## c(Median household Income, Median Housing Value)
ca_rent <- get_acs(geography = "congressional district",
variables = "B25058_001",
year = 2018,
survey = "acs5",
state = "06")
## Getting data from the 2014-2018 5-year ACS
ca_cd <- us_congressional(resolution = "high",states = "California")
ca_cd <- arrange(ca_cd,geoid)
ca_cd$rent <- ca_rent$estimate
ggplot(ca_cd) + geom_sf(aes(fill = rent)) +
scale_fill_gradientn(colors = rev(magma(5)))+
labs(title = "Median Contract Rent by California Congressional District",
subtitle = "2018 Census data : B25028_001 ")+
theme_void()
library(stringr)
numextract <- function(string){
str_extract(string, "\\-*\\d+\\.*\\d*")
}
ca_rent[,c(2,4)] %>%
mutate(NAME = gsub("116th", "", NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
rename(Congressional_District = NAME, median_Rent = estimate) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "condensed",full_width = F))
Congressional_District | median_Rent |
---|---|
1 | 822 |
2 | 1270 |
3 | 1087 |
4 | 1131 |
5 | 1392 |
6 | 991 |
7 | 1121 |
8 | 897 |
9 | 958 |
10 | 970 |
11 | 1516 |
12 | 1729 |
13 | 1382 |
14 | 2009 |
15 | 1797 |
16 | 750 |
17 | 2246 |
18 | 1980 |
19 | 1737 |
20 | 1365 |
21 | 715 |
22 | 878 |
23 | 851 |
24 | 1388 |
25 | 1369 |
26 | 1583 |
27 | 1390 |
28 | 1375 |
29 | 1192 |
30 | 1514 |
31 | 1138 |
32 | 1311 |
33 | 1938 |
34 | 1069 |
35 | 1206 |
36 | 923 |
37 | 1328 |
38 | 1327 |
39 | 1569 |
40 | 1068 |
41 | 1180 |
42 | 1449 |
43 | 1217 |
44 | 1076 |
45 | 1985 |
46 | 1408 |
47 | 1284 |
48 | 1802 |
49 | 1729 |
50 | 1345 |
51 | 1072 |
52 | 1785 |
53 | 1430 |
ca_rent[,c(2,4)] %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
ggplot(aes(x = estimate, y = reorder(NAME, estimate))) +
geom_point(color = "brown", size = 1) +
labs(title = "2018 Median Contract Rent by Congressional Districts in California",
subtitle = "B25058_001 Median Contract Rent (Dollars)",
y = "Congressional District ",
x = "Median Rent")+
theme_economist(base_size = 6.5)
ca_rent <- get_acs(geography = "county",
variables = "B25058_001",
year = 2018,
survey = "acs5", geometry = T,
state = "06")
## Getting data from the 2014-2018 5-year ACS
## Downloading feature geometry from the Census website. To cache shapefiles for use in future sessions, set `options(tigris_use_cache = TRUE)`.
