file1<-read.csv("file1.csv")

Author

The work has been done by Zahanat Hussain (PIDE, Islamabad)

Pakistan Economic Survey (2019-2020)

chapter #8 “TRADE AND PAYMENTS” Tabel No. 8.2

Histogram

Ma’am the following Histograms may look similar because there was no big difference between its data

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

Tabel No. 8.2

This is a test file for graphing/Plot/Tabels.

pie(file1$X2013.14, main="pie 2013.14")

summary(file1$X2013.14)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    5.10   14.25   43.65   44.30   62.62  100.00
summary(file1$X2014.15)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    4.80   14.43   43.35   44.63   64.47  100.00
summary(file1$X2015.16)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    4.90   14.43   43.15   44.78   65.28  100.00
summary(file1$X2016.17)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    4.10   14.25   43.55   44.90   66.17  100.00
summary(file1$X2018.19)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    3.70   14.47   43.65   44.85   65.92  100.00
barplot(file1$X2013.14, main="barplot 2013.14")

pie(file1$X2013.14, file1$X2017.18, main="Table8.2 (2013-14) vs (2017-18)")

boxplot(file1$X2014.15~file1$X2015.16, main="boxplot 2014.15 vs 2015.16")

boxplot(file1$X2014.15~file1$X2015.16, main="Table8.2:Pakistan's Major Exports")

plot(file1$X2013.14, main="Scatter plot 2013.14")

plot(file1$X2013.14,file1$X2014.15, main="Table8.2 Scatter Plot 2013-14 vs 2014-15")

Including Plots

You can also embed plots, for example:

hist(file1$X2014.15, main="hist 2014.15")

hist(file1$X2014.15, main="Table8.2:Pakistan's Major Exports")

hist(file1$X2016.17, main="Table8.2:Pakistan's Major Exports", col='Green')

hist(file1$X2013.14, main="hist 2013.14")

hist(file1$X2018.192, main="Table8.2:Leather & Leather Manufactured", col='red')

summary(file1)
##   Commodity            X2013.14         X2014.15         X2015.16     
##  Length:6           Min.   :  5.10   Min.   :  4.80   Min.   :  4.90  
##  Class :character   1st Qu.: 14.25   1st Qu.: 14.43   1st Qu.: 14.43  
##  Mode  :character   Median : 43.65   Median : 43.35   Median : 43.15  
##                     Mean   : 44.30   Mean   : 44.63   Mean   : 44.78  
##                     3rd Qu.: 62.62   3rd Qu.: 64.47   3rd Qu.: 65.28  
##                     Max.   :100.00   Max.   :100.00   Max.   :100.00  
##     X2016.17         X2017.18         X2018.19        X2018.192     
##  Min.   :  4.10   Min.   :  4.20   Min.   :  3.70   Min.   :  3.70  
##  1st Qu.: 14.25   1st Qu.: 12.38   1st Qu.: 14.47   1st Qu.: 14.18  
##  Median : 43.55   Median : 44.05   Median : 43.65   Median : 43.60  
##  Mean   : 44.90   Mean   : 45.60   Mean   : 44.85   Mean   : 45.10  
##  3rd Qu.: 66.17   3rd Qu.: 70.62   3rd Qu.: 65.92   3rd Qu.: 67.40  
##  Max.   :100.00   Max.   :100.00   Max.   :100.00   Max.   :100.00  
##     X2019.20     
##  Min.   :  3.70  
##  1st Qu.: 14.30  
##  Median : 43.75  
##  Mean   : 44.87  
##  3rd Qu.: 66.08  
##  Max.   :100.00

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

. . . . . ## Pakistan Economic Survey (2019-2020) chapter #8 “TRADE AND PAYMENTS” Tabel No. 8.3

Tabel No. 8.3

This is a test file for graphing/Plot/Tabels.

