1. The statement of the research/ study purpose H0: Death in white = Death in latin/hispanic = Death in black americans H1: at least one pair of death rate differ from one another
  2. The type of analysis conducted, i.e. D’Agostino test, Scatterplot of residuals, Bartlett test. etc.
  3. Descriptive statistics: basic information of the data, i.e. age and gender of the participants.
  4. The ANOVA test
  5. Post-hoc analysis
  6. Effect size
  7. Conclusions
library(readxl)
## Warning: package 'readxl' was built under R version 3.6.3
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.6.2
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
setwd("E:/mikhilesh/HU Sem VI ANLY 510 and 506/ANLY 506 Doha Exploratory Data Analysis/assignment and project")
data <- read_xlsx("EDA Project data COVID-19 death count.xlsx")
#View(data)
names(data)
##  [1] "Data as of"                                   
##  [2] "State"                                        
##  [3] "Indicator"                                    
##  [4] "Non-Hispanic White"                           
##  [5] "Non-Hispanic Black or African American"       
##  [6] "Non-Hispanic American Indian or Alaska Native"
##  [7] "Non-Hispanic Asian"                           
##  [8] "Hispanic or Latino"                           
##  [9] "Other"                                        
## [10] "Footnote"
str(data)
## Classes 'tbl_df', 'tbl' and 'data.frame':    126 obs. of  10 variables:
##  $ Data as of                                   : POSIXct, format: "2020-06-03" "2020-06-03" ...
##  $ State                                        : chr  "United States" "United States" "United States" "Alabama" ...
##  $ Indicator                                    : chr  "Distribution of COVID-19 deaths (%)" "Weighted distribution of population (%)" "Unweighted distribution of population (%)" "Distribution of COVID-19 deaths (%)" ...
##  $ Non-Hispanic White                           : num  53.2 42.2 60.4 51.5 54.3 65.4 53 54.7 54.4 64.8 ...
##  $ Non-Hispanic Black or African American       : num  23 17.7 12.5 45.7 38.1 26.5 3.1 5.2 4.4 30.5 ...
##  $ Non-Hispanic American Indian or Alaska Native: num  0.5 0.3 0.7 NA 0.4 0.6 21.4 2 4 0 ...
##  $ Non-Hispanic Asian                           : num  5.3 11 5.7 NA 2 1.5 1.8 4.1 3.4 0 ...
##  $ Hispanic or Latino                           : num  16.4 27 18.3 1.8 3.8 4.4 18.4 31.8 31.6 NA ...
##  $ Other                                        : num  1.6 1.9 2.4 0 1.4 1.6 2.3 2.2 2.2 NA ...
##  $ Footnote                                     : chr  NA NA NA "One or more data cells have counts between 1–9 and have been suppressed in accordance with NCHS confidentiality standards." ...
dim(data) #shape(data), glimpse(data), dim() are function to shws how many rows/records and number of variables/columns
## [1] 126  10
summary(data)
##    Data as of            State            Indicator         Non-Hispanic White
##  Min.   :2020-06-03   Length:126         Length:126         Min.   :12.70     
##  1st Qu.:2020-06-03   Class :character   Class :character   1st Qu.:49.27     
##  Median :2020-06-03   Mode  :character   Mode  :character   Median :60.95     
##  Mean   :2020-06-03                                         Mean   :59.97     
##  3rd Qu.:2020-06-03                                         3rd Qu.:72.08     
##  Max.   :2020-06-03                                         Max.   :93.60     
##  NA's   :3                                                                    
##  Non-Hispanic Black or African American
##  Min.   : 1.400                        
##  1st Qu.: 8.225                        
##  Median :16.050                        
##  Mean   :19.253                        
##  3rd Qu.:26.575                        
##  Max.   :75.700                        
##  NA's   :4                             
##  Non-Hispanic American Indian or Alaska Native Non-Hispanic Asian
##  Min.   : 0.000                                Min.   : 0.000    
##  1st Qu.: 0.200                                1st Qu.: 2.450    
##  Median : 0.300                                Median : 4.000    
##  Mean   : 1.521                                Mean   : 5.023    
##  3rd Qu.: 0.600                                3rd Qu.: 6.500    
##  Max.   :45.600                                Max.   :17.100    
##  NA's   :25                                    NA's   :15        
##  Hispanic or Latino     Other         Footnote        
##  Min.   : 1.10      Min.   :0.000   Length:126        
##  1st Qu.: 6.20      1st Qu.:1.600   Class :character  
##  Median :10.95      Median :1.900   Mode  :character  
##  Mean   :14.36      Mean   :2.003                     
##  3rd Qu.:19.23      3rd Qu.:2.300                     
##  Max.   :49.10      Max.   :5.800                     
##  NA's   :8          NA's   :23
names(data)[names(data) == "Non-Hispanic White"] <- "Non.Hispanic.White"