##
|
| | 0%
|
| | 1%
|
|= | 1%
|
|= | 2%
|
|== | 2%
|
|== | 3%
|
|== | 4%
|
|=== | 4%
|
|=== | 5%
|
|==== | 5%
|
|==== | 6%
|
|===== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 8%
|
|====== | 9%
|
|======= | 9%
|
|======= | 10%
|
|======= | 11%
|
|======== | 11%
|
|======== | 12%
|
|========= | 12%
|
|========= | 13%
|
|========= | 14%
|
|========== | 14%
|
|========== | 15%
|
|=========== | 15%
|
|=========== | 16%
|
|============ | 16%
|
|============ | 17%
|
|============ | 18%
|
|============= | 18%
|
|============= | 19%
|
|============== | 19%
|
|============== | 20%
|
|============== | 21%
|
|=============== | 21%
|
|=============== | 22%
|
|================ | 22%
|
|================ | 23%
|
|================ | 24%
|
|================= | 24%
|
|================= | 25%
|
|================== | 25%
|
|================== | 26%
|
|=================== | 27%
|
|=================== | 28%
|
|==================== | 28%
|
|==================== | 29%
|
|===================== | 29%
|
|===================== | 30%
|
|===================== | 31%
|
|====================== | 31%
|
|====================== | 32%
|
|======================= | 32%
|
|======================= | 33%
|
|======================== | 34%
|
|======================== | 35%
|
|========================= | 35%
|
|========================= | 36%
|
|========================== | 37%
|
|========================== | 38%
|
|=========================== | 38%
|
|=========================== | 39%
|
|============================ | 39%
|
|============================ | 40%
|
|============================ | 41%
|
|============================= | 41%
|
|============================= | 42%
|
|============================== | 42%
|
|============================== | 43%
|
|=============================== | 44%
|
|=============================== | 45%
|
|================================ | 45%
|
|================================ | 46%
|
|================================= | 46%
|
|================================= | 47%
|
|================================= | 48%
|
|================================== | 48%
|
|================================== | 49%
|
|=================================== | 49%
|
|=================================== | 50%
|
|=================================== | 51%
|
|==================================== | 51%
|
|==================================== | 52%
|
|===================================== | 52%
|
|===================================== | 53%
|
|====================================== | 54%
|
|====================================== | 55%
|
|======================================= | 55%
|
|======================================= | 56%
|
|======================================== | 56%
|
|======================================== | 57%
|
|======================================== | 58%
|
|========================================= | 58%
|
|========================================= | 59%
|
|========================================== | 59%
|
|========================================== | 60%
|
|========================================== | 61%
|
|=========================================== | 61%
|
|=========================================== | 62%
|
|============================================ | 62%
|
|============================================ | 63%
|
|============================================= | 64%
|
|============================================= | 65%
|
|============================================== | 65%
|
|============================================== | 66%
|
|=============================================== | 66%
|
|=============================================== | 67%
|
|=============================================== | 68%
|
|================================================ | 68%
|
|================================================ | 69%
|
|================================================= | 69%
|
|================================================= | 70%
|
|================================================= | 71%
|
|================================================== | 71%
|
|================================================== | 72%
|
|=================================================== | 72%
|
|=================================================== | 73%
|
|==================================================== | 74%
|
|==================================================== | 75%
|
|===================================================== | 75%
|
|===================================================== | 76%
|
|====================================================== | 76%
|
|====================================================== | 77%
|
|====================================================== | 78%
|
|======================================================= | 78%
|
|======================================================= | 79%
|
|======================================================== | 79%
|
|======================================================== | 80%
|
|======================================================== | 81%
|
|========================================================= | 81%
|
|========================================================= | 82%
|