file2<-read.csv("file2.csv")

boxplot(file2$GERMANY~file2$CHINA, main="Table8.3:Major Exports Markets")

pie(file2$USA, main="pie chart USA")

summary(file2$USA)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    15.7    17.0   189.2   223.4   396.4   532.8
summary(file2$CHINA)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    7.20    8.00   81.05  103.69  184.28  259.60
summary(file2$AFGHANISTAN)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   4.200   5.825  61.050  74.700 131.950 176.400
summary(file2$GERMANY)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    5.50    5.75   65.50   76.14  141.43  173.40
summary(file2$BANGLADESH)
##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   3.100   3.325  34.400  43.420  80.200 101.800
barplot(file2$USA, main="barplot USA")

barplot(file2$GERMANY, file2$UNITED.KINGDOM, main="Table8.3 GERMANY vs UK")

pie(file2$CHINA, main="Pie chart CHINA")

pie(file2$AFGHANISTAN, file2$BANGLADESH, main="Table8.3 AFGHANISTAN vs BANGLADESH")

boxplot(file2$U.A.E, main="boxplot UAE")

boxplot(file2$USA, main="boxplot USA")

boxplot(file2$UNITED.KINGDOM~file2$U.A.E, main="boxplot UK")

plot(file2$GERMANY, main="Scatter plot GERMANY")

plot(file2$U.A.E,file2$USA, main="Table8.3 Scatter Plot (U.A.E) vs (USA)")

hist(file2$BANGLADESH, main="hist BANGLADESH")

hist(file2$AFGHANISTAN, main="Table8.3:Major Exports Markets")

hist(file2$UNITED.KINGDOM, main="Table8.3: Histogram Major Exports Markets", col='Green')

hist(file2$USA, main="hist USA")

hist(file2$CHINA, main="Table8.3: Histogram Billion & Percentage Share", col='red')

summary(file2)
##    Country               USA            CHINA         AFGHANISTAN     
##  Length:10          Min.   : 15.7   Min.   :  7.20   Min.   :  4.200  
##  Class :character   1st Qu.: 17.0   1st Qu.:  8.00   1st Qu.:  5.825  
##  Mode  :character   Median :189.2   Median : 81.05   Median : 61.050  
##                     Mean   :223.4   Mean   :103.69   Mean   : 74.700  
##                     3rd Qu.:396.4   3rd Qu.:184.28   3rd Qu.:131.950  
##                     Max.   :532.8   Max.   :259.60   Max.   :176.400  
##  UNITED.KINGDOM       GERMANY           U.A.E           BANGLADESH     
##  Min.   :  7.100   Min.   :  5.50   Min.   :  3.400   Min.   :  3.100  
##  1st Qu.:  7.325   1st Qu.:  5.75   1st Qu.:  4.025   1st Qu.:  3.325  
##  Median : 85.350   Median : 65.50   Median : 41.250   Median : 34.400  
##  Mean   : 97.490   Mean   : 76.14   Mean   : 55.230   Mean   : 43.420  
##  3rd Qu.:181.750   3rd Qu.:141.43   3rd Qu.: 98.750   3rd Qu.: 80.200  
##  Max.   :226.800   Max.   :173.40   Max.   :141.600   Max.   :101.800  
##      ITALY             SPAIN             FRANCE         All.Other      
##  Min.   :  3.200   Min.   :  4.000   Min.   : 1.600   Min.   :  39.70  
##  1st Qu.:  3.325   1st Qu.:  4.025   1st Qu.: 1.725   1st Qu.:  40.33  
##  Median : 36.000   Median : 44.800   Median :20.300   Median : 450.90  
##  Mean   : 44.380   Mean   : 53.910   Mean   :23.070   Mean   : 535.60  
##  3rd Qu.: 81.950   3rd Qu.:101.675   3rd Qu.:43.375   3rd Qu.:1017.20  
##  Max.   :107.400   Max.   :126.500   Max.   :53.900   Max.   :1243.80  
##      Total     
##  Min.   : 100  
##  1st Qu.: 100  
##  Median :1119  
##  Mean   :1331  
##  3rd Qu.:2482  
##  Max.   :3128