2511893632
## 207  2  2  2  2  2  2  2  3  3   3   2   2   3   2   3   3  0.8909286395
## 208  2  3  3  3  3  3  3  2  3   2   2   2   2   3   2   3 -0.1639644845
## 209  3  1  4  4  4  4  3  1  2   2   3   2   1   1   2   3 -1.9408934337
## 210  2  3  3  2  2  3  2  3  3   2   2   2   2   2   3   3  0.5743188441
## 211  1  3  4  1  2  4  4  3  4   2   1   3   3   3   4   4  1.2272492241
## 212  2  3  1  2  2  2  2  3  3   2   3   3   1   4   1   2  0.9410654258
## 213  1  1  4  4  4  4  4  1  4   1   1   1   3   4   1   4 -1.5403264940
## 214  1  1  4  4  4  4  3  1  1   2   1   2   1   1   1   4 -2.4402232444
## 215  2  2  3  3  3  3  3  2  3   2   2   2   2   3   2   3 -0.3306230804
## 216  1  2  1  3  3  3  3  3  2   3   3   3   3   2   3   3  0.7943547246
## 217  1  1  4  4  4  4  3  1  4   2   1   1   3   3   1   4 -1.4931932952
## 218  2  3  3  2  3  3  3  2  4   3   2   3   2   3   3   3  0.7055395081
## 219  1  1  3  3  4  3  4  2  3   3   2   2   2   3   2   3 -0.6373367155
## 220  2  3  3  2  3  4  2  2  3   3   2   3   2   3   2   3  0.3687428269
## 221  3  1  4  4  3  4  1  2  2   2   4   2   3   2   2   3 -0.7928230017
## 222  1  1  4  1  3  4  4  1  4   1   1   2   1   4   1   4 -1.0632129718
## 223  2  2  3  3  3  4  3  2  3   2   2   2   3   3   2   3 -0.1923816607
## 224  1  2  4  4  4  3  4  2  3   2   2   2   3   2   2   3 -1.0834115298
## 225  3  3  1  1  3  2  1  1  4   1   3   4   3   3   3   2  0.9609566830
## 226  2  2  2  2  3  3  3  2  2   1   1   2   3   2   3   3 -0.2852634794
## 227  2  2  4  3  3  4  3  2  2   3   3   2   2   2   3   3 -0.3330763517
## 228  2  3  3  4  4  2  3  2  1   2   2   2   1   1   2   3 -1.4239697529
## 229  2  2  3  3  4  3  4  2  3   2   2   2   2   3   3   4 -0.3978587717
## 230  2  2  3  3  3  3  3  2  2   2   2   2   2   3   2   2 -0.4962286908
## 231  3  3  3  3  3  3  2  3  3   2   3   2   3   3   3   3  0.5554738831
## 232  1  1  3  3  4  3  3  2  3   1   2   2   1   3   2   3 -1.0737548861
## 233  3  2  3  3  3  3  2  3  1   2   3   3   2   1   3   3 -0.3043440456
## 234  1  1  3  3  3  3  3  2  3   2   2   2   2   3   2   3 -0.4702811441
## 235  2  1  3  3  3  3  3  2  2   2   2   2   3   3   2   3 -0.5486226258
## 236  2  2  3  2  3  4  3  1  4   1   2   3   3   3   2   4 -0.2271557632
## 237  2  2  3  2  3  3  3  2  3   2   2   3   3   3   2   3 -0.0008919005
## 238  1  1  3  4  3  4  4  1  4   1   1   1   1   4   2   4 -0.9356529613
## 239  2  1  4  4  4  4  4  1  4   1   1   1   1   4   2   4 -1.4822307355
## 240  2  2  3  3  3  3  3  2  3   2   3   3   2   3   2   3 -0.1139941730
## 241  3  2  3  3  4  4  4  2  4   1   3   2   1   4   2   3 -0.5547927983
## 242  1  1  4  3  4  4  4  1  4   1   1   1   1   4   1   4 -1.6679692412
## 243  3  2  2  3  3  3  3  2  3   2   2   2   2   3   2   3 -0.1394493740
## 244  2  2  4  4  4  4  4  1  4   1   1   1   1   4   1   4 -1.6031980974
## 245  1  1  4  4  4  4  4  1  4   3   1   1   2   4   1   4 -1.2399795171
## 246  2  2  4  3  4  4  4  2  3   1   2   2   3   3   1   4 -1.2538494119
## 247  1  1  4  4  4  4  3  2  4   1   1   1   1   3   1   4 -1.6684887136
## 248  2  2  4  4  3  4  3  2  3   2   2   2   1   3   2   4 -0.6749726590
## 249  1  3  3  2  4  3  3  2  2   2   3   3   3   2   2   3 -0.4183232573
## 250  2  2  3  3  3  3  3  2  3   2   2   2   3   3   2   3 -0.2293582469
## 251  3  2  3  3  2  3  4  2  2   1   2   2   2   1   2   3 -0.9163531311
## 252  2  2  2  3  4  4  3  2  3   1   2   2   4   3   1   3 -0.6627774549
## 253  3  2  3  3  3  3  3  2  3   2   2   2   3   2   2   3 -0.4764899591
## 254  2  2  2  4  3  3  3  2  3   2   2   2   3   3   2   3 -0.0860709281
## 255  1  1  3  4  3  4  3  2  3   2   2   2   3   3   4   3  0.1683252716
## 256  2  3  3  2  3  3  4  1  2   2   2   3   1   2   2   4 -0.6909987345
## 257  3  3  3  3  2  2  3  3  2   1   3   3   2   2   3   2  0.2192137241
## 258  2  2  2  2  3  3  4  2  3   2   2   2   1   3   2   3 -0.2052852289
## 259  1  2  4  4  4  4  4  1  3   2   1   1   2   3   2   4 -1.3592378313
## 260  3  3  3  3  3  3  3  2  2   3   2   3   2   2   2   3 -0.2093166478
## 261  4  3  3  2  3  1  4  2  1   2   2   2   2   2   2   2 -0.8218328482
## 262  1  1  4  4  3  4  4  1  3   1   1   1   3   3   1   4 -1.6116604537
## 263  2  2  3  3  3  3  4  2  2   1   2   2   2   2   2   3 -0.9706244220
## 264  2  2  3  3  4  3  3  1  4   1   2   2   2   3   2   4 -0.8952665325
## 265  2  3  3  3  3  2  3  2  3   3   2   3   2   2   3   2  0.2079392118
## 266  2  3  3  3  3  3  3  3  2   2   2   3   2   2   2   3 -0.1550818668
## 267  3  3  3  3  3  3  3  2  2   3   3   3   3   2   3   3  0.2426236246
## 268  1  2  4  2  4  3  3  1  4   1   2   2   2   3   2   4 -1.0115533190
## 269  2  2  3  4  3  3  3  2  3   1   2   2   2   3   1   3 -0.8939418635
## 270  3  3  2  2  3  2  2  3  3   3   3   3   3   2   3   2  0.9328127800
## 271  1  1  4  4  4  4  4  1  4   1   1   1   1   4   1   4 -1.7428561611
## 272  2  1  1  2  2  1  1  1  2   3   3   2   3   2   2   3  0.1386636016
## 273  2  3  3  3  2  3  3  3  2   3   2   3   2   3   3   2  0.8418843521
## 274  2  2  3  2  3  3  4  2  3   2   3   2   3   3   3   3  0.1297456383
## 275  2  2  3  3  3  3  3  2  3   2   2   2   2   3   2   3 -0.3306230804
## 276  2  3  4  3  3  4  3  2  3   3   2   3   2   3   2   3  0.0092231948
## 277  2  3  2  2  2  2  3  3  3   3   3   3   2   3   3   3  1.3266240158
## 278  2  2  3  3  3  4  3  1  4   1   1   2   4   3   2   4 -0.4174067570
## 279  3  2  2  3  2  3  4  3  3   1   2   1   3   2   2   3 -0.1497163685
## 280  2  2  3  3  3  3  3  2  3   2   3   2   4   2   2   3 -0.2851751124
## 281  2  2  2  2  2  2  1  4  4   3   1   4   1   1   4   1  1.4211078782
## 282  2  1  3  4  3  3  4  1  4   1   1   1   1   4   1   4 -1.2872560377
## 283  2  2  3  2  3  3  3  2  3   2   3   2   3   2   2   3 -0.3115530260
## 284  1  2  3  3  4  3  4  1  3   3   1   2   4   1   1   3 -1.2871264052
## 285  1  2  4  3  3  4  4  1  3   1   1   1   1   4   1   4 -1.3525134250
## 286  2  2  3  3  2  2  2  2  3   2   3   2   2   2   2   3 -0.1568198889
## 287  3  2  3  3  3  2  4  2  2   2   3   2   3   2   2   2 -0.6824811482
## 288  2  3  3  3  3  3  2  2  2   3   2   3   3   2   3   3  0.2730331494
## 289  2  2  3  3  3  3  4  2  3   3   2   2   2   3   2   3 -0.1962756487
## 290  2  2  3  2  2  2  3  3  2   2   3   3   2   2   2   2  0.0676225277
## 291  4  4  2  3  2  1  2  4  1   3   4   4   3   1   2   1  0.8807108711
## 292  3  3  3  3  3  2  3  3  2   2   3   3   2   2   3   2  0.1186166262
## 293  2  3  3  3  3  3  3  2  3   1   2   1   2   2   3   3 -0.4508550383
## 294  4  3  2  3  2  2  3  2  1   2   3   2   3   1   3   2 -0.0418983741
## 295  3  2  3  3  3  3  4  3  3   1   2   2   4   3   2   3 -0.1943181704
## 296  3  2  3  3  3  3  3  2  2   2   2   2   2   2   2   2 -0.7433604030
## 297  2  2  2  2  2  2  3  2  2   2   2   2   3   3   3   2  0.4501496763
## 298  2  2  4  3  4  3  4  1  3   2   2   2   3   3   2   3 -1.0434341163
## 299  2  2  3  3  3  3  3  2  3   2   3   2   2   2   3   3 -0.2000788215
## 300  2  3  2  2  3  2  2  3  2   2   2   2   3   2   3   2  0.3897727166
## 301  2  2  3  3  2  3  3  1  3   2   2   2   2   3   1   3 -0.5448861892
## 302  1  2  4  3  3  4  4  1  3   1   1   1   1   3   1   4 -1.5726446050
## 303  2  2  2  2  3  3  3  1  3   1   2   2   2   3   2   3 -0.4664079811
## 304  1  2  4  1  4  4  4  1  4   1   1   2   1   4   1   4 -1.1979573790
## 305  3  3  3  2  3  2  3  2  2   3   3   3   3   2   2   2 -0.0200918271
## 306  1  1  3  2  3  4  4  2  3   1   1   2   2   3   1   4 -0.9633576283
## 307  3  2  3  4  3  3  4  2  4   3   2   2   1   4   2   3 -0.0266909715
## 308  2  2  3  3  2  3  3  2  3   2   2   3   1   3   1   1 -0.2905310970
## 309  2  2  4  4  3  4  3  2  4   2   2   3   3   2   3   4 -0.0987630044
## 310  1  1  4  4  4  3  3  1  2   2   2   3   2   2   2   4 -1.4989431688
## 311  3  3  3  2  3  2  3  2  2   2   3   2   2   3   2   3 -0.2426109851
## 312  2  2  2  2  2  4  4  4  4   2   3   2   4   3   3   3  1.3962503908
## 313  2  2  3  3  3  3  4  2  3   2   2   2   2   3   2   3 -0.3970815539
## 314  3  1  3  4  3  4  4  2  2   1   3   2   2   2   2   3 -1.1391444031
## 315  