#Assignment 06 - Chapter 07 (page 297): 6, 10
library(ISLR)
library(boot)
attach(Wage)
set.seed(1)
deltas <- rep(NA, 10)
for (i in 1:10) {
fit <- glm(wage ~ poly(age, i), data = Wage)
deltas[i] <- cv.glm(Wage, fit, K=10)$delta[1]
}
plot(1:10, deltas, xlab = "Degree", ylab = "Test MSE", type = "l")
d.min <- which.min(deltas)
points(which.min(deltas), deltas[which.min(deltas)], col = "red", cex = 2, pch = 20)
d=9 is the optimal degree for the polynomial.
fit=lm(wage~poly(age,9,raw=T),data=Wage)
coef(summary(fit))
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.672614e+04 9.389613e+03 1.781345 0.07495767
## poly(age, 9, raw = T)1 -3.996085e+03 2.178443e+03 -1.834376 0.06669748
## poly(age, 9, raw = T)2 4.110180e+02 2.178983e+02 1.886284 0.05935349
## poly(age, 9, raw = T)3 -2.385722e+01 1.234470e+01 -1.932588 0.05338125
## poly(age, 9, raw = T)4 8.630460e-01 4.370355e-01 1.974773 0.04838577
## poly(age, 9, raw = T)5 -2.020061e-02 1.003917e-02 -2.012180 0.04429051
## poly(age, 9, raw = T)6 3.062119e-04 1.498256e-04 2.043789 0.04106184
## poly(age, 9, raw = T)7 -2.901876e-06 1.402659e-06 -2.068840 0.03864687
## poly(age, 9, raw = T)8 1.561962e-08 7.484297e-09 2.086986 0.03697392
## poly(age, 9, raw = T)9 -3.643193e-11 1.736268e-11 -2.098290 0.03596325
fit.1 <- lm(wage ~ poly(age, 1), data = Wage)
fit.2 <- lm(wage ~ poly(age, 2), data = Wage)
fit.3 <- lm(wage ~ poly(age, 3), data = Wage)
fit.4 <- lm(wage ~ poly(age, 4), data = Wage)
fit.5 <- lm(wage ~ poly(age, 5), data = Wage)
fit.6 <- lm(wage ~ poly(age, 6), data = Wage)
fit.7 <- lm(wage ~ poly(age, 7), data = Wage)
fit.8 <- lm(wage ~ poly(age, 8), data = Wage)
fit.9 <- lm(wage ~ poly(age, 9), data = Wage)
fit.10 <- lm(wage ~ poly(age, 10), data = Wage)
fittable <- anova(fit.1, fit.2, fit.3, fit.4, fit.5, fit.6, fit.7, fit.8, fit.9, fit.10)
fittable
## Analysis of Variance Table
##
## Model 1: wage ~ poly(age, 1)
## Model 2: wage ~ poly(age, 2)
## Model 3: wage ~ poly(age, 3)
## Model 4: wage ~ poly(age, 4)
## Model 5: wage ~ poly(age, 5)
## Model 6: wage ~ poly(age, 6)
## Model 7: wage ~ poly(age, 7)
## Model 8: wage ~ poly(age, 8)
## Model 9: wage ~ poly(age, 9)
## Model 10: wage ~ poly(age, 10)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 2998 5022216
## 2 2997 4793430 1 228786 143.7638 < 2.2e-16 ***
## 3 2996 4777674 1 15756 9.9005 0.001669 **
## 4 2995 4771604 1 6070 3.8143 0.050909 .
## 5 2994 4770322 1 1283 0.8059 0.369398
## 6 2993 4766389 1 3932 2.4709 0.116074
## 7 2992 4763834 1 2555 1.6057 0.205199
## 8 2991 4763707 1 127 0.0796 0.777865
## 9 2990 4756703 1 7004 4.4014 0.035994 *
## 10 2989 4756701 1 3 0.0017 0.967529
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\(M_{3}\) with a \(p-value\) of 0.001669** provides a reasonable fit. .
