Total = student population ( public and private) from
pre-school to graduate/professional/vocational schools
- B14002_001 Estimate Total
- B14002_002 Estimate!!Total!!Male
- B14002_026 Estimate!!Total!!Female
ca_education <- get_acs(geography = "congressional district",
variables = "B14002_001",
year = 2018,
survey = "acs5",
state = "06")
## Getting data from the 2014-2018 5-year ACS
ca_cd <- us_congressional(resolution = "high",states = "California")
ca_cd <- arrange(ca_cd,geoid)
ca_cd$count <- ca_education$estimate
ggplot(ca_cd) + geom_sf(aes(fill = count)) +
scale_fill_gradientn(colors = rev(magma(5)))+
labs(title = "Student population by California Congressional District",
subtitle = "2018 Census data : B14002_001 ")+
theme_void()

Student population by Congressional Districts
library(stringr)
numextract <- function(string){
str_extract(string, "\\-*\\d+\\.*\\d*")
}
ca_education[,c(2,4)] %>%
mutate(NAME = gsub("116th", "", NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
rename(Congressional_District = NAME, count = estimate) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "condensed",full_width = F))
Congressional_District
|
count
|
1
|
684653
|
2
|
697528
|
3
|
709990
|
4
|
714030
|
5
|
704142
|
6
|
719349
|
7
|
720742
|
8
|
689082
|
9
|
729034
|
10
|
713485
|
11
|
728665
|
12
|
733548
|
13
|
729305
|
14
|
729592
|
15
|
745556
|
16
|
691093
|
17
|
742382
|
18
|
716662
|
19
|
731920
|
20
|
706611
|
21
|
679438
|
22
|
721944
|
23
|
708381
|
24
|
709277
|
25
|
690191
|
26
|
700236
|
27
|
695300
|
28
|
696279
|
29
|
694642
|
30
|
739127
|
31
|
712823
|
32
|
694365
|
33
|
692772
|
34
|
703045
|
35
|
712771
|
36
|
718088
|
37
|
699148
|
38
|
690531
|
39
|
702024
|
40
|
680616
|
41
|
722137
|
42
|
764173
|
43
|
696142
|
44
|
692081
|
45
|
746445
|
46
|
698754
|
47
|
690026
|
48
|
704402
|
49
|
709498
|
50
|
718555
|
51
|
699358
|
52
|
738641
|
53
|
739381
|
ca_education[,c(2,4)] %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
ggplot(aes(x = estimate, y = reorder(NAME, estimate))) +
geom_point(color = "brown", size = 1) +
labs(title = "Student Population by Congressional Districts in California",
subtitle = "",
y = "Congressional District ",
x = "Student count")+
theme_economist(base_size = 6.5)

county <- get_acs(geography = "county",
variables = "B14002_001",
year = 2018,
survey = "acs5", geometry = T,
state = "06")
## Getting data from the 2014-2018 5-year ACS
ggplot(county) + geom_sf(aes(fill = estimate)) +
scale_fill_gradientn(colors = rev(magma(5)))+
labs(title = "Student Population by County",
subtitle = "2018 Census data : B14002_001 ")+
theme_void()
## Student Population by State Senate Districts
ca_senate <- get_acs(geography = "state legislative district (upper chamber)",
variables = "B14002_001", survey = "acs5",
state = "CA",year = 2018)
## Getting data from the 2014-2018 5-year ACS
ca_senate %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
ggplot(aes(x = estimate, y = reorder(NAME,estimate ))) +
geom_point(color = "brown", size = 1) +
labs(title = "Student Population by State Senate District in California",
subtitle = "2018 Census Variable = B14002_001",
y = "",
x = "Student", caption = "Tidycensus extraction by Joe Long")+
theme_economist(base_size = 7)

ca_senate[,c(2,4)] %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
rename(Senate_District = NAME, Student_count = estimate) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "condensed",full_width = F))
Senate_District
|
Student_count
|
1
|
927412
|
2
|
920271
|
3
|
941911
|
4
|
946429
|
5
|
958221
|
6
|
963693
|
7
|
986839
|
8
|
946494
|
9
|
972948
|
10
|
978103
|
11
|
973293
|
12
|
927224
|
13
|
958191
|
14
|
899920
|
15
|
948393
|
16
|
923306
|
17
|
952335
|
18
|
931224
|
19
|
931396
|
20
|
947956
|
21
|
918976
|
22
|
919112
|
23
|
959804
|
24
|
919382
|
25
|
920902
|
26
|
925347
|
27
|
952584
|
28
|
977668
|
29
|
924124
|
30
|
921151
|
31
|
970986
|
32
|
916611
|
33
|
897754
|
34
|
923303
|
35
|
919920
|
36
|
953112
|
37
|
977983
|
38
|
946229
|
39
|
968751
|
40
|
948702
|
Student Population by State Assembly Districts
ca_assembly <- get_acs(geography = "state legislative district (lower chamber)",
variables = "B14002_001", survey = "acs5",
state = "CA",year = 2018)
## Getting data from the 2014-2018 5-year ACS
ca_assembly %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
ggplot(aes(x = estimate, y = reorder(NAME,estimate ))) +
geom_point(color = "brown", size = 1) +
labs(title = "Student Population by Assembly District in California",
subtitle = "2018 Census Variable = B14002_001",
y = "",
x = "Student", caption = "Tidycensus extraction by Joe Long")+
theme_economist(base_size = 7)

ca_assembly[,c(2,4)] %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
rename(Assembly_District = NAME, Student_count = estimate) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "condensed",full_width = F))
Assembly_District
|
Student_count
|
1
|
446262
|
2
|
453457
|
3
|
461581
|
4
|
468534
|
5
|
450881
|
6
|
496137
|
7
|
473721
|
8
|
476081
|
9
|
480635
|
10
|
470315
|
11
|
490616
|
12
|
474488
|
13
|
471330
|
14
|
481775
|
15
|
484602
|
16
|
499689
|
17
|
485427
|
18
|
486225
|
19
|
491593
|
20
|
479254
|
21
|
459339
|
22
|
479440
|
23
|
487049
|
24
|
479651
|
25
|
496880
|
26
|
463879
|
27
|
479332
|
28
|
472630
|
29
|
473102
|
30
|
470937
|
31
|
451537
|
32
|
451523
|
33
|
458651
|
34
|
476541
|
35
|
472853
|
36
|
453965
|
37
|
471253
|
38
|
466776
|
39
|
454806
|
40
|
469750
|
41
|
458402
|
42
|
478577
|
43
|
464216
|
44
|
456035
|
45
|
492254
|
46
|
475386
|
47
|
473008
|
48
|
457141
|
49
|
457728
|
50
|
466933
|
51
|
454132
|
52
|
474948
|
53
|
465730
|
54
|
462300
|
55
|
461427
|
56
|
455378
|
57
|
460953
|
58
|
456102
|
59
|
462540
|
60
|
490266
|
61
|
480720
|
62
|
458163
|
63
|
447275
|
64
|
467275
|
65
|
459698
|
66
|
457495
|
67
|
510015
|
68
|
484948
|
69
|
460730
|
70
|
459002
|
71
|
467933
|
72
|
470626
|
73
|
468190
|
74
|
488789
|
75
|
486035
|
76
|
476123
|
77
|
491322
|
78
|
467240
|
79
|
501476
|
80
|
458952
|