names(data)[names(data) == "Non-Hispanic Black or African American"] <- "Non.Hispanic.Black.or.African.American"
names(data)[names(data) == "Non-Hispanic American Indian or Alaska Native"] <- "Non.Hispanic.American.Indian.or.Alaska.Native"
names(data)[names(data) == "Non-Hispanic Asian"] <- "Non.Hispanic.Asian"
names(data)[names(data) == "Hispanic or Latino"] <- "Hispanic.or.Latino"
data$Non.Hispanic.Black.or.African.American <- ifelse(is.na(data$Non.Hispanic.Black.or.African.American), 
                                                         ave(data$Non.Hispanic.Black.or.African.American, FUN = function(x) 
                                                           mean(x, na.rm = TRUE)), 
                                                         data$Non.Hispanic.Black.or.African.American)
data$Non.Hispanic.American.Indian.or.Alaska.Native <- ifelse(is.na(data$Non.Hispanic.American.Indian.or.Alaska.Native), 
                                                                ave(data$Non.Hispanic.American.Indian.or.Alaska.Native, FUN = function(x) 
                                                                  mean(x, na.rm = TRUE)), 
                                                                data$Non.Hispanic.American.Indian.or.Alaska.Native)
data$Non.Hispanic.Asian <- ifelse(is.na(data$Non.Hispanic.Asian), 
                                     ave(data$Non.Hispanic.Asian, FUN = function(x) 
                                       mean(x, na.rm = TRUE)), 
                                     data$Non.Hispanic.Asian)
data$Hispanic.or.Latino <- ifelse(is.na(data$Hispanic.or.Latino), 
                                     ave(data$Hispanic.or.Latino, FUN = function(x) 
                                       mean(x, na.rm = TRUE)), 
                                     data$Hispanic.or.Latino)
data$Other <- ifelse(is.na(data$Other), 
                        ave(data$Other, FUN = function(x) 
                          mean(x, na.rm = TRUE)), 
                        data$Other)
subdata <- data[,c(-1,-10)]
#View(subdata)
subdata <- subdata[which(subdata$Indicator == "Weighted distribution of population (%)"),]
subdata <- subdata[,c(-2,-5,-6,-8)]
summary(subdata)
##     State           Non.Hispanic.White Non.Hispanic.Black.or.African.American
##  Length:42          Min.   :27.90      Min.   : 2.00                         
##  Class :character   1st Qu.:43.70      1st Qu.: 8.55                         
##  Mode  :character   Median :57.05      Median :17.95                         
##                     Mean   :55.09      Mean   :19.39                         
##                     3rd Qu.:62.55      3rd Qu.:25.90                         
##                     Max.   :86.60      Max.   :50.10                         
##  Hispanic.or.Latino
##  Min.   : 2.700    
##  1st Qu.: 7.425    
##  Median :12.700    
##  Mean   :16.486    
##  3rd Qu.:22.875    
##  Max.   :47.200
#reshape - long to wide format
library(reshape2)
## Warning: package 'reshape2' was built under R version 3.6.2
longdata <- melt(subdata)
## Using State as id variables
#View(longdata)
summary(longdata)
##     State                                             variable      value      
##  Length:126         Non.Hispanic.White                    :42   Min.   : 2.00  
##  Class :character   Non.Hispanic.Black.or.African.American:42   1st Qu.:11.22  
##  Mode  :character   Hispanic.or.Latino                    :42   Median :24.25  
##                                                                 Mean   :30.32  
##                                                                 3rd Qu.:47.02  
##                                                                 Max.   :86.60
colnames(longdata)[c(1,2,3)] <- c("State","Race","Percentage") #Using State as id variables

