colunas <- c("Rural Male", "Rural Female", "Urban Male", "Urban Female")
colors <- c("red", "green", "blue", "gray", "yellow")
faixas2 <- names(VADeaths[,1])
barplot1 <- barplot(VADeaths, main = "População Rural x Urbano por Sexo", names.arg= colunas, xlab="Zona e Sexo", ylab="População", col=colors, ylim=c(0,100), beside = T)
legend("topright", pch = c(15,15,15,15,15), col=colors, legend= faixas2)
barplot2 <- barplot(VADeaths, main = "População Rural x Urbano por Sexo", names.arg= colunas, xlab="Zona e Sexo", ylab="População", col=colors, ylim=c(0,260))
legend("topright", pch = c(15,15,15,15,15), col=colors, legend= faixas2)
labels <- c("leve", "moderado", "severo")
resultado <- c("moderado", "leve", "leve", "severo", "leve", "moderado", "moderado", "moderado", "leve", "leve", "severo","leve", "moderado", "moderado", "leve", "severo", "moderado", "moderado", "moderado","leve")
quantidades <- c(sum(resultado =="leve"), sum(resultado == "moderado"), sum(resultado =="severo"))
pct <- round(quantidades/sum(quantidades)*100)
lbls <- paste(labels, pct)
lbls <- paste(lbls, "%", sep="")
pie(quantidades, labels=lbls, main = "Estágios de Saúde", col = rainbow(3))
legend("topleft", legend= labels, cex=0.8, fill=rainbow(length(quantidades)))
library(twitteR)
library(tm)
## Loading required package: NLP
library(wordcloud)
## Loading required package: RColorBrewer
library(RColorBrewer)
library(syuzhet)
#chaves de autorização
consumer_key <- '9OxAwudl99CaQkJOLo4OCTAXu'
consumer_secret <- 'VZM7ZFaMkKhhZsJBK4Hx3BpWC173zHQMieVfzK2wgfn2da8glo'
access_token <- '1282402530543247360-qs8GFFvufitQvCcbtAFW9h2G4yQwJH'
access_secret <- 'mgaB0ZZ6UzIoLIYzbMCYSeBpSyi7lbD479gsaBNjfroFq'
#Realiza acesso a conta
setup_twitter_oauth(consumer_key, consumer_secret, access_token, access_secret)
## [1] "Using direct authentication"
#consultando o twitter
tweets <- searchTwitteR("#racismo", n=500, lang="pt")
#convertendo os twittes para o formata df (data frame)
tweets <- twListToDF(tweets)
#colapsando todos os twites em um vetor de uma posição
tweets_t <- paste(tweets$text, collapse = " ")
#criando o source e corpus
tweets_s <- VectorSource(tweets_t)
corpus <- Corpus(tweets_s)
#Limpeza
corpus <- tm_map(corpus, tolower)
## Warning in tm_map.SimpleCorpus(corpus, tolower): transformation drops documents
corpus <- tm_map(corpus, removePunctuation)
## Warning in tm_map.SimpleCorpus(corpus, removePunctuation): transformation drops
## documents
corpus <- tm_map(corpus, stripWhitespace)
## Warning in tm_map.SimpleCorpus(corpus, stripWhitespace): transformation drops
## documents
corpus <- tm_map(corpus, removeWords, stopwords('portuguese'))
## Warning in tm_map.SimpleCorpus(corpus, removeWords, stopwords("portuguese")):
## transformation drops documents
#remove URL's
removeURL <- function(x) gsub("http[^[:space:]]*", "", x)
corpus <- tm_map(corpus, removeURL)
## Warning in tm_map.SimpleCorpus(corpus, removeURL): transformation drops
## documents
#remove qualquer coisa que não seja letra em portugues
removeNumPunct <- function(x) gsub("[^[:alpha:][:space:]]*", "", x)
corpus <- tm_map(corpus, content_transformer(removeNumPunct))
## Warning in tm_map.SimpleCorpus(corpus, content_transformer(removeNumPunct)):
## transformation drops documents
#cria a matriz
dtm <- TermDocumentMatrix(corpus)
dtm <- as.matrix(dtm)
#FORNECE A FREQUENCIA DE CADA PALAVRA
fre <- sort(rowSums(dtm), decreasing = TRUE)
# Cria a nuvem de palavras
wordcloud(corpus, min.freq = 5, max.words = 100,
random.order = FALSE, rot.per = 0.15,
color=brewer.pal(8,"Dark2"), scale=c(5,.2))
`