1  3  4  4  4  2  4  3  1   1   3   3   2   4   3   4 -0.3754546180
## 316  4  2  2  4  3  3  4  1  2   1   3   1   3   3   2   2 -0.8915120814
## 317  1  2  3  3  3  4  4  4  4   2   1   3   1   3   1   4 -0.0097793630
## 318  2  2  4  2  3  3  2  3  3   2   2   3   2   2   3   3  0.0416624328
## 319  1  1  4  4  4  4  4  1  4   1   1   1   1   4   1   4 -1.7428561611
## 320  2  3  3  1  2  2  3  3  2   1   3   2   2   2   3   3  0.2554084970
## 321  2  2  2  3  3  3  3  3  2   2   1   2   1   3   2   3 -0.2013287851
## 322  3  3  2  4  3  3  4  2  3   2   1   2   1   2   2   3 -0.4985816658
## 323  1  1  4  2  4  4  4  4  3   3   3   3   1   3   1   4 -0.4468291968
## 324  2  2  3  3  3  4  4  3  3   2   2   1   2   3   2   3 -0.2856442403
## 325  1  2  3  4  3  3  4  2  3   2   1   3   3   3   3   4  0.0474526230
## 326  2  3  3  3  2  3  3  2  2   3   2   2   2   3   2   3  0.1856386410
## 327  1  3  2  1  4  4  4  2  2   1   2   1   1   3   3   4 -0.4075309272
## 328  1  2  1  1  4  4  4  1  4   2   1   1   1   4   1   3 -0.5092080116
## 329  3  3  2  3  2  2  2  3  3   3   3   4   3   3   3   2  1.5330394698
## 330  1  2  3  3  3  4  4  3  2   1   2   2   4   3   3   4  0.0446794828
## 331  1  2  4  3  4  4  3  1  4   2   1   2   1   4   2   4 -0.7928408820
## 332  2  1  4  4  4  2  4  1  2   1   1   3   1   2   1   3 -2.2951247657
## 333  1  2  2  3  3  3  4  3  4   2   1   2   2   4   3   4  0.6864466384
## 334  2  2  2  3  2  3  3  1  2   3   3   2   3   1   2   2 -0.2798337430
## 335  1  2  1  2  3  4  3  3  4   2   1   2   3   4   3   4  1.1842076901
## 336  2  2  2  2  3  2  3  2  2   2   3   3   1   3   2   2 -0.1247800444
## 337  2  4  3  3  3  4  3  2  2   2   2   3   1   3   3   3  0.2270054657
## 338  1  2  3  3  3  3  3  2  3   2   2   2   3   4   2   4  0.0307732927
## 339  3  2  2  3  3  3  4  2  2   2   3   2   1   2   2   3 -0.6168601630
## 340  1  2  4  3  3  3  3  2  3   3   2   3   1   3   2   3 -0.2686762886
## 341  1  1  4  2  4  3  1  1  2   1   3   2   1   2   2   3 -1.6218528939
## 342  1  1  3  3  4  4  4  2  4   1   2   1   1   3   2   4 -1.0912105896
## 343  2  2  3  1  3  3  4  1  3   2   1   2   3   3   2   4 -0.4241326881
## 344  2  2  3  3  4  2  4  3  2   2   2   2   2   3   2   3 -0.6600267722
## 345  3  3  3  2  3  2  4  1  2   2   2   2   2   2   2   3 -0.8202902734
## 346  1  1  4  4  4  4  3  1  4   1   1   2   1   4   1   4 -1.5228182611
## 347  1  2  4  3  4  4  3  2  4   3   1   2   2   4   2   4 -0.2627299892
## 348  3  2  3  3  2  2  3  2  2   2   3   2   3   2   3   2 -0.0269937136
## 349  1  1  2  2  2  4  4  2  3   1   2   1   2   4   2   4 -0.0265531942
## 350  2  2  3  3  3  3  3  2  2   2   2   2   2   2   3   3 -0.4157340854
## 351  1  1  4  4  4  4  4  1  4   1   1   1   1   4   1   4 -1.7428561611
## 352  2  2  3  3  3  3  3  2  2   2   2   2   1   3   2   3 -0.5844936969
## 353  2  2  3  3  3  4  4  2  2   2   2   3   1   3   2   2 -0.4733959851
## 354  1  2  3  4  3  4  3  3  4   1   2   2   2   4   2   4  0.0714381572
## 355  1  1  3  2  3  3  3  2  3   1   1   2   3   3   2   3 -0.5579847769
## 356  1  1  2  3  3  4  4  3  4   2   2   2   3   3   2   3  0.2003219777
## 357  2  2  3  4  4  3  4  3  3   1   1   1   3   3   2   4 -0.8485014748
## 358  1  1  3  4  4  4  4  2  1   2   1   2   1   4   2   4 -1.1124478275
## 359  2  2  3  3  3  4  3  2  3   2   2   2   1   3   2   3 -0.3949113278
## 360  2  2  3  4  3  3  4  3  3   2   2   2   1   3   2   3 -0.3451931533
## 361  1  2  3  3  3  4  4  2  3   2   1   2   2   3   2   4 -0.3831540890
## 362  2  2  2  4  3  3  3  3  2   2   2   2   2   3   2   4 -0.0989015631
## 363  2  1  3  3  3  3  3  3  2   2   2   3   3   3   2   3 -0.1670030453
## 364  2  3  2  3  3  3  3  3  2   2   2   3   1   3   2   3  0.1819587183
## 365  2  2  3  3  3  3  3  3  2   2   2   3   2   2   3   3 -0.0341145048
## 366  3  3  3  2  3  3  4  2  2   3   2   3   1   3   2   3 -0.0820218550
## 367  3  4  1  1  1  2  1  3  1   4   4   4   2   1   4   1  2.1272503783
## 368  2  3  3  2  3  3  2  2  3   2   3   3   2   3   3   3  0.4816357743
## 369  2  2  4  3  3  4  4  1  3   1   2   2   1   3   2   4 -1.0953902718
## 370  1  1  4  3  1  4  4  1  4   1   1   1   2   4   2   4 -0.3748694402
## 371  3  3  2  2  3  2  3  2  4   2   3   3   2   2   2   2  0.2012232387
## 372  3  2  2  2  4  2  4  2  2   3   3   2   1   3   2   2 -0.4724155747
## 373  3  2  2  4  4  4  4  1  2   1   1   1   3   2   1   2 -1.7627940658
## 374  1  3  3  4  4  4  4  2  3   2   2   3   2   4   3   4  0.1316006293
## 375  2  1  4  4  4  4  4  4  4   1   1   1   2   4   3   4 -0.4092194820
## 376  1  4  3  2  2  4  2  2  3   4   2   3   1   3   2   3  0.9633460300
## 377  1  2  4  3  4  4  3  1  3   1   2   2   1   4   1   4 -1.3708290473
## 378  2  2  3  3  3  3  3  2  4   2   2   2   2   3   2   4 -0.1650174701
## 379  2  2  3  3  3  3  3  2  4   2   1   2   2   3   2   3 -0.2410667784
## 380  2  2  3  3  3  3  3  2  4   3   2   2   2   3   2   3  0.0227886078
## 381  2  2  3  3  3  3  3  2  2   2   2   2   2   2   2   3 -0.7033600433
## 382  2  2  3  3  3  4  3  2  3   1   2   2   1   3   2   3 -0.5957172331
## 383  3  3  2  1  2  2  2  3  4   2   3   3   1   3   3   2  1.2785040936
## 384  2  2  2  3  3  3  4  2  2   1   2   2   1   3   2   3 -0.6335838369
## 385  3  3  3  2  3  3  3  2  2   2   2   3   1   2   2   3 -0.4365004667
## 386  2  3  3  3  3  3  4  2  2   2   2   3   2   2   2   3 -0.4495804943
## 387  1  3  2  1  3  4  3  2  3   3   2   2   2   3   2   4  0.4817664451
## 388  2  2  3  1  4  4  4  2  1   1   2   2   2   2   2   3 -1.2378827823
## 389  2  2  3  3  3  3  3  2  2   2   2   2   2   3   2   3 -0.4832288634
## 390  1  1  3  3  4  4  3  2  3   2   1   2   1   3   2   3 -0.8990218756
## 391  3  3  2  2  3  3  4  2  2   3   3   3   3   3   3   3  0.6893574896
## 392  2  2  3  3  3  3  4  1  1   1   1   2   1   3   2   4 -1.2824536661
## 393  2  3  2  4  2  3  4  3  3   2   1   2   3   3   2   4  0.4935226981
## 394  1  1  4  4  4  4  4  1  4   1   1   1   1   4   1   4 -1.7428561611
## 395  2  2  3  2  2  3  3  2  2   1   3   3   1   2   3   3 -0.1248859936
## 396  2  2  3  2  3  3  3  2  2   2   2   2   2   3   2   3 -0.4083419435
## 397  2  2  2  1  1  3  4  3  2   2   3   2   4   3   3   3  1.2023120079
## 398  1  3  2  2  2  4  4  3  4   3   1   3   2   4   3   4  1.6207570754
## 399  3  2  4  3  3  2  4  1  2   1   2   3   1   2   2   3 -1.4285013402
## 400  2  2  3  3  3  3  3  2  3   2   2   2   2   3   3   3 -0.0429971225
## 401  3  3  2  1  2  2  2  3  2   3   3   3   2   3   2   2  0.9877373086
## 402  4  4  2  2  2  1  1  3  2   2   3   3   3   2   4   1  1.3245701765
## 403  2  2  3  3  3  3  3  2  3   2   2   3   3   3   2   3 -0.0757788203
## 404  3  3  2  2  2  3  1  4  3   2   3   4   4   3   1   2  1.2646086157
## 405  3  1  4  4  4  2  3  1  2   1   2   2   2   1   2   2 -2.1904369861
## 406  3  2  2  2  2  2  2  3  2   3   3   3   3   2   3   2  0.9149514043
## 407  3  2  3  4  4  4  1  3  4   1   1   3   3   3   2   4 -0.1793853644
## 408  3  4  3  3  3  3  1  2  3   3   3   4   2   3   3   3  0.9672507234
## 409  1  3  2  2  3  3  1  3  2   2   3   3   3   2   4   2  1.0244631740
## 410  3  3  2  3  3  3  1  3  2   3   3   4   2   2   2   3  0.5864435993
## 411  3  2  2  2  2  2  1  3  3   2   2   3   3   3   3   2  1.0902914545
## 412  3  3  3  2  3  3  2  2  2   2   3   3   3   3   3   2  0.3902944652
## 413  3  4  3  3  3  3  4  2  2   3   3   3   3   2   3   3  0.3428237471
## 414  3  4  3  3  3  2  1  3  2   3   2   3   3   2   3   2  0.6572134270
## 415  3  3  2  3  3  3  1  3  1   1   3   4   3   1   4   2  0.4756117480
## 416  3  3  3  4  3  3  2  2  2   2   2   2   2   2   2   4 -0.5591305986
## 417  3  3  2  2  2  2  1  2  2   2   3   3   3   3   3   2  0.9393535944
## 418  2  2  2  2  3  2  1  2  2   2   2   3   3   3   2   2  0.1476170887
## 419  3  4  2  3  2  2  1  3  2   2   3   3   3   3   3   2  1.2591654245
## 420  3  2  3  3  3  2  1  3  2   2   2   2   2   3   2   3 -0.1862488809
## 421  2  2  3  3  4  3  2  1  3   1   2   2   1   4   1   4 -1.1501734535
## 422  4  3  2  3  3  3  2  3  2   2   3   3   3   2   3   2  0.5144902258
## 423  3  3  2  2  2  2  2  