Analysis

library(moments)
plot(density(longdata$Percentage), main = "Density Plot")

qqnorm(longdata$Percentage)
qqline(longdata$Percentage)

qqnorm(log(longdata$Percentage)) #transformation of data using log() function
qqline(log(longdata$Percentage))

qqnorm(sqrt(longdata$Percentage)) #transformation of data using sqrt() function
qqline(sqrt(longdata$Percentage))

agostino.test(longdata$Percentage)
## 
##  D'Agostino skewness test
## 
## data:  longdata$Percentage
## skew = 0.55041, z = 2.50894, p-value = 0.01211
## alternative hypothesis: data have a skewness
shapiro.test(longdata$Percentage)
## 
##  Shapiro-Wilk normality test
## 
## data:  longdata$Percentage
## W = 0.92041, p-value = 1.536e-06
anscombe.test(longdata$Percentage)
## 
##  Anscombe-Glynn kurtosis test
## 
## data:  longdata$Percentage
## kurt = 2.1196, z = -3.3505, p-value = 0.0008068
## alternative hypothesis: kurtosis is not equal to 3
# par(mfrow = c(2,2))
# Data has a skewness and it's not perfectly normalized. Transformation of data with log() function. However, sample size >20. And The F-test could still be robust to this assumption the sizes of each group are equal. 
#Residual plot (lm - linear model)
eruption.lm <- lm(longdata$Percentage ~ factor(longdata$Race), data = longdata)
eruption.lm
## 
## Call:
## lm(formula = longdata$Percentage ~ factor(longdata$Race), data = longdata)
## 
## Coefficients:
##                                                 (Intercept)  
##                                                       55.09  
## factor(longdata$Race)Non.Hispanic.Black.or.African.American  
##                                                      -35.70  
##                     factor(longdata$Race)Hispanic.or.Latino  
##                                                      -38.61
eruption.res <- resid(eruption.lm)
eruption.res
##            1            2            3            4            5            6 
## -12.89285714  -0.79285714  -0.39285714  -0.09285714 -27.19285714   7.30714286 
##            7            8            9           10           11           12 
##   6.80714286   6.60714286 -17.99285714 -23.49285714 -13.09285714 -11.89285714 
##           13           14           15           16           17           18 
##   4.70714286  24.20714286  14.40714286  14.00714286  -6.59285714 -13.99285714 
##           19           20           21           22           23           24 
##  13.40714286   4.10714286  13.70714286 -10.19285714  10.30714286  17.00714286 
##           25           26           27           28           29           30 
## -11.79285714  31.50714286  -6.09285714 -16.99285714   7.50714286 -24.29285714 
##           31           32           33           34           35           36 
##  -0.19285714  11.20714286   5.10714286  15.00714286   2.40714286   7.20714286 
##           37           38           39           40           41           42 
##   4.30714286  -4.99285714 -21.89285714  -3.29285714   5.80714286   1.50714286 
##           43           44           45           46           47           48 
##  -1.69285714  18.70714286 -14.19285714  14.40714286 -11.79285714 -12.89285714 
##           49           50           51           52           53           54 
##  -7.39285714   2.30714286  25.50714286  -1.19285714  19.00714286   2.90714286 
##           55           56           57           58           59           60 
##   4.10714286 -12.99285714 -10.69285714   0.50714286  18.80714286  13.40714286 
##           61           62           63           64           65           66 
## -11.69285714   8.80714286  -6.69285714  30.70714286   5.30714286 -10.89285714 
##           67           68           69           70           71           72 
##  -7.99285714 -17.39285714  -4.99285714 -17.19285714  -8.79285714   3.90714286 
##           73           74           75           76           77           78 
##   6.90714286   2.90714286  -7.59285714 -15.09285714   3.70714286 -11.09285714 
##           79           80           81           82           83           84 
##  10.60714286  18.40714286  -2.39285714  -5.79285714 -13.29285714   2.80714286 
##           85           86           87           88           89           90 
##  10.51428571 -12.68571429  15.31428571  -9.78571429  30.71428571   7.31428571 
##           91           92           93           94           95           96 
##   2.51428571  -6.58571429  -5.18571429  30.01428571  -5.68571429   8.61428571 
##           97           98           99          100          101          102 
##  -5.58571429  -8.98571429  -2.58571429 -10.88571429  -8.08571429  -2.18571429 
##          103          104          105          106          107          108 
##  -3.78571429 -11.18571429  -9.58571429 -13.78571429 -12.98571429  -3.78571429 
##          109          110          111          112          113          114 
##  14.91428571 -10.68571429   6.51428571  28.51428571   2.01428571  12.01428571 
##          115          116          117          118          119          120 
##  -5.28571429 -11.18571429  -1.98571429  -2.68571429  -5.48571429   6.01428571 
##          121          122          123          124          125          126 
## -10.28571429  -9.08571429  25.01428571  -1.48571429  -5.88571429  -2.58571429
plot(longdata$Percentage, eruption.res, ylab = "Residuals", xlab = "Group", main = "Independence of observations(driving school)")
abline(0,0)