|========================================================== | 82%
|
|========================================================== | 83%
|
|=========================================================== | 84%
|
|=========================================================== | 85%
|
|============================================================ | 85%
|
|============================================================ | 86%
|
|============================================================= | 86%
|
|============================================================= | 87%
|
|============================================================= | 88%
|
|============================================================== | 88%
|
|============================================================== | 89%
|
|=============================================================== | 89%
|
|=============================================================== | 90%
|
|=============================================================== | 91%
|
|================================================================ | 91%
|
|================================================================ | 92%
|
|================================================================= | 92%
|
|================================================================= | 93%
|
|================================================================= | 94%
|
|================================================================== | 94%
|
|================================================================== | 95%
|
|=================================================================== | 95%
|
|=================================================================== | 96%
|
|==================================================================== | 97%
|
|==================================================================== | 98%
|
|===================================================================== | 98%
|
|===================================================================== | 99%
|
|======================================================================| 99%
|
|======================================================================| 100%
ggplot(ca_rent) + geom_sf(aes(fill = estimate)) +
scale_fill_gradientn(colors = rev(magma(5)))+
labs(title = "Median Contract Rent by County",
subtitle = "2018 Census data : B25028_001 ")+
theme_void()
ca_senate <- get_acs(geography = "state legislative district (upper chamber)",
variables = "B25058_001", survey = "acs5",
state = "CA",year = 2018)
## Getting data from the 2014-2018 5-year ACS
ca_senate %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
ggplot(aes(x = estimate, y = reorder(NAME,estimate ))) +
geom_point(color = "brown", size = 1) +
labs(title = "Median Contract Rent by State Senate District in California",
subtitle = "2018 Census Variable = B25058_001",
y = "",
x = "Rent", caption = "Tidycensus extraction by Joe Long")+
theme_economist(base_size = 7)
ca_senate[,c(2,4)] %>%
mutate(NAME = gsub("2018", "",NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
rename(Senate_District = NAME, Rent = estimate) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "condensed",full_width = F))
Senate_District | Rent |
---|---|
1 | 1001 |
2 | 1249 |
3 | 1382 |
4 | 946 |
5 | 950 |
6 | 1014 |
7 | 1719 |
8 | 908 |
9 | 1379 |
10 | 1930 |
11 | 1758 |
12 | 889 |
13 | 2149 |
14 | 699 |
15 | 1839 |
16 | 824 |
17 | 1451 |
18 | 1296 |
19 | 1470 |
20 | 1159 |
21 | 1088 |
22 | 1289 |
23 | 1059 |
24 | 1090 |
25 | 1417 |
26 | 1790 |
27 | 1644 |
28 | 1123 |
29 | 1479 |
30 | 1168 |
31 | 1246 |
32 | 1336 |
33 | 1116 |
34 | 1493 |
35 | 1159 |
36 | 1786 |
37 | 1879 |
38 | 1350 |
39 | 1651 |
40 | 1147 |
library(USAboundaries)
ca_rent <- get_acs(geography = "congressional district", state = "CA",
year = 2018,
variable = "B25058_001")
## Getting data from the 2014-2018 5-year ACS
ca_cd <- us_congressional(resolution = "high",states = "California")
ca_cd <- arrange(ca_cd,geoid)
ca_cd$rent <- ca_rent$estimate
ggplot(ca_cd) + geom_sf(aes(fill = rent)) +
scale_fill_gradientn(colors = rev(viridis(10)))+
labs(title = "Median contract Rent by Congressional District",
subtitle = "2018 Census data : B25058_001 ",
caption = "Using USAboundaries Package for geographic information")+
theme_void()
ca_rent[,c(2,4)] %>%
mutate(NAME = gsub("116th Congress", "", NAME)) %>%
mutate(NAME = numextract(NAME)) %>%
rename(Congressional_District = NAME, median_Rent = estimate) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "condensed",full_width = F))
Congressional_District | median_Rent |
---|---|
1 | 822 |
2 | 1270 |
3 | 1087 |
4 | 1131 |
5 | 1392 |
6 | 991 |
7 | 1121 |
8 | 897 |
9 | 958 |
10 | 970 |
11 | 1516 |
12 | 1729 |
13 | 1382 |
14 | 2009 |
15 | 1797 |
16 | 750 |
17 | 2246 |
18 | 1980 |
19 | 1737 |
20 | 1365 |
21 | 715 |
22 | 878 |
23 | 851 |
24 | 1388 |
25 | 1369 |
26 | 1583 |
27 | 1390 |
28 | 1375 |
29 | 1192 |
30 | 1514 |
31 | 1138 |
32 | 1311 |
33 | 1938 |
34 | 1069 |
35 | 1206 |
36 | 923 |
37 | 1328 |
38 | 1327 |
39 | 1569 |
40 | 1068 |
41 | 1180 |
42 | 1449 |
43 | 1217 |
44 | 1076 |
45 | 1985 |
46 | 1408 |
47 | 1284 |
48 | 1802 |
49 | 1729 |
50 | 1345 |
51 | 1072 |
52 | 1785 |
53 | 1430 |