3  2   3   3   2   3   2   3   2  0.9280305737
## 424  3  3  3  4  3  2  1  3  2   3   3   3   3   2   3   3  0.4917172195
## 425  3  4  1  2  2  2  1  3  1   2   4   4   3   2   3   2  1.3961185277
## 426  2  1  1  2  2  1  3  3  4   3   4   1   2   1   2   1  0.3291129145
## 427  3  3  2  2  1  1  1  4  2   3   4   4   4   2   3   2  1.9584287858
## 428  2  2  3  3  3  3  3  2  3   2   2   2   3   3   2   3 -0.2293582469
## 429  3  4  2  2  2  2  2  3  2   3   4   4   4   2   4   1  1.8407884677
## 430  3  3  2  2  2  2  2  3  1   1   2   3   4   1   2   2  0.0578506216
## 431  4  3  2  2  3  3  1  4  3   2   3   3   3   2   3   1  1.0234817287
## 432  4  4  1  2  2  1  1  3  2   3   3   4   3   1   3   2  1.4023724366
## 433  4  4  1  1  1  1  1  4  1   2   2   2   2   1   4   1  1.4564437884
## 434  2  2  2  2  2  3  2  3  2   2   2   3   3   2   3   2  0.7150731366
## 435  2  1  2  2  3  3  2  3  2   2   2   2   2   3   2   3 -0.0623276733
## 436  3  4  2  3  3  3  1  3  2   2   2   3   3   2   3   3  0.7245581741
## 437  4  3  1  2  3  3  1  3  2   2   3   3   3   1   2   2  0.3662527200
## 438  4  4  2  1  2  2  1  4  2   3   1   4   4   2   4   3  2.0200246949
## 439  2  2  3  3  3  3  3  2  3   2   2   2   2   3   2   3 -0.3306230804
## 440  2  4  2  2  2  2  1  4  2   4   4   4   4   2   4   2  2.3760933602
## 441  3  3  3  3  3  4  2  2  2   2   3   3   2   3   2   3 -0.0235068326
## 442  2  2  3  3  3  3  2  2  3   3   2   3   2   3   2   3  0.0902207249
## 443  3  2  2  3  2  1  2  4  2   2   4   2   2   2   2   2  0.3509014099
## 444  3  1  3  4  3  4  1  2  3   1   1   2   3   3   2   3 -0.5918661481
## 445  3  2  3  3  3  3  2  2  3   2   2   2   3   3   2   2 -0.2029001331
## 446  4  3  2  2  2  2  1  3  2   3   4   3   3   2   3   2  1.1841174223
## 447  1  2  3  2  3  2  2  2  3   3   2   2   1   3   3   3  0.1879132887
## 448  3  3  1  2  2  2  1  3  2   3   3   3   3   2   3   3  1.3792425398
## 449  3  2  4  3  3  2  2  2  1   2   3   3   2   2   2   2 -0.8680296299
## 450  3  3  1  2  2  2  2  2  2   2   2   4   4   2   3   2  1.0627329589
## 451  2  4  3  4  3  4  1  2  3   4   4   4   3   3   4   4  1.6220869270
## 452  3  4  3  3  3  2  1  3  2   2   3   3   3   2   3   3  0.5324568301
## 453  3  3  2  2  2  2  1  4  1   2   3   3   4   2   3   2  1.1239617731
## 454  4  3  3  3  3  3  3  3  2   3   3   2   4   3   3   3  0.6114798332
## 455  3  2  3  2  3  2  2  2  2   2   3   2   2   3   2   2 -0.3558109350
## 456  3  3  2  2  2  2  2  3  3   2   2   3   4   3   3   2  1.2917564105
## 457  1  2  2  2  3  3  2  3  3   2   2   2   2   3   2   3  0.2839372379
## 458  4  3  2  2  2  2  2  2  3   2   3   2   2   2   3   2  0.5235249315
## 459  3  3  3  1  4  3  2  2  4   2   3   2   2   4   2   2  0.1466509096
## 460  3  2  2  2  2  2  3  3  3   1   2   2   2   2   2   3  0.0069670317
## 461  2  2  2  3  3  3  1  2  3   2   2   3   3   2   2   3  0.0551811854
## 462  2  3  3  3  3  3  2  2  3   2   2   2   3   2   2   3 -0.2163723574
## 463  2  2  2  3  3  3  2  2  2   2   2   3   3   2   3   2  0.1107430595
## 464  2  3  4  4  4  4  2  2  4   2   2   3   2   3   2   4 -0.3358085497
## 465  3  2  4  4  4  3  2  2  3   1   3   2   2   2   2   2 -1.2565167327
## 466  4  4  1  1  1  1  1  4  1   4   4   4   3   1   4   1  2.3925782474
## 467  2  3  2  3  3  3  1  3  2   1   3   3   3   2   2   2  0.1465179007
## 468  4  4  1  1  1  1  1  4  1   4   3   4   4   1   4   1  2.4307936000
## 469  3  2  2  3  2  3  1  4  2   1   2   2   4   2   3   3  0.6675636410
## 470  3  2  2  3  2  3  3  3  3   2   2   2   2   3   3   3  0.6776197411
## 471  2  2  3  3  3  4  2  2  3   3   2   3   2   3   3   4  0.4278230964
## 472  2  2  2  3  3  3  3  3  2   2   2   3   3   2   2   3 -0.0023013905
## 473  1  2  4  3  4  3  1  2  2   3   1   2   2   3   2   4 -0.6921323742
## 474  2  3  3  3  2  4  2  2  2   2   2   3   4   3   2   3  0.4443768890
## 475  3  3  1  2  1  2  1  3  2   3   3   3   4   2   4   2  2.0565365071
## 476  4  3  4  4  3  4  1  2  3   2   3   3   1   3   2   3 -0.2257691006
## 477  2  2  2  2  2  3  2  3  2   3   2   3   3   2   3   2  0.9158790418
## 478  1  1  4  4  4  4  4  4  4   2   1   1   1   4   1   3 -0.8709296213
## 479  3  3  2  1  2  2  2  3  2   2   3   4   2   2   3   2  1.0080056079
## 480  3  2  3  3  3  2  2  2  2   2   3   2   3   2   2   2 -0.5495642012
## 481  3  2  3  3  2  2  1  3  3   3   3   3   3   3   2   3  0.7864595515
## 482  2  2  2  4  4  3  3  2  2   2   3   2   2   2   2   3 -0.7984262467
## 483  2  2  2  2  2  3  2  3  2   2   2   2   2   2   3   3  0.4732287039
## 484  2  2  2  2  2  3  3  2  4   2   2   2   1   1   3   4  0.1755454562
## 485  3  3  3  3  3  3  2  2  2   3   3   3   3   3   2   3  0.2415873200
## 486  3  4  2  3  2  2  1  4  2   2   3   3   4   1   3   2  1.1482080522
## 487  3  2  2  3  3  3  2  3  2   1   2   3   3   3   3   3  0.3441077833
## 488  3  4  2  2  2  3  1  3  1   4   3   4   3   1   4   2  1.6209779828
## 489  3  3  3  3  3  2  1  1  4   3   2   3   3   4   2   2  0.4923224909
## 490  3  2  3  3  3  3  1  2  1   1   3   2   3   2   2   2 -0.7995408298
## 491  1  2  3  4  3  4  2  2  4   2   2   2   3   4   2   3  0.1989273880
## 492  1  2  3  4  3  3  2  2  2   2   2   2   1   2   2   4 -0.7730529635
## 493  2  3  3  2  2  3  2  3  3   2   2   3   3   3   2   3  0.7616683262
## 494  4  4  3  3  3  3  2  2  1   3   2   4   4   2   3   2  0.4749293306
## 495  2  2  2  2  2  2  1  2  2   1   2   3   4   3   3   3  0.6501048055
## 496  2  4  3  2  3  3  2  2  2   2   2   2   1   3   3   3  0.1777948463
## 497  2  1  4  4  3  3  3  4  3   3   4   4   3   3   2   4  0.4140658541
## 498  3  2  3  3  3  4  2  3  2   2   2   1   3   2   2   3 -0.4511999550
## 499  3  2  2  2  3  3  1  2  3   2   4   2   2   2   2   3 -0.0256777253
## 500  2  3  3  3  3  3  2  2  2   2   2   3   3   3   2   3  0.0047324662
## 501  3  3  3  3  3  4  1  2  4   1   2   2   2   4   2   3  0.1508595740
## 502  2  3  2  2  2  2  2  3  2   2   3   3   2   2   3   2  0.8065397938
## 503  2  3  2  3  3  3  1  3  2   3   3   3   2   3   2   3  0.6799958850
## 504  1  2  4  3  4  4  1  2  3   2   2   2   3   3   2   3 -0.5520414234
## 505  2  2  2  1  2  1  1  2  2   2   2   2   1   2   2   2 -0.0893098480
## 506  3  4  2  2  2  2  1  3  2   4   4   4   3   2   4   2  2.0197878404
## 507  2  3  3  2  3  3  2  2  2   3   3   3   2   3   3   3  0.5298358966
## 508  1  3  3  2  3  4  4  2  2   3   1   4   2   2   3   4  0.2812451803
## 509  3  4  2  1  1  2  1  2  2   2   3   4   4   2   4   4  1.8306408064
## 510  2  2  3  1  2  3  1  2  1   2   2   3   3   2   3   3  0.2705981817
## 511  3  3  2  2  2  3  1  3  2   2   3   3   2   2   3   3  0.8959741485
## 512  3  2  3  3  3  2  2  3  2   2   3   2   1   3   2   2 -0.3039225344
## 513  2  3  1  2  1  3  1  3  1   3   2   3   2   1   2   3  0.9199454262
## 514  1  2  4  3  4  4  2  1  3   2   2   2   2   4   1   4 -1.0022998350
## 515  1  2  3  4  4  4  2  2  4   1   1   2   2   4   1   4 -0.7422219654
## 516  2  3  3  3  3  2  2  2  2   2   2   3   1   1   2   2 -0.6880359743
## 517  2  4  2  4  3  3  2  2  3   4   2   4   3   2   3   3  1.0899701790
## 518  2  3  4  2  3  2  1  2  1   2   2   3   1   2   2   1 -0.7103392501
## 519  3  3  2  3  3  3  2  3  3   3   3   3   2   3   2   2  0.7261428347
## 520  2  2  3  3  3  3  2  2  3   2   2   2   2   3   1   3 -0.5517905649
## 521  3  3  2  1  2  2  2  3  3   2   3   3   4   2   3   2  1.2095616313
## 522  2  1  3  3  4  3  2  2  3   2   2   2   1   3   2   3 -0.8334910396
## 523  2  2  3  4  4  3  2  3  4   2   2   3   3   4   1   4 -0.0594592836
## 524  1  3  4  2  4  4  1  2  4   2   2   2   2   3   2   3 -0.2591549581
## 525  3  3  3  4  4  2  4  2  3   2   3   2   2   2   3   2 -0.5531455679
## 526  3  2  4  3  4  3  2  2  3   2   3   2   2   3   2   2 -0.7606927276
## 527  1  1  1  4  3  4  3  3  4   1   2   2   3   3   2   4  0.2222616922
## 528  2  3  2  2  2  3  1  2  3   3   2   4   3   3   3   3  1.4602721741
## 529  1  3  3  1  3  4  2  1  2   1   2   3   1   2   3   3 -0.3453975239
## 530  3  3  3  2  3  2  1  3  2   2   2   3   3   2   3   2  0.3646358457
## 531  2  3  3  4  4  2  2  2  2   1   3   3   