#Data Meets the criterion for Independence of Observations
bartlett.test(longdata$Percentage, factor(longdata$Race))
## 
##  Bartlett test of homogeneity of variances
## 
## data:  longdata$Percentage and factor(longdata$Race)
## Bartlett's K-squared = 0.5516, df = 2, p-value = 0.759
# Variance are equal. p-value = 0.759 failed to reject the null hypothesis

#Checking variance among groups
tapply(longdata$Percentage,longdata$Race,var)
##                     Non.Hispanic.White Non.Hispanic.Black.or.African.American 
##                               182.4846                               152.7934 
##                     Hispanic.or.Latino 
##                               146.8983
#Ratio of largest variance to smallest variance 182.28/146.89 = 1.24 - is way less than 3 (signifies that there is no issue with failing to reject null hypothesis)
#We may have a problem with variance equality as it did not pass the bartlett test and the ratio of largest variance and smallest variance is slightly greater than 3. DELETE AFTER VERIFYING WITH PINWEN
library(car)
## Warning: package 'car' was built under R version 3.6.2
## Loading required package: carData
## 
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
## 
##     recode
scatterplot(longdata$Percentage ~ longdata$Race)

## [1] "89" "94"

#After checking that all the assumptions fulfill our criteria, now we will perform ANOVA

#With only one “Predictor” and more than two groups
#IV - race (predictor) - Race
#DV - mortality (outcome) - Percentage