agelims=range(age)
age.grid=seq(from=agelims[1],to=agelims[2])
preds=predict(fit.3,newdata=list(age=age.grid),se=TRUE)
se.bands=cbind(preds$fit+2*preds$se.fit,preds$fit-2*preds$se.fit)
par(mfrow=c(1,1),mar=c(4.5,4.5,1,1),oma=c(0,0,2,0))
plot(age,wage,xlim=agelims,cex =.5,col="darkgrey")
title("Degree-3 Polynomial",outer=T)
lines(age.grid,preds$fit,lwd=2,col="darkblue")
matlines(age.grid,se.bands,lwd=1,col="lightblue",lty=3)
cvs <- rep(NA, 10)
for (i in 2:10) {
Wage$age.cut <- cut(Wage$age, i)
fit <- glm(wage ~ age.cut, data = Wage)
cvs[i] <- cv.glm(Wage, fit, K = 10)$delta[1]
}
plot(2:10, cvs[-1], xlab = "Cuts", ylab = "Test MSE", type = "l")
d.min <- which.min(cvs)
points(which.min(cvs), cvs[which.min(cvs)], col = "red", cex = 2, pch = 20)
The optimal number for cuts is 8.
plot(wage ~ age, data = Wage, col = "darkgrey")
agelims <- range(Wage$age)
age.grid <- seq(from = agelims[1], to = agelims[2])
fit <- glm(wage ~ cut(age, 8), data = Wage)
preds <- predict(fit, data.frame(age = age.grid))
lines(age.grid, preds, col = "red", lwd = 2)
matlines(age.grid,se.bands,lwd=2,col='lightblue',lty=3)
detach(Wage)
library(MASS)
library(gam)
library(leaps)
set.seed(1)
train <- sample(1: nrow(College), nrow(College)/2)
test <- -train
fit <- regsubsets(Outstate ~ ., data = College, subset = train, method = 'forward')
fit.summary <- summary(fit)
fit.summary
## Subset selection object
## Call: regsubsets.formula(Outstate ~ ., data = College, subset = train,
## method = "forward")
## 17 Variables (and intercept)
## Forced in Forced out
## PrivateYes FALSE FALSE
## Apps FALSE FALSE
## Accept FALSE FALSE
## Enroll FALSE FALSE
## Top10perc FALSE FALSE
## Top25perc FALSE FALSE
## F.Undergrad FALSE FALSE
## P.Undergrad FALSE FALSE
## Room.Board FALSE FALSE
## Books FALSE FALSE
## Personal FALSE FALSE
## PhD FALSE FALSE
## Terminal FALSE FALSE
## S.F.Ratio FALSE FALSE
## perc.alumni FALSE FALSE
## Expend FALSE FALSE
## Grad.Rate FALSE FALSE
## 1 subsets of each size up to 8
## Selection Algorithm: forward
## PrivateYes Apps Accept Enroll Top10perc Top25perc F.Undergrad
## 1 ( 1 ) " " " " " " " " " " " " " "
## 2 ( 1 ) " " " " " " " " " " " " " "
## 3 ( 1 ) " " " " " " " " " " " " " "
## 4 ( 1 ) "*" " " " " " " " " " " " "
## 5 ( 1 ) "*" " " " " " " " " " " " "
## 6 ( 1 ) "*" " " " " " " " " " " " "
## 7 ( 1 ) "*" " " " " " " " " " " " "
## 8 ( 1 ) "*" " " " " " " "*" " " " "
## P.Undergrad Room.Board Books Personal PhD Terminal S.F.Ratio
## 1 ( 1 ) " " "*" " " " " " " " " " "
## 2 ( 1 ) " " "*" " " " " " " " " " "
## 3 ( 1 ) " " "*" " " " " " " " " " "
## 4 ( 1 ) " " "*" " " " " " " " " " "
## 5 ( 1 ) " " "*" " " " " " " " " " "
## 6 ( 1 ) " " "*" " " " " " " "*" " "
## 7 ( 1 ) " " "*" " " "*" " " "*" " "
## 8 ( 1 ) " " "*" " " "*" " " "*" " "
## perc.alumni Expend Grad.Rate
## 1 ( 1 ) " " " " " "
## 2 ( 1 ) "*" " " " "
## 3 ( 1 ) "*" "*" " "
## 4 ( 1 ) "*" "*" " "
## 5 ( 1 ) "*" "*" "*"
## 6 ( 1 ) "*" "*" "*"
## 7 ( 1 ) "*" "*" "*"
## 8 ( 1 ) "*" "*" "*"
par(mfrow = c(1, 3))