1   2   2   3 -0.9689513144
## 532  2  2  3  4  2  3  2  3  3   2   2   3   1   3   2   4  0.2557060508
## 533  2  2  3  3  4  3  1  3  2   3   2   2   2   3   2   3 -0.2228688603
## 534  3  4  2  2  2  2  1  3  2   3   4   3   2   3   3   2  1.4966428970
## 535  2  2  3  3  3  3  2  2  3   2   2   2   2   3   2   3 -0.2641646070
## 536  2  2  2  2  3  3  2  3  1   3   4   2   2   2   3   2  0.3331249574
## 537  1  3  4  4  4  4  4  1  4   1   1   2   2   4   1   4 -1.1546947091
## 538  3  2  2  2  2  2  1  2  1   3   3   4   4   2   2   2  0.5679822430
## 539  2  3  2  3  3  2  2  3  2   2   3   3   3   2   3   3  0.5445145316
## 540  2  3  3  3  3  3  4  2  2   2   2   2   1   2   2   3 -0.7044247543
## 541  2  2  3  2  3  3  2  2  3   1   2   2   3   3   2   4 -0.2758189314
## 542  2  1  3  3  3  3  3  1  3   1   1   2   2   3   2   4 -0.9761773892
## 543  3  4  2  1  3  2  1  2  2   3   4   4   2   2   3   2  0.9755349063
## 544  3  3  4  3  3  3  3  2  2   3   2   3   3   3   2   3 -0.1060948731
## 545  1  2  2  1  1  2  1  4  1   2   2   4   2   3   2   3  1.2210994927
## 546  2  3  2  4  2  3  1  3  4   4   3   1   3   4   3   3  1.7143925577
## 547  3  4  2  3  3  2  2  3  2   2   3   3   3   3   3   3  0.9043037752
## 548  3  4  2  2  2  2  1  3  1   3   3   3   3   1   3   2  0.9419901068
## 549  2  2  3  3  3  3  2  3  3   2   2   2   2   3   2   3 -0.0361244530
## 550  3  3  3  3  3  2  2  2  2   2   3   3   2   2   2   2 -0.3305910122
## 551  3  2  2  2  3  3  1  2  2   2   3   4   1   2   4   3  0.5398129463
## 552  2  2  3  3  3  3  2  3  3   2   2   2   2   3   2   3 -0.0361244530
## 553  3  3  4  3  4  4  2  3  2   2   2   2   1   3   3   3 -0.3453117035
## 554  2  2  2  2  3  3  2  2  2   3   2   3   2   3   2   3  0.2306761005
## 555  2  3  2  3  3  3  2  2  2   2   2   3   2   2   2   3 -0.0984893086
## 556  1  4  3  2  3  4  2  2  3   2   2   2   2   3   3   2  0.4826427539
## 557  2  2  2  2  3  3  4  3  4   1   3   2   3   3   2   3  0.2401339508
## 558  2  4  2  2  2  4  1  3  2   1   1   2   2   4   2   3  0.7987619712
## 559  2  2  3  3  3  3  3  2  3   2   2   2   2   3   2   3 -0.3306230804
## 560  2  2  3  3  3  3  3  3  3   2   2   3   3   3   2   3  0.1522613336
## 561  3  4  3  3  3  3  1  3  3   2   3   2   1   2   3   2  0.3529302782
## 562  1  2  2  4  4  3  3  3  4   1   2   2   2   3   2   4 -0.2688983734
## 563  2  2  2  2  3  3  2  3  3   2   2   2   3   3   2   3  0.3582015392
## 564  1  2  3  3  3  4  2  2  4   2   2   2   4   3   2   3  0.1549479615
## 565  2  2  2  2  3  3  3  2  2   2   2   2   2   2   2   3 -0.4102988847
## 566  1  1  2  3  3  4  4  2  4   2   1   3   1   4   2   4  0.0934131096
## 567  1  1  4  3  3  4  4  3  4   1   1   3   2   4   2   4 -0.2144362855
## 568  1  1  3  4  4  4  2  2  3   3   2   2   1   3   2   4 -0.6305951084
## 569  1  1  3  4  4  4  3  2  4   2   1   2   1   4   2   4 -0.5881720052
## 570  2  2  4  3  3  3  2  2  4   2   1   2   3   3   2   3 -0.2915177101
## 571  2  2  3  3  3  3  2  2  3   2   3   2   2   3   2   3 -0.2011151260
## 572  3  3  2  3  3  2  1  3  3   2   3   3   3   3   3   3  0.9567094357
## 573  3  3  2  2  3  2  3  3  1   2   2   3   3   1   3   3  0.0901560020
## 574  1  1  2  4  4  4  3  3  4   2   1   1   2   4   2   4 -0.1942722055
## 575  2  1  3  4  4  3  1  2  4   1   1   2   1   3   1   4 -1.2277952198
## 576  1  2  2  2  2  2  2  2  2   2   2   1   3   4   2   4  0.3485341323
## 577  2  3  2  3  2  3  2  3  2   2   2   3   3   2   3   2  0.8068448127
## 578  2  2  3  3  3  3  3  2  2   2   2   2   2   2   2   3 -0.7033600433
## 579  3  3  3  2  2  2  2  3  2   2   3   3   2   2   2   2  0.2737390648
## 580  3  2  2  2  2  2  1  2  1   1   2   2   1   2   3   3 -0.2070066168
## 581  3  3  2  4  3  3  3  4  2   2   2   3   3   3   3   3  0.7982670451
## 582  1  1  3  4  4  4  3  2  3   1   1   3   2   4   2   4 -0.6867394333
## 583  2  3  3  3  3  3  3  2  1   2   2   2   2   1   2   3 -0.9094384102
## 584  2  2  2  3  3  3  2  2  3   2   2   3   2   2   2   3 -0.1125421216
## 585  3  3  3  2  3  2  3  2  2   2   3   2   1   2   2   3 -0.5640069985
## 586  3  2  4  4  2  2  2  2  1   1   3   3   3   2   2   2 -0.7410546183
## 587  2  2  3  2  3  4  3  2  3   3   2   3   2   3   2   3  0.1356257574
## 588  1  1  2  2  2  4  3  2  3   2   2   2   2   3   2   3  0.1611596038
## 589  4  4  4  3  2  2  2  2  2   1   2   1   3   1   4   1 -0.2353326813
## 590  1  2  4  2  4  4  1  1  2   1   1   1   1   3   1   3 -1.7653908782
## 591  4  4  1  2  1  1  2  3  2   3   3   3   2   2   3   2  1.6026038861
## 592  1  2  3  4  4  4  4  1  3   1   2   2   2   2   1   4 -1.6329977282
## 593  2  3  3  3  2  4  2  3  4   2   2   3   2   4   3   4  1.2958559071
## 594  2  3  2  4  3  3  2  3  2   2   3   3   2   2   3   3  0.4053393644
## 595  2  4  3  2  3  3  2  3  3   4   2   4   3   3   3   3  1.4697411140
## 596  2  3  2  3  4  3  2  2  2   2   2   2   2   2   2   3 -0.5534717383
## 597  2  2  4  2  3  3  3  2  3   2   2   2   2   3   2   3 -0.4739103993
## 598  2  2  2  3  2  3  3  3  3   3   2   3   3   3   3   3  1.1602704387
## 599  3  4  3  2  3  4  1  3  3   1   4   2   3   2   2   3  0.2549408964
## 600  1  1  4  3  4  4  4  1  4   1   1   2   2   4   2   3 -1.1384988506
## 601  1  1  4  4  4  4  3  1  4   1   1   1   1   4   1   4 -1.6763976876
## 602  2  2  2  3  3  3  4  4  4   4   4   3   3   4   3   2  1.7070911186
## 603  1  1  2  4  3  4  4  2  4   1   1   1   4   4   2   4 -0.1856440680
## 604  1  2  4  4  4  3  4  1  1   1   1   2   1   1   1   4 -2.5778056133
## 605  3  3  3  3  3  2  2  2  2   2   2   4   4   3   2   3  0.1955996078
## 606  2  4  4  3  4  4  4  1  4   3   1   4   3   4   3   4  0.4451376875
## 607  2  2  2  2  2  3  3  2  3   3   2   2   2   3   2   3  0.4646469866
## 608  2  2  3  3  3  3  3  1  3   2   2   2   2   3   2   3 -0.5586632344
## 609  2  2  3  4  3  3  3  2  2   2   2   3   2   2   2   3 -0.6246675366
## 610  1  1  3  3  3  3  3  3  3   2   2   3   3   3   2   3  0.0126032700
## 611  2  3  3  2  3  3  2  2  3   3   2   4   2   4   3   3  0.9931028051
## 612  3  3  3  3  3  3  2  4  2   3   3   2   4   2   3   3  0.7128478130
## 613  1  1  4  4  4  4  4  1  4   1   1   1   3   3   1   4 -1.7604576740
## 614  3  3  1  2  2  3  3  3  3   3   2   3   3   3   3   2  1.5799898336
## 615  1  1  4  4  4  4  4  1  2   1   1   1   3   2   1   4 -2.2858004198
## 616  3  3  3  4  4  3  4  3  3   3   2   2   2   3   2   3 -0.2048673541
## 617  4  3  2  2  2  2  2  2  2   2   3   2   2   1   3   2  0.1507879687
## 618  3  3  2  3  4  2  3  3  1   2   3   3   3   3   2   3 -0.0704480383
## 619  1  1  3  4  3  3  4  3  4   1   2   1   1   3   1   3 -0.9742567238
## 620  1  1  4  4  4  4  4  1  2   1   1   2   1   4   1   4 -1.8944883004
## 621  2  2  3  4  3  3  3  2  1   1   3   2   2   1   2   3 -1.2887403504
## 622  2  2  4  4  3  3  3  2  2   1   2   3   3   2   2   3 -0.9423828470
## 623  2  2  4  2  3  3  4  2  3   2   2   2   2   4   2   3 -0.3202376928
## 624  1  2  3  3  3  4  4  2  4   2   1   2   2   4   2   4 -0.0104171261
## 625  2  3  4  4  3  3  4  2  4   2   2   2   3   4   3   3  0.2381436378
## 626  3  1  3  4  4  4  4  2  4   1   3   2   3   3   3   3 -0.5263138690
## 627  2  2  3  3  3  3  3  2  1   2   3   2   2   1   2   3 -1.0130475252
## 628  2  2  3  3  3  3  3  2  3   2   2   2   3   3   2   3 -0.2293582469
## 629  2  3  2  2  4  4  4  1  3   1   2   1   4   2   2   4 -0.7888153876
## 630  2  2  2  2  2  4  4  2  3   1   2   2   4   3   2   3  0.2360829558
## 631  1  1  4  4  4  4  4  1  3   1   1   1   2   3   1   4 -2.0143282904
## 632  2  2  4  4  3  3  1  2  2   1   2   3   2   3   2   3 -0.6905995537
## 633  2  2  3  3  3  3  2  2  1   1   2   2   2   2   1   4 -1.2649393885
## 634  1  3  3  2  3  4  4  2  4   1   1   3   1   4   2   4  0.0826370775
## 635  3  2  3  2  3  3  4  3  2   2   3   3   2   2   2   3 -0.2772630677
## 636  1  2  3  3  3  4  4  2  3   1   1   3   2   3   2   4 -0.4303805677
## 637  2  2  2  3  4  4  4  1  3   1   1   1   3   3   2   3 -0.9875438654
## 638  1  2  1  2  1  2  3  3  4   2   2   2   2   1   2   2  0.7008260190
## 639  1  3  2  4  4  4  4  4  3   3   2   2   3   2   4   4  