#Perform the linear model: 
summary(aov(Percentage ~ factor(Race), data = longdata)) #(Don't forget to factor()ize your predictor)
##               Df Sum Sq Mean Sq F value Pr(>F)    
## factor(Race)   2  38828   19414   120.8 <2e-16 ***
## Residuals    123  19769     161                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#We can also create a model:
model <- aov(aov(Percentage ~ factor(Race), data = longdata))
model
## Call:
##    aov(formula = aov(Percentage ~ factor(Race), data = longdata))
## 
## Terms:
##                 factor(Race) Residuals
## Sum of Squares      38828.34  19769.23
## Deg. of Freedom            2       123
## 
## Residual standard error: 12.67775
## Estimated effects may be unbalanced
summary(model)
##               Df Sum Sq Mean Sq F value Pr(>F)    
## factor(Race)   2  38828   19414   120.8 <2e-16 ***
## Residuals    123  19769     161                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#To find out what group differs from the others
library(pgirmess)
## Warning: package 'pgirmess' was built under R version 3.6.3
#Pairwise comparisons using t tests - Bonferroni Method
pairwise.t.test(longdata$Percentage, longdata$Race, paired = FALSE, p.adjust.method = "bonferroni") #method can be "none", "bonferroni", "holm", "hochberg", "hommel", "BH", or "BY“
## 
##  Pairwise comparisons using t tests with pooled SD 
## 
## data:  longdata$Percentage and longdata$Race 
## 
##                                        Non.Hispanic.White
## Non.Hispanic.Black.or.African.American <2e-16            
## Hispanic.or.Latino                     <2e-16            
##                                        Non.Hispanic.Black.or.African.American
## Non.Hispanic.Black.or.African.American -                                     
## Hispanic.or.Latino                     0.89                                  
## 
## P value adjustment method: bonferroni
#Kurskal-Wallis:
kruskalmc(Percentage ~ factor(Race), data = longdata)
## Multiple comparison test after Kruskal-Wallis 
## p.value: 0.05 
## Comparisons
##                                                             obs.dif
## Non.Hispanic.White-Non.Hispanic.Black.or.African.American 56.011905
## Non.Hispanic.White-Hispanic.or.Latino                     62.380952
## Non.Hispanic.Black.or.African.American-Hispanic.or.Latino  6.369048
##                                                           critical.dif
## Non.Hispanic.White-Non.Hispanic.Black.or.African.American     19.07688
## Non.Hispanic.White-Hispanic.or.Latino                         19.07688
## Non.Hispanic.Black.or.African.American-Hispanic.or.Latino     19.07688
##                                                           difference
## Non.Hispanic.White-Non.Hispanic.Black.or.African.American       TRUE
## Non.Hispanic.White-Hispanic.or.Latino                           TRUE
## Non.Hispanic.Black.or.African.American-Hispanic.or.Latino      FALSE
#Tukey’s Test:
TukeyHSD(model)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = aov(Percentage ~ factor(Race), data = longdata))
## 
## $`factor(Race)`
##                                                                 diff       lwr
## Non.Hispanic.Black.or.African.American-Non.Hispanic.White -35.700000 -42.26334
## Hispanic.or.Latino-Non.Hispanic.White                     -38.607143 -45.17048
## Hispanic.or.Latino-Non.Hispanic.Black.or.African.American  -2.907143  -9.47048
##                                                                  upr     p adj
## Non.Hispanic.Black.or.African.American-Non.Hispanic.White -29.136663 0.0000000
## Hispanic.or.Latino-Non.Hispanic.White                     -32.043806 0.0000000
## Hispanic.or.Latino-Non.Hispanic.Black.or.African.American   3.656194 0.5463936
library(pastecs)
## Warning: package 'pastecs' was built under R version 3.6.3
## 
## Attaching package: 'pastecs'
## The following objects are masked from 'package:dplyr':
## 
##     first, last
library(compute.es)
## Warning: package 'compute.es' was built under R version 3.6.3
#First get the relevant stats for each factor level (only relevant output pasted below):
by(longdata$Percentage, longdata$Race, stat.desc)
## longdata$Race: Non.Hispanic.White
##      nbr.val     nbr.null       nbr.na          min          max        range 
##   42.0000000    0.0000000    0.0000000   27.9000000   86.6000000   58.7000000 
##          sum       median         mean      SE.mean CI.mean.0.95          var 
## 2313.9000000   57.0500000   55.0928571    2.0844354    4.2096027  182.4845819 
##      std.dev     coef.var 
##   13.5086854    0.2451985 
## ------------------------------------------------------------ 
## longdata$Race: Non.Hispanic.Black.or.African.American
##      nbr.val     nbr.null       nbr.na          min          max        range 
##   42.0000000    0.0000000    0.0000000    2.0000000   50.1000000   48.1000000 
##          sum       median         mean      SE.mean CI.mean.0.95          var 
##  814.5000000   17.9500000   19.3928571    1.9073377    3.8519467  152.7933624 
##      std.dev     coef.var 
##   12.3609612    0.6373976 
## ------------------------------------------------------------ 
## longdata$Race: Hispanic.or.Latino
##      nbr.val     nbr.null       nbr.na          min          max        range 
##   42.0000000    0.0000000    0.0000000    2.7000000   47.2000000   44.5000000 
##          sum       median         mean      SE.mean CI.mean.0.95          var 
##  692.4000000   12.7000000   16.4857143    1.8701816    3.7769084  146.8983275 
##      std.dev     coef.var 
##   12.1201620    0.7351918
#n - sample size, M - mean, SD - standard deviation 
#Race: Non.Hispanic.White (n = 42, M = 55.09 , SD = 13.50) 

#Race: Non.Hispanic.Black.or.African.American (n = 42, M = 19.39, SD = 12.36)

#Race: Hispanic.or.Latino (n = 42, M = 16.48, SD = 12.12)

#Use these values to compute a few standard Measures of Effect Size (MES or mes) for any pair of interest 