plot(fit.summary$cp, xlab = "# of variables", ylab = "Cp", type = "l")
min.cp <- min(fit.summary$cp)
std.cp <- sd(fit.summary$cp)
abline(h = min.cp + 0.2 * std.cp, col = "blue", lty = 2)
abline(h = min.cp - 0.2 * std.cp, col = "blue", lty = 2)
plot(fit.summary$bic, xlab = "# of variables", ylab = "BIC", type='l')
min.bic <- min(fit.summary$bic)
std.bic <- sd(fit.summary$bic)
abline(h = min.bic + 0.2 * std.bic, col = "blue", lty = 2)
abline(h = min.bic - 0.2 * std.bic, col = "blue", lty = 2)
plot(fit.summary$adjr2, xlab = "# of variables", ylab = "Adjusted R2", type = "l", ylim = c(0.4, 0.84))
max.adjr2 <- max(fit.summary$adjr2)
std.adjr2 <- sd(fit.summary$adjr2)
abline(h = max.adjr2 + 0.2 * std.adjr2, col = "blue", lty = 2)
abline(h = max.adjr2 - 0.2 * std.adjr2, col = "blue", lty = 2)
coef(fit, id = 6)
## (Intercept) PrivateYes Room.Board Terminal perc.alumni
## -4726.8810613 2717.7019276 1.1032433 36.9990286 59.0863753
## Expend Grad.Rate
## 0.1930814 33.8303314
gam.mod <- gam(Outstate ~ Private + s(Room.Board, 5) + s(PhD, 5) + s(perc.alumni, 5) + s(Expend, 5) + s(Grad.Rate, 5), data = College, subset = train)
par(mfrow = c(2,3))
plot(gam.mod, se = TRUE, col = 'blue')
Expend and Grad.Rate have a strong non-linear relationship with Outstate.
set.seed(1)
preds <- predict(gam.mod, College[test, ])
RSS <- sum((College[test, ]$Outstate - preds)^2)
TSS <- sum((College[test, ]$Outstate - mean(College[test, ]$Outstate)) ^ 2)
1 - (RSS / TSS)
## [1] 0.7676899
R-squared statistic for the test data set is 0.76 for GAM using 6 predictors.
summary(gam.mod)
##
## Call: gam(formula = Outstate ~ Private + s(Room.Board, 5) + s(PhD,
## 5) + s(perc.alumni, 5) + s(Expend, 5) + s(Grad.Rate, 5),
## data = College, subset = train)
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -7286.58 -1098.21 -15.53 1234.78 7188.04
##
## (Dispersion Parameter for gaussian family taken to be 3701031)
##
## Null Deviance: 6989966760 on 387 degrees of freedom
## Residual Deviance: 1336070325 on 360.9995 degrees of freedom
## AIC: 6997.271
##
## Number of Local Scoring Iterations: NA
##
## Anova for Parametric Effects
## Df Sum Sq Mean Sq F value Pr(>F)
## Private 1 1774909093 1774909093 479.572 < 2.2e-16 ***
## s(Room.Board, 5) 1 1573552544 1573552544 425.166 < 2.2e-16 ***
## s(PhD, 5) 1 326231809 326231809 88.146 < 2.2e-16 ***
## s(perc.alumni, 5) 1 327009856 327009856 88.356 < 2.2e-16 ***
## s(Expend, 5) 1 530748814 530748814 143.406 < 2.2e-16 ***
## s(Grad.Rate, 5) 1 88812976 88812976 23.997 1.459e-06 ***
## Residuals 361 1336070325 3701031
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Anova for Nonparametric Effects
## Npar Df Npar F Pr(F)
## (Intercept)
## Private
## s(Room.Board, 5) 4 2.0736 0.08373 .
## s(PhD, 5) 4 0.7975 0.52737
## s(perc.alumni, 5) 4 0.4105 0.80111
## s(Expend, 5) 4 19.3337 1.998e-14 ***
## s(Grad.Rate, 5) 4 0.9870 0.41453
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
ANOVA shows that Expend has a strong non-linear realationship with Outstate.