0.8017100863
## 640  2  2  2  3  3  3  3  2  3   2   2   2   2   3   2   3 -0.1124488417
## 641  2  1  4  4  3  3  4  4  4   3   2   2   3   3   1   3 -0.2336704367
## 642  2  2  3  3  3  3  2  2  3   4   2   4   3   3   2   3  0.5458708902
## 643  2  3  3  3  3  3  3  3  3   3   2   3   3   3   3   3  0.8073517928
## 644  1  4  3  3  2  2  3  3  1   2   2   2   3   3   3   3  0.6058404404
## 645  1  4  3  3  3  4  4  1  4   3   1   3   2   4   4   4  1.0244971595
## 646  1  1  4  4  3  3  4  2  2   2   2   2   4   2   2   3 -1.0000080720
## 647  1  1  3  3  4  4  3  2  3   2   2   2   2   4   2   4 -0.5015765538
## 648  1  1  4  2  2  3  3  2  3   1   1   2   3   2   2   3 -0.6948871923
## 649  2  2  2  4  2  4  4  3  3   1   1   3   1   3   1   3 -0.1865412428
## 650  2  2  3  4  4  4  4  2  2   1   2   2   3   2   2   4 -1.1956730980
## 651  2  1  3  3  3  4  3  2  3   2   2   1   3   3   2   4 -0.4996198559
## 652  2  2  3  3  3  3  3  3  3   2   2   2   2   3   2   3 -0.1025829264
## 653  2  2  2  2  2  3  2  1  3   4   2   2   2   3   1   3  0.2162452534
## 654  2  1  3  3  4  3  3  1  3   1   2   2   1   3   2   3 -1.3287955724
## 655  1  2  3  4  3  4  2  3  3   2   1   2   1   4   3   3  0.2964085690
## 656  1  1  4  4  4  4  4  1  4   1   1   1   1   4   1   4 -1.7428561611
## 657  2  2  3  2  3  3  3  1  4   1   1   2   4   3   1   3 -0.6801222087
## 658  2  2  3  2  3  3  2  3  3   2   2   3   2   3   2   3  0.1923418935
## 659  3  3  2  3  2  2  2  3  1   2   3   2   3   2   3   2  0.4997319656
## 660  2  1  3  3  4  4  4  1  4   1   1   1   2   4   1   4 -1.3755307013
## 661  2  1  4  4  4  3  4  2  2   1   2   2   3   2   2   3 -1.6304823462
## 662  2  2  1  2  1  2  2  1  2   3   3   2   4   4   2   2  1.1057706793
## 663  2  3  2  2  1  3  3  3  3   3   2   2   2   2   2   3  0.9406175598
## 664  1  1  4  3  3  4  4  1  2   1   1   3   2   3   2   4 -1.1958593393
## 665  2  3  4  4  3  4  2  1  2   1   2   2   3   2   2   3 -1.0539087720
## 666  3  3  2  2  3  2  3  2  2   2   3   3   2   2   3   2  0.1836376308
## 667  2  1  4  3  4  4  3  2  4   2   1   1   4   4   1   3 -0.9088705676
## 668  2  2  4  4  4  3  3  1  1   1   3   1   1   1   1   3 -2.5788279643
## 669  1  2  3  4  3  4  3  2  4   1   1   3   2   4   2   4 -0.0660720512
## 670  2  2  3  3  3  3  3  2  4   2   2   2   3   3   2   4 -0.0637526365
## 671  3  1  4  4  4  4  2  3  4   1   1   2   4   3   1   4 -0.9706172235
## 672  3  3  3  4  2  2  1  3  2   3   3   3   3   1   3   2  0.5599892154
## 673  2  2  3  3  3  3  3  2  3   2   2   2   2   3   2   3 -0.3306230804
## 674  2  2  3  3  3  3  4  2  3   1   1   2   2   3   2   3 -0.6609369401
## 675  3  2  2  4  3  3  3  1  3   2   3   3   2   1   2   2 -0.6790097277
## 676  1  3  3  3  3  3  3  2  3   1   2   3   2   3   2   4 -0.1711906034
## 677  2  1  4  4  4  4  2  1  4   1   1   2   4   4   2   4 -0.8919398613
## 678  4  4  3  3  3  2  1  3  2   2   3   3   4   2   3   2  0.5937213039
## 679  3  2  3  4  3  4  3  2  2   2   2   3   3   2   2   3 -0.5134266492
## 680  2  3  3  3  3  4  3  2  2   2   2   2   3   2   2   3 -0.3984600276
## 681  2  3  2  3  2  4  3  3  3   2   2   3   3   3   2   3  0.8754737577
## 682  2  2  3  2  3  1  1  2  1   2   3   3   1   1   2   2 -0.8398820651
## 683  3  3  3  2  2  2  2  3  3   3   3   2   3   3   3   3  1.0955931253
## 684  1  3  2  3  2  4  3  2  3   3   2   3   3   3   3   3  1.1628659992
## 685  2  3  2  3  2  3  2  3  2   3   2   2   2   2   3   3  0.7658062852
## 686  2  3  2  3  2  2  3  2  2   2   3   3   2   2   3   3  0.4501540738
## 687  1  3  4  1  3  3  1  2  3   2   2   4   3   3   1   4  0.0613501520
## 688  3  2  3  3  3  3  2  2  3   2   2   2   2   3   2   3 -0.2911651392
## 689  4  4  1  1  2  2  1  3  2   3   3   4   3   1   3   2  1.5142359426
## 690  3  2  2  3  2  3  1  4  4   2   2   1   4   3   3   3  1.2401328655
## 691  3  3  2  3  2  2  1  3  2   2   4   3   3   1   3   2  0.7152939496
## 692  1  2  4  4  3  4  3  2  3   2   2   2   2   3   3   3 -0.2720811626
## 693  2  2  3  3  3  4  4  2  3   2   2   2   3   3   2   4 -0.2458403068
## 694  2  2  2  3  4  4  2  2  3   2   2   2   3   2   2   3 -0.4292831317
## 695  1  2  3  4  3  3  4  2  3   2   2   2   3   2   2   4 -0.5508344605
## 696  2  3  2  3  2  3  2  3  2   2   2   2   2   2   2   3  0.2773744220
## 697  1  2  3  3  3  3  4  3  2   2   2   2   2   3   3   3 -0.0070206926
## 698  1  3  2  3  2  4  4  1  2   1   1   1   2   3   2   4 -0.4319495199
## 699  2  4  3  4  3  2  1  2  2   2   2   3   3   2   2   3 -0.0941451503
## 700  3  2  3  2  2  3  2  3  2   2   2   3   3   2   2   3  0.1952722350
## 701  2  2  3  1  3  1  3  2  1   2   3   3   3   2   2   3 -0.4622514178
## 702  2  2  1  2  2  2  2  3  2   2   2   2   1   2   1   4 -0.0090905656
## 703  2  2  2  3  3  3  3  3  3   2   2   2   2   3   2   3  0.1155913123
## 704  1  4  2  2  3  3  3  3  2   2   2   3   2   3   2   3  0.5517696000
## 705  3  3  3  2  3  2  2  2  2   2   3   3   2   2   3   2  0.0319218656
## 706  3  4  2  2  1  3  3  2  2   2   2   3   2   2   2   2  0.6394033804
## 707  2  2  4  2  4  4  3  1  3   1   2   2   1   4   1   4 -1.3229426597
## 708  2  2  3  2  3  4  3  2  2   2   2   3   3   2   2   4 -0.3236524498
## 709  3  3  2  3  3  4  2  2  2   3   2   3   3   2   2   3  0.2135574841
## 710  2  2  3  2  3  4  2  2  3   2   2   2   2   3   2   3 -0.1523011009
## 711  1  2  4  3  4  4  1  2  4   4   1   3   1   4   1   4 -0.1643185019
## 712  2  2  2  2  3  3  3  2  4   2   2   3   3   3   3   3  0.6575140791
## 713  2  2  4  2  4  3  4  2  2   2   1   3   1   3   2   3 -1.0051125468
## 714  1  2  2  1  1  1  1  3  1   2   3   3   2   3   2   3  0.8655528069
## 715  2  2  4  4  3  4  3  2  3   3   2   2   3   3   2   4 -0.2716370867
## 716  2  2  3  2  4  4  1  1  2   1   1   2   1   2   1   4 -1.6277690977
## 717  2  1  3  4  4  4  4  3  2   1   1   1   2   3   1   3 -1.5326798864
## 718  1  2  4  4  4  4  3  1  4   2   1   2   2   4   2   4 -0.7664629684
## 719  2  3  3  3  3  3  3  2  2   2   3   3   2   2   2   3 -0.3200725399
## 720  2  2  3  3  3  3  3  2  4   1   2   4   2   3   2   3 -0.0716643496
## 721  1  3  3  2  3  4  4  2  2   2   3   2   1   3   3   4  0.0182457302
## 722  1  3  3  4  2  4  4  2  3   1   1   2   4   3   2   4  0.0117443521
## 723  2  4  3  2  4  2  4  1  1   1   3   4   1   2   3   2 -0.7378762055
## 724  2  2  3  3  3  3  3  3  3   2   2   3   3   3   2   3  0.1522613336
## 725  2  2  3  3  3  3  2  2  4   1   2   2   2   3   2   4 -0.2993649019
## 726  2  2  3  3  3  3  3  2  2   2   2   2   2   2   2   3 -0.7033600433
## 727  2  2  3  3  3  3  2  2  1   1   2   2   4   2   2   2 -0.8007834184
## 728  1  2  3  3  3  4  3  2  4   2   2   2   3   4   2   3  0.2073558344
## 729  1  1  4  4  4  4  4  1  4   1   1   1   2   4   1   4 -1.6415913276
## 730  2  2  3  3  3  3  3  2  3   2   2   2   2   3   2   3 -0.3306230804
## 731  3  3  2  3  2  3  4  2  3   2   2   2   1   3   2   3  0.1608889181
## 732  2  3  3  3  2  2  3  3  2   2   2   2   4   2   3   2  0.4329209213
## 733  1  1  4  4  4  4  4  1  2   1   1   1   2   4   1   4 -1.9468028935
## 734  1  1  4  4  4  3  4  1  4   1   2   1   1   4   1   4 -1.7167832664
## 735  2  1  2  3  1  3  3  4  1   1   1   1   3   1   3   3  0.0057609297
## 736  1  2  3  4  3  4  4  1  3   1   1   3   1   3   1   4 -1.1221984330
## 737  2  2  4  3  4  4  4  1  3   2   1   2   1   3   1   4 -1.5466628086
## 738  2  2  3  2  3  2  2  2  3   2   2   2   1   4   2   3 -0.1073879268
## 739  2  4  2  2  1  3  3  4  4   4   2   2   3   3   3   3  2.2977499694
## 740  2  3  2  2  4  4  3  1  2   1   1   1   4   3   1   4 -1.0055069560
## 741  2  4  2  1  2  3  1  3  2   3   3   3   3   2   3   2  1.4535911080
## 742  1  1  4  4  4  4  3  1  4   1   1   2   2   4   1   4 -1.4215534275
## 743  2  2  3  3  3  3  4  2  3   2   1   2   3   3   2   3 -0.3588662013
## 744  1  3  3  3  3  4  3  2  3   2   2   2   2   3   2   3 -0.0999873660
## 745  2  1  2  2  2  1  1  3  3   2   3   4   1   2   3   2  0.7076248651
## 746  3  4  2  3  2  2  2  3  2   2   3   3   2   2   3   2  0.8713109376
## 747  1  3  3  2  3  4  4  2  3   1   1   3   1   4   1   3 -0.3705944908
## 748  2  