#OPtion 1 will compare Race: Non.Hispanic.White and Non.Hispanic.Black.or.African.American ~ Percentage vs Race
mes(19.39, 55.09, 12.36, 13.50, 42, 42)
## Mean Differences ES: 
##  
##  d [ 95 %CI] = -2.76 [ -3.36 , -2.16 ] 
##   var(d) = 0.09 
##   p-value(d) = 0 
##   U3(d) = 0.29 % 
##   CLES(d) = 2.56 % 
##   Cliff's Delta = -0.95 
##  
##  g [ 95 %CI] = -2.73 [ -3.32 , -2.14 ] 
##   var(g) = 0.09 
##   p-value(g) = 0 
##   U3(g) = 0.31 % 
##   CLES(g) = 2.66 % 
##  
##  Correlation ES: 
##  
##  r [ 95 %CI] = -0.81 [ -0.87 , -0.72 ] 
##   var(r) = 0 
##   p-value(r) = 0 
##  
##  z [ 95 %CI] = -1.14 [ -1.35 , -0.92 ] 
##   var(z) = 0.01 
##   p-value(z) = 0 
##  
##  Odds Ratio ES: 
##  
##  OR [ 95 %CI] = 0.01 [ 0 , 0.02 ] 
##   p-value(OR) = 0 
##  
##  Log OR [ 95 %CI] = -5 [ -6.09 , -3.92 ] 
##   var(lOR) = 0.31 
##   p-value(Log OR) = 0 
##  
##  Other: 
##  
##  NNT = -5 
##  Total N = 84
#OPtion 2 will compare Race: Non.Hispanic.Black.or.African.American and Hispanic.or.Latino ~ Percentage vs Race
mes(16.48, 19.39, 12.12, 12.36, 42, 42)
## Mean Differences ES: 
##  
##  d [ 95 %CI] = -0.24 [ -0.67 , 0.19 ] 
##   var(d) = 0.05 
##   p-value(d) = 0.28 
##   U3(d) = 40.6 % 
##   CLES(d) = 43.33 % 
##   Cliff's Delta = -0.13 
##  
##  g [ 95 %CI] = -0.24 [ -0.66 , 0.19 ] 
##   var(g) = 0.05 
##   p-value(g) = 0.28 
##   U3(g) = 40.69 % 
##   CLES(g) = 43.39 % 
##  
##  Correlation ES: 
##  
##  r [ 95 %CI] = -0.12 [ -0.33 , 0.1 ] 
##   var(r) = 0.01 
##   p-value(r) = 0.28 
##  
##  z [ 95 %CI] = -0.12 [ -0.34 , 0.1 ] 
##   var(z) = 0.01 
##   p-value(z) = 0.28 
##  
##  Odds Ratio ES: 
##  
##  OR [ 95 %CI] = 0.65 [ 0.3 , 1.42 ] 
##   p-value(OR) = 0.28 
##  
##  Log OR [ 95 %CI] = -0.43 [ -1.21 , 0.35 ] 
##   var(lOR) = 0.16 
##   p-value(Log OR) = 0.28 
##  
##  Other: 
##  
##  NNT = -16.73 
##  Total N = 84
#OPtion 3 will compare Race: Non.Hispanic.White and Hispanic.or.Latino ~ Percentage vs Race
mes(16.48, 55.09, 12.12, 13.50, 42, 42)
## Mean Differences ES: 
##  
##  d [ 95 %CI] = -3.01 [ -3.63 , -2.39 ] 
##   var(d) = 0.1 
##   p-value(d) = 0 
##   U3(d) = 0.13 % 
##   CLES(d) = 1.67 % 
##   Cliff's Delta = -0.97 
##  
##  g [ 95 %CI] = -2.98 [ -3.6 , -2.36 ] 
##   var(g) = 0.1 
##   p-value(g) = 0 
##   U3(g) = 0.14 % 
##   CLES(g) = 1.75 % 
##  
##  Correlation ES: 
##  
##  r [ 95 %CI] = -0.84 [ -0.89 , -0.76 ] 
##   var(r) = 0 
##   p-value(r) = 0 
##  
##  z [ 95 %CI] = -1.21 [ -1.43 , -0.99 ] 
##   var(z) = 0.01 
##   p-value(z) = 0 
##  
##  Odds Ratio ES: 
##  
##  OR [ 95 %CI] = 0 [ 0 , 0.01 ] 
##   p-value(OR) = 0 
##  
##  Log OR [ 95 %CI] = -5.46 [ -6.59 , -4.33 ] 
##   var(lOR) = 0.33 
##   p-value(Log OR) = 0 
##  
##  Other: 
##  
##  NNT = -5 
##  Total N = 84
#Effect size  (more than or equal to) < = 0.1 is small, 0.25 is medium, 0.4 is large (Cohen, 1988)

#Summary of ANOVA:
Observations from the study were analyzed by conducting a one-way analysis of variance using R version 3.6.1. First, all assumptions are met and only adjustment made is transformation of data using log (and sqrt) function during normality testing. Results suggest that the Race has a significant influence on measure of the Percentage death (F(2, 123) = 120.8, p < .001). Continuing the discussion with specifically which Race experienced the signiificantaly differed measures of the Percentage death, a Tukey’s hoc test was established. The result suggested that there is a significant difference between Race:- Non.Hispanic.White VS Non.Hispanic.Black.or.African.American, and Non.Hispanic.White Vs Hispanic.or.Latino (p-value < 0.001). The effect was large:- Cohen’s D = 3.28 for Race: Non.Hispanic.White and Non.Hispanic.Black.or.African.American, and Cohen’s D = 2.41 for Race: Non.Hispanic.White and Hispanic.or.Latino.