2  2  3  2  3  2  2  3   2   2   2   3   3   3   3  0.6443034264
## 749  1  1  2  4  2  3  4  2  3   2   1   2   3   3   2   3 -0.0538339430
## 750  2  1  3  3  3  3  4  2  2   1   2   2   2   3   2   4 -0.9041520107
## 751  1  2  3  4  4  4  4  3  3   2   1   2   1   4   1   4 -0.7001634696
## 752  1  1  4  3  4  4  4  1  4   2   1   1   2   4   1   4 -1.3658985025
## 753  1  2  2  3  3  4  2  3  4   2   2   2   2   3   3   3  0.6862586451
## 754  1  2  4  4  3  4  3  2  4   1   1   2   2   4   2   4 -0.4378257164
## 755  4  3  3  3  3  3  3  3  3   3   3   2   3   2   2   3  0.1550636447
## 756  2  2  3  3  3  4  4  3  3   2   2   3   2   4   2   4  0.2546456201
## 757  2  2  3  3  3  4  4  2  3   2   2   2   1   3   2   3 -0.4613698013
## 758  2  2  3  4  4  4  3  2  3   2   2   2   1   3   2   4 -0.7582014235
## 759  2  1  3  3  3  2  4  2  1   1   2   1   1   1   2   3 -1.8018408271
## 760  1  2  3  2  3  3  2  3  1   3   2   3   2   2   3   3  0.1824315432
## 761  2  1  3  4  3  4  4  2  2   2   2   2   3   2   2   3 -0.8731226129
## 762  1  2  3  4  3  4  3  2  4   2   2   2   2   3   2   4 -0.1759272715
## 763  2  3  3  3  2  3  3  2  3   2   2   2   2   3   3   3  0.4250644767
## 764  3  2  2  3  3  3  4  2  3   1   2   1   3   4   2   3 -0.2388971659
## 765  2  2  2  2  3  3  2  2  1   2   1   2   4   2   2   3 -0.3569660080
## 766  2  3  2  4  2  2  4  3  2   2   3   4   1   3   3   3  0.8092946074
## 767  1  1  2  3  3  3  4  3  3   3   3   1   2   2   1   3 -0.4880064032
## 768  2  3  3  4  3  3  2  3  2   2   2   2   1   2   2   3 -0.4183545733
## 769  1  2  2  3  3  4  4  1  4   2   1   2   2   4   2   4 -0.0202830414
## 770  1  1  4  4  4  4  4  1  3   1   1   1   3   4   1   4 -1.6929322770
## 771  1  2  4  4  4  4  4  2  4   3   1   2   4   4   2   4 -0.2015457155
## 772  2  2  4  4  4  4  3  1  3   2   1   3   2   4   1   4 -1.0801158150
## 773  2  3  1  1  2  4  3  4  3   1   2   3   3   3   3   4  1.5712818702
## 774  1  2  2  3  3  4  4  3  4   1   1   2   3   4   3   4  0.6238821528
## 775  2  2  2  1  1  2  2  4  1   3   4   4   2   1   3   1  1.2759092973
## 776  1  1  2  3  3  4  3  2  3   2   2   2   2   3   2   3 -0.2151303193
## 777  1  2  3  3  4  4  4  2  3   3   2   3   2   3   2   3 -0.2801221068
## 778  1  1  4  4  4  4  4  2  3   1   1   1   1   4   2   4 -1.3797958321
## 779  2  2  3  3  3  4  3  2  4   2   1   3   3   4   2   4  0.2838850752
## 780  2  2  3  2  3  4  4  2  4   2   2   3   2   3   2   4  0.0339669890
## 781  2  3  4  2  4  3  1  1  3   2   3   3   1   3   1   3 -0.8760398975
## 782  2  1  4  3  4  3  4  1  3   2   2   2   3   3   2   3 -1.2100927122
## 783  2  3  1  1  2  2  2  2  1   2   3   3   3   1   3   2  0.6000886690
## 784  1  1  3  4  4  4  4  1  3   1   2   2   2   3   2   4 -1.2918991863
## 785  2  1  3  4  4  4  4  2  2   1   2   3   2   2   2   3 -1.3230169283
## 786  1  2  3  4  3  4  4  1  2   1   2   1   2   2   2   4 -1.3501539766
## 787  1  1  2  3  4  4  3  1  4   1   2   2   2   3   3   4 -0.4921478134
## 788  2  2  2  2  3  3  3  2  2   2   2   2   2   1   2   3 -0.6304300646
## 789  2  2  2  2  3  3  4  2  2   2   2   1   3   2   2   2 -0.5420717786
## 790  1  2  3  3  3  4  4  1  3   2   2   2   3   4   2   4 -0.2267487486
## 791  1  1  3  2  3  4  4  1  3   1   1   2   2   4   1   4 -0.9712666023
## 792  2  1  2  4  3  4  4  3  3   1   2   1   3   3   2   4 -0.3955567618
## 793  2  4  2  3  2  4  3  4  3   4   2   3   4   3   3   3  2.0606751096
## 794  1  1  4  4  4  4  4  1  3   1   1   2   3   3   2   4 -1.4718580724
## 795  2  2  2  3  3  4  4  2  2   2   2   3   4   4   2   3  0.2817037615
## 796  1  1  2  4  4  4  3  3  4   2   2   1   3   4   1   4 -0.3175838490
## 797  2  3  3  3  3  3  4  2  4   2   2   2   3   4   2   3  0.2435788384
## 798  2  3  2  3  2  3  3  3  2   4   2   2   2   2   3   4  0.9131535444
## 799  1  2  3  3  2  3  3  3  3   2   2   4   4   3   3   3  1.0231350872
## 800  1  1  4  4  3  4  4  3  4   1   1   2   2   4   2   4 -0.4429026319
##              PA2
## 1   -1.132349473
## 2    0.432359697
## 3   -1.791174915
## 4   -2.048571280
## 5    1.630137245
## 6    0.225616606
## 7   -0.772205919
## 8   -0.684706556
## 9   -0.900628644
## 10  -1.102422296
## 11   0.444142229
## 12  -2.292988986
## 13  -0.156818923
## 14  -0.836808899
## 15   1.059310668
## 16  -1.669506632
## 17  -1.318185599
## 18  -0.430595339
## 19  -0.793376260
## 20   0.465614840
## 21  -0.453607797
## 22   0.124082136
## 23  -0.707260275
## 24   0.073784473
## 25  -1.237978427
## 26  -0.109474912
## 27  -0.724316561
## 28   0.219547040
## 29  -1.558005548
## 30  -0.711633154
## 31  -0.592219009
## 32  -1.105632077
## 33  -0.878545024
## 34   0.287201017
## 35  -0.485667434
## 36  -0.977227440
## 37  -1.113727256
## 38  -0.583425732
## 39  -0.824503072
## 40   0.322941738
## 41  -0.625784210
## 42   0.038635048
## 43  -0.600630281
## 44  -1.145219223
## 45  -0.272947012
## 46  -0.107681272
## 47  -0.247028484
## 48  -0.695015521
## 49  -0.308634185
## 50  -0.826482998
## 51   0.145307664
## 52  -0.235931384
## 53   0.685631175
## 54  -0.820346111
## 55  -1.116419043
## 56   0.961571224
## 57   1.065094696
## 58   0.163156216
## 59  -0.718923238
## 60  -1.198624234
## 61  -0.991660964
## 62  -0.349569527
## 63  -1.101329617
## 64   0.478448968
## 65  -2.290184068
## 66  -0.089761107
## 67  -1.791174915
## 68   0.252989606
## 69   0.505436890
## 70  -1.207701711
## 71   0.603364466
## 72   0.281573351
## 73  -0.950302279
## 74  -0.964502363
## 75  -1.217338782
## 76  -0.825435897
## 77  -0.524711367
## 78  -0.220411036
## 79  -1.525339135
## 80  -0.394256955
## 81  -0.177981441
## 82  -0.254298668
## 83  -0.244153263
## 84   0.232058978
## 85  -0.575352240
## 86  -1.428178849
## 87  -0.851705292
## 88  -1.102213007
## 89  -0.132904944
## 90  -0.310158474
## 91  -0.826997905
## 92  -0.627084366
## 93  -0.061722199
## 94  -1.024820703
## 95   0.114534274
## 96  -0.637073009
## 97  -0.784494429
## 98  -0.727993431
## 99  -0.755935377
## 100 -0.456164727
## 101 -0.521663403
## 102 -0.017889938
## 103  1.572883564
## 104 -0.979398591
## 105 -1.316230266
## 106 -1.509211351
## 107 -0.438162725
## 108  0.242021422
## 109 -1.698591963
## 110 -2.060040642
## 111 -1.244518710
## 112 -0.295666637
## 113 -1.018110609
## 114 -0.770364188
## 115 -0.060789421
## 116  0.420865170
## 117  0.215666340
## 118  1.363601674
## 119 -0.451996434
## 120 -1.510109505
## 121  0.699604473
## 122 -0.625618448
## 123 -0.349799229
## 124  1.046891778
## 125 -0.130669056
## 126 -1.105079423
## 127 -0.815335387
## 128 -0.358436481
## 129 -1.622702534
## 130 -1.153358226
## 131  0.819955947
## 132  0.113301998
## 133 -0.137047084
## 134 -0.891073143
## 135  0.080764651
## 136 -0.968905816
## 137  0.236636313
## 138 -1.227382708
## 139 -0.234967579
## 140  0.213600758
## 141  0.185852271
## 142  0.621392719
## 143 -1.380253619
## 144 -0.766915720
## 145 -0.927691052
## 146  0.881533049
## 147  0.148761072
## 148 -0.770364188
## 149 -0.697394195
## 150 -1.864192392
## 151 -0.748606814
## 152  0.572808522
## 153 -1.054949146
## 154  0.586555254
## 155 -0.397727582
## 156  0.501591009
## 157 -1.054295381
## 158 -0.960326645
## 159  1.215940319
## 160  0.142568504
## 161  0.126976177
## 162  0.881980145
## 163 -0.734725038
## 164  0.161769624
## 165 -1.232224690
## 166  0.500222896
## 167  1.357025259
## 168  0.320945699
## 169 -0.420869622
## 170 -0.295680346
## 171  0.855793801
## 172  0.633016581
## 173  0.245397424
## 174 -0.483302218
## 175  1.334601994
## 176  0.758828259
## 177 -1.140399200
## 178  0.243805730
## 179  0.344644316
## 180  0.527591002
## 181  0.509883302
## 182  0.361708628
## 183 -0.413423344
## 184 -1.005632347
## 185 -1.520109664
## 186 -0.738019647
## 187 -1.516558852
## 188 -0.671950185
## 189  1.103875657
## 190 -2.533749773
## 191  0.843727502
## 192  0.149748046
## 193 -0.959739595
## 194  0.401571866
## 195 -0.085640941
## 196  0.514895016
## 197 -1.557617705
## 198 -0.621414716
## 199  0.110412777
## 200  0.190588686
## 201 -0.079797936
## 202 -0.128295249
## 203 -0.062861012
## 204 -0.737407491
## 205 -0.344651493
## 206  1.858207063
## 207  0.108925167
## 208  0.242355282
## 209 -1.219638960
## 210  0.121652225
## 211  1.802508147
## 212  0.159568171
## 213  1.379535032
## 214 -0.628998126
## 215  0.250446539
## 216  0.163668511
## 217  1.056731256
## 218  0.720170425
## 219  0.461427726
## 220  0.602835435
## 221 -0.690411985
## 222  1.391114513
## 223  0.567596564
## 224 -0.084491101
## 225 -0.287958606
## 226 -0.138038755
## 227 -0.184746597
## 228 -1.507620446
## 229  0.569383512
## 230 -0.314077811
## 231  0.154105449
## 232  0.177900810
## 233 -1.206776285
## 234  0.435926167
## 235  0.050059171
## 236  0.937285207
## 237  0.321878525
## 238  1.551538273
## 239  1.188585446
## 240  0.121161161
## 241  0.621007561
## 242  1.272190091
## 243  0.157924130
## 244  1.085777637
## 245  1.531772110
## 246  0.509046490
## 247  0.954206338
## 248  0.675426850
## 249 -0.420765700
## 250  0.304585422
## 251 -0.974996126
## 252  0.407998384
## 253 -0.275782634
## 254  0.388518559
## 255  0.941576470
## 256 -0.244109605
## 257 -1.093665749
## 258  0.305118515
## 259  0.849612233
## 260 -0.481082024
## 261 -1.844620388
## 262  0.814636333
## 263 -0.495326562
## 264  0.502143586
## 265 -0.511277577
## 266 -0.297940804
## 267 -0.477872242
## 268  0.595598821
## 269  0.051609180
## 270 -0.608445173
## 271  1.271257265
## 272 -0.805002199
## 273  0.101735064
## 274  0.277601218
## 275  0.250446539
## 276  0.540048719
## 277  0.343401406
## 278  1.119776642
## 279 -0.077813535
## 280 -0.189901033
## 281 -0.384516944
## 282  1.016422208
## 283 -0.243107091
## 284 -0.302356859
## 285  1.102179820
## 286 -0.483503521
## 287 -1.225951708
## 288 -0.177850288
## 289  0.376646591
## 290 -0.898781867
## 291 -2.302352918
## 292 -1.091176262
## 293 -0.185456108
## 294 -1.819759592
## 295  0.210100855
## 296 -0.894445867
## 297 -0.241736236
## 298  0.033092210
## 299 -0.203462248
## 300 -0.667576913
## 301  0.147487650
## 302  0.699200135
## 303  0.124116518
## 304  1.282324763
## 305 -1.136573953
## 306  0.972530170
## 307  0.809783702
## 308 -0.385163812
## 309  0.754419270
## 310 -0.206842016
## 311 -0.605374567
## 312  1.260814863
## 313  0.273458610
## 314 -0.548191016
## 315  0.144082838
## 316 -0.881905203
## 317  1.509414627
## 318 -0.039460696
## 319  1.271257265
## 320 -0.628865161
## 321  0.273142594
## 322 -0.139560794
## 323  0.882153418
## 324  0.629050304
## 325  1.062682366
## 326  0.183624248
## 327  0.652118734
## 328  1.321843512
## 329 -0.089339544
## 330  0.961894626
## 331  1.455351573
## 332 -1.032534062
## 333  1.852520015
## 334 -1.031732345
## 335  2.232456757
## 336 -0.674714425
## 337  0.291595605
## 338  1.186860321
## 339 -0.684445529
## 340  0.408378321
## 341 -0.872240147
## 342  1.012088096
## 343  0.668074814
## 344 -0.243927702
## 345 -0.948637354
## 346  1.264605471
## 347  1.721619266
## 348 -1.053548735
## 349  1.493784931
## 350 -0.320434101
## 351  1.271257265
## 352 -0.066309852
## 353 -0.065833205
## 354  1.663170109
## 355  0.533455550
## 356  1.232512562
## 357  0.662911244
## 358  0.891476344
## 359  0.459318796
## 360  0.327327730
## 361  1.161410620
## 362  0.482609839
## 363  0.175360277
## 364  0.135765960
## 365 -0.195132995
## 366 -0.108296325
## 367 -1.567993998
## 368  0.185707211
## 369  0.487242939
## 370  1.723141005
## 371 -0.683799839
## 372 -0.842961514
## 373 -0.748609111
## 374  1.420098905
## 375  1.664263369
## 376  0.921880140
## 377  0.849183878
## 378  0.814970889
## 379  0.658709701
## 380  0.616252027
## 381 -0.415150654
## 382  0.356130816
## 383 -0.052682410
## 384 -0.061619799
## 385 -0.637476062
## 386 -0.383869561
## 387  1.174581232
## 388 -0.593765770
## 389 -0.012170969
## 390  0.689745586
## 391  0.033918303
## 392 -0.070491601
## 393  1.060631193
## 394  1.271257265
## 395 -0.505415024
## 396 -0.011238143
## 397  0.465259197
## 398  2.328619476
## 399 -1.167311473
## 400  0.345163091
## 401 -0.515307113
## 402 -1.552245300
## 403  0.320945699
## 404  0.022050979
## 405 -1.950971528
## 406 -0.762272931
## 407  0.974835860
## 408  0.095830943
## 409 -0.284758297
## 410 -0.462584753
## 411 -0.077230137
## 412 -0.502066627
## 413 -0.462951427
## 414 -0.842319143
## 415 -1.392892761
## 416 -0.322668337
## 417 -0.602525384
## 418 -0.466815147
## 419 -0.502608638
## 420 -0.389653796
## 421  0.470638256
## 422 -0.889560717
## 423 -0.786724465
## 424 -0.678899524
## 425 -1.211692419
## 426 -1.238799568
## 427 -0.921894573
## 428  0.304585422
## 429 -1.060792228
## 430 -1.537269355
## 431 -0.841988469
## 432 -1.543620474
## 433 -1.847257888
## 434 -0.279415745
## 435  0.167647833
## 436 -0.295723177
## 437 -1.324470237
## 438 -0.110568368
## 439  0.250446539
## 440 -0.392380277
## 441 -0.086936904
## 442  0.346982725
## 443 -1.331325418
## 444  0.393800154
## 445 -0.197721863
## 446 -1.116410286
## 447  0.286510172
## 448 -0.406603454
## 449 -1.657237928
## 450 -0.681482219
## 451  0.943602235
## 452 -0.789245935
## 453 -0.996102035
## 454 -0.105561494
## 455 -0.922202225
## 456 -0.008170438
## 457  0.599562456
## 458 -0.967763022
## 459  0.161166693
## 460 -0.400682529
## 461 -0.043192166
## 462 -0.129497591
## 463 -0.489987892
## 464  0.876741698
## 465 -1.090171348
## 466 -1.845313798
## 467 -0.755700579
## 468 -1.645529260
## 469 -0.135310716
## 470  0.462280004
## 471  1.006617261
## 472 -0.150844701
## 473  0.484369281
## 474  0.445073382
## 475 -0.458956368
## 476 -0.164657512
## 477 -0.176227764
## 478  1.399360890
## 479 -0.910397949
## 480 -1.271975852
## 481  0.001703691
## 482 -0.577561664
## 483 -0.048008063
## 484  0.236086469
## 485 -0.192621182
## 486 -1.145488295
## 487  0.043263112
## 488 -0.989788757
## 489  0.184368288
## 490 -1.397782270
## 491  1.386637230
## 492 -0.013939221
## 493  0.500414519
## 494 -1.034743477
## 495 -0.018542356
## 496 -0.009855059
## 497  0.591283616
## 498 -0.205820520
## 499 -0.581438182
## 500  0.027224864
## 501  0.844363120
## 502 -0.750302681
## 503  0.101423026
## 504  0.513396336
## 505 -1.155812699
## 506 -0.732848361
## 507  0.026277684
## 508  0.719280084
## 509 -0.142935609
## 510 -0.456012447
## 511 -0.385785140
## 512 -0.868333105
## 513 -0.534312423
## 514  0.983498670
## 515  1.481447818
## 516 -1.451930257
## 517  0.280157357
## 518 -1.720420131
## 519 -0.092242609
## 520  0.132717915
## 521 -0.555862952
## 522  0.080688347
## 523  1.178030621
## 524  0.714716529
## 525 -1.032479107
## 526 -0.583070857
## 527  1.492152490
## 528  0.667592391
## 529 -0.159179681
## 530 -0.936483041
## 531 -1.097508683
## 532  0.700269199
## 533  0.053235204
## 534 -0.598272370
## 535  0.227434467
## 536 -0.901334234
## 537  1.325573913
## 538 -1.181060731
## 539 -0.495888273
## 540 -0.454368722
## 541  0.481225038
## 542  0.493961483
## 543 -1.193598273
## 544 -0.108829418
## 545  0.132295422
## 546  1.348726255
## 547 -0.278388216
## 548 -1.467064708
## 549  0.336375296
## 550 -1.317845715
## 551 -0.530395259
## 552  0.336375296
## 553  0.006302515
## 554  0.170164006
## 555 -0.345027742
## 556  0.445394002
## 557  0.536120984
## 558  0.929508985
## 559  0.250446539
## 560  0.429886528
## 561 -0.690162173
## 562  0.981346753
## 563  0.476312968
## 564  1.038729254
## 565 -0.329351865
## 566  1.882186425
## 567  1.772346232
## 568  0.925249857
## 569  1.656316795
## 570  0.604970550
## 571  0.081788812
## 572 -0.030691524
## 573 -1.169283285
## 574  1.887902193
## 575  0.569008921
## 576  0.808356604
## 577 -0.288439827
## 578 -0.415150654
## 579 -1.107273567
## 580 -1.040304848
## 581  0.269379911
## 582  1.361010468
## 583 -1.088839102
## 584 -0.074318978
## 585 -1.062493135
## 586 -1.606521358
## 587  0.633938764
## 588  0.885434589
## 589 -1.939070232
## 590 -0.034126097
## 591 -1.087429385
## 592  0.204308601
## 593  1.770574538
## 594 -0.287948841
## 595  0.709077560
## 596 -0.462086512
## 597  0.166513402
## 598  0.813355517
## 599 -0.359583784
## 600  1.135498962
## 601  1.248245193
## 602  1.020196946
## 603  1.907761716
## 604 -0.980276432
## 605 -0.342675488
## 606  1.623695615
## 607  0.540131800
## 608  0.141505710
## 609 -0.399723202
## 610  0.615366156
## 611  0.853880808
## 612 -0.245224050
## 613  0.976555348
## 614  0.411767835
## 615  0.048340648
## 616  0.198476473
## 617 -1.633360214
## 618 -0.705317441
## 619  0.561160055
## 620  0.762382527
## 621 -1.330514307
## 622 -0.533638262
## 623  0.592505158
## 624  1.827007813
## 625  0.994021194
## 626  0.428180627
## 627 -1.226393500
## 628  0.304585422
## 629  0.292194629
## 630  0.728056820
## 631  0.659798957
## 632 -0.230821604
## 633 -0.596777923
## 634  1.678882795
## 635 -0.588938676
## 636  1.074582917
## 637  0.491932673
## 638 -0.199422370
## 639  1.152570295
## 640  0.335312501
## 641  0.738860556
## 642  0.520669866
## 643  0.619699805
## 644 -0.018099002
## 645  2.010865833
## 646 -0.184179975
## 647  1.303125342
## 648  0.146308395
## 649  0.740004726
## 650  0.022098987
## 651  0.861234386
## 652  0.359387368
## 653  0.416650328
## 654 -0.108428391
## 655  1.365044991
## 656  1.271257265
## 657  0.461074932
## 658  0.353668399
## 659 -1.153462779
## 660  1.233806566
## 661 -0.619593703
## 662  0.131819661
## 663  0.338700181
## 664  0.626249874
## 665 -0.427031555
## 666 -1.114318302
## 667  1.144428266
## 668 -1.790235304
## 669  1.716235212
## 670  0.869109772
## 671  0.864135280
## 672 -1.283087559
## 673  0.250446539
## 674  0.315916284
## 675 -1.189101114
## 676  0.634822793
## 677  1.321338231
## 678 -1.214402266
## 679 -0.259961548
## 680 -0.106091885
## 681  0.870370869
## 682 -2.137192550
## 683  0.095913607
## 684  1.136722944
## 685  0.046155835
## 686 -0.535257421
## 687  0.584768927
## 688  0.050046096
## 689 -1.279676507
## 690  0.879731687
## 691 -1.446122405
## 692  0.699763815
## 693  0.892515478
## 694  0.125772277
## 695  0.402980197
## 696 -0.151748698
## 697  0.391886855
## 698  0.847777225
## 699 -0.670802117
## 700 -0.334479788
## 701 -1.277071286
## 702 -0.167818387
## 703  0.444253330
## 704  0.360134784
## 705 -1.222196336
## 706 -0.607072329
## 707  0.672728332
## 708  0.221199317
## 709 -0.102078108
## 710  0.491378434
## 711  1.646287944
## 712  0.764078548
## 713 -0.065923479
## 714 -0.401662480
## 715  0.886892598
## 716 -0.211361071
## 717  0.220633856
## 718  1.508557631
## 719 -0.552527287
## 720  0.442596620
## 721  0.640921042
## 722  1.258174817
## 723 -1.620098494
## 724  0.429886528
## 725  0.688770836
## 726 -0.415150654
## 727 -0.997597289
## 728  1.410582127
## 729  1.325396149
## 730  0.250446539
## 731  0.219404554
## 732 -0.575526253
## 733  0.800161134
## 734  0.862600469
## 735 -0.393559151
## 736  0.815853826
## 737  0.540661529
## 738  0.314196952
## 739  1.357190362
## 740  0.460473837
## 741 -0.360135178
## 742  1.318744354
## 743  0.473243149
## 744  0.682754795
## 745 -0.795304480
## 746 -0.936715134
## 747  1.019641893
## 748  0.561854358
## 749  0.843354406
## 750  0.217651221
## 751  1.422844379
## 752  1.429516955
## 753  1.218974831
## 754  1.615008972
## 755 -0.394779107
## 756  1.366657385
## 757  0.482330868
## 758  0.659594320
## 759 -1.486342800
## 760 -0.199253397
## 761 -0.067830126
## 762  1.254437576
## 763  0.437770327
## 764  0.518506512
## 765 -0.361058023
## 766 -0.039036268
## 767  0.096230842
## 768 -0.392384862
## 769  1.802932946
## 770  1.116917525
## 771  1.851976279
## 772  0.990195477
## 773  1.359478726
## 774  2.066482060
## 775 -1.525240708
## 776  0.783803271
## 777  0.732707888
## 778  1.212297139
## 779  1.697106530
## 780  1.118287205
## 781 -0.375382133
## 782  0.041183466
## 783 -1.384903030
## 784  0.710096094
## 785 -0.309495206
## 786  0.120745861
## 787  1.130216871
## 788 -0.732331550
## 789 -0.570468029
## 790  1.363942705
## 791  1.266569026
## 792  0.973932443
## 793  1.326451838
## 794  0.825014670
## 795  0.886335936
## 796  1.701678870
## 797  0.985103430
## 798  0.474262730
## 799  0.873189106
## 800  1.755053129
#After we did the analysis, we need to separate variables to different factors
F1 <- c("Q1", "Q2", "Q4", "Q6", "Q9", "Q10")
F2 <- c("Q3", "Q5", "Q7", "Q8")
#Cronbach's Alpha to check if these variables are measuring the same aspects and we have good intgernal consistency
alpha.pa1 <- alpha(data[F1])
## Warning in alpha(data[F1]): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( Q4 Q6 Q9 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
print(alpha.pa1, digits = 3)
## 
## Reliability analysis   
## Call: alpha(x = data[F1])
## 
##   raw_alpha std.alpha G6(smc) average_r    S/N    ase mean    sd median_r
##     -0.454    -0.444   0.114    -0.054 -0.307 0.0846 2.46 0.292   -0.239
## 
##  lower alpha upper     95% confidence boundaries
## -0.62 -0.454 -0.288 
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc) average_r    S/N alpha se var.r  med.r
## Q1     -0.187    -0.200  0.1789   -0.0345 -0.167   0.0676 0.150 -0.206
## Q2     -0.365    -0.398  0.0663   -0.0604 -0.285   0.0752 0.147 -0.206
## Q4     -0.406    -0.381  0.1726   -0.0583 -0.276   0.0815 0.200 -0.253
## Q6     -0.229    -0.179  0.1743   -0.0313 -0.152   0.0702 0.140 -0.206
## Q9     -0.393    -0.380  0.1612   -0.0583 -0.276   0.0798 0.187 -0.258
## Q10    -0.589    -0.601  0.0521   -0.0812 -0.375   0.0924 0.199 -0.324
## 
##  Item statistics 
##       n raw.r std.r    r.cor   r.drop mean    sd
## Q1  800 0.246 0.256 -0.00294 -0.23780 2.16 0.847
## Q2  800 0.362 0.379  0.33163 -0.13165 2.36 0.852
## Q4  800 0.391 0.370 -0.00381 -0.10969 2.72 0.863
## Q6  800 0.254 0.240 -0.01370 -0.21493 2.96 0.818
## Q9  800 0.396 0.370  0.06265 -0.11738 2.58 0.885
## Q10 800 0.441 0.479  0.33241  0.00185 2.01 0.770
## 
## Non missing response frequency for each item
##         1     2     3     4 miss
## Q1  0.230 0.436 0.274 0.060    0
## Q2  0.152 0.431 0.321 0.095    0
## Q4  0.076 0.324 0.405 0.195    0
## Q6  0.036 0.248 0.439 0.278    0
## Q9  0.101 0.388 0.344 0.168    0
## Q10 0.254 0.520 0.189 0.038    0
alpha.pa2 <- alpha(data[F2])
## Warning in alpha(data[F2]): Some items were negatively correlated with the total scale and probably 
## should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
## Some items ( Q8 ) were negatively correlated with the total scale and 
## probably should be reversed.  
## To do this, run the function again with the 'check.keys=TRUE' option
print(alpha.pa2, digits = 3)
## 
## Reliability analysis   
## Call: alpha(x = data[F2])
## 
##   raw_alpha std.alpha G6(smc) average_r     S/N    ase mean    sd median_r
##     0.0423    -0.025     0.3  -0.00613 -0.0244 0.0478 2.61 0.431  -0.0164
## 
##  lower alpha upper     95% confidence boundaries
## -0.051 0.042 0.136 
## 
##  Reliability if an item is dropped:
##    raw_alpha std.alpha G6(smc) average_r    S/N alpha se  var.r  med.r
## Q3    -0.464    -0.656 -0.0811    -0.152 -0.396   0.0799 0.2167 -0.334
## Q5    -0.512    -0.696 -0.1693    -0.158 -0.410   0.0837 0.1616 -0.334
## Q7    -0.507    -0.511  0.1196    -0.127 -0.338   0.0892 0.3553 -0.443
## Q8     0.655     0.679  0.6056     0.413  2.111   0.0214 0.0177  0.377
## 
##  Item statistics 
##      n  raw.r  std.r  r.cor r.drop mean    sd
## Q3 800  0.689  0.716  0.712  0.301 2.73 0.793
## Q5 800  0.700  0.726  0.788  0.342 2.87 0.759
## Q7 800  0.755  0.678  0.479  0.229 2.56 1.034
## Q8 800 -0.174 -0.139 -0.893 -0.535 2.28 0.775
## 
## Non missing response frequency for each item
##        1     2     3     4 miss
## Q3 0.050 0.338 0.448 0.165    0
## Q5 0.040 0.241 0.528 0.191    0
## Q7 0.186 0.290 0.299 0.225    0
## Q8 0.146 0.478 0.324 0.052    0
#alpha.pa1 <- aplha(data[F1], check.keys = TRUE)

Summary Write Up -

Initially, the factorability of the 10 items was examined. Several well-recognized criteria for the factorability of a correlation were used. Firstly, it was observed that 6 of the 10 items correlated at least 0.3 with at least one other item, suggesting reasonable factorability. Secondly, the Kaiser-Meyer-Olkin measure of sampling adequacy was .93 (overall MSA), above the commonly recommended value of .84. Given these overall indicators, factor analysis was deemed to be suitable with all 16 items. An exploratory factor analysis with oblique rotation was conducted since the factors are correlated. In total, 45% of the variance is explained by the two factors. Factor one includes 6 items, explains 23% of the variance and, factor two includes 4 items, explains 22% of the variance. The test of Cronbach’s alpha was also performed in terms of studying the internal consistency.The Cronbach’s alpha for the first factor was .454 and .042 for factor 2.