library(readxl)
library(tseries)
## Registered S3 method overwritten by 'quantmod':
##   method            from
##   as.zoo.data.frame zoo
library(fGarch)
## Loading required package: timeDate
## Loading required package: timeSeries
## Loading required package: fBasics
data <- read_excel("C:/Users/daffy/Downloads/Mensuales-20200721-133058.xlsx", skip = 1)
## New names:
## * `` -> ...1
data=data[-length(data$...1),]
serie<-ts(data$`Tipo de cambio - promedio del periodo (S/ por US$) - Interbancario - Promedio`)
plot(serie)

adf.test(serie)
## 
##  Augmented Dickey-Fuller Test
## 
## data:  serie
## Dickey-Fuller = -1.0597, Lag order = 6, p-value = 0.9275
## alternative hypothesis: stationary
diff<-diff(as.numeric(serie))
plot(diff,type="l")

diff<-diff[-1]
adf.test(diff)
## Warning in adf.test(diff): p-value smaller than printed p-value
## 
##  Augmented Dickey-Fuller Test
## 
## data:  diff
## Dickey-Fuller = -6.1976, Lag order = 6, p-value = 0.01
## alternative hypothesis: stationary
acf(diff)

pacf(diff)

p<-c(2,0)
q<-c(1,2,0)
datos<-NULL
indice<- NULL
ata1=NULL
for(i in p){
  for(a in q){
    ata<- summary(arma(diff,order = c(i,a)))$aic
    datos<- c(datos,ata)
    atita<- paste(i,a)
    indice<- c(indice,atita)
    table<- data.frame("ARMA"=indice,"AIC"=datos)
    ata1=table
  }
}
## Warning in optim(coef, err, gr = NULL, hessian = TRUE, ...): one-dimensional optimization by Nelder-Mead is unreliable:
## use "Brent" or optimize() directly
print(ata1)
##   ARMA       AIC
## 1  2 1 -991.4587
## 2  2 2 -991.3833
## 3  2 0 -990.0916
## 4  0 1 -995.1124
## 5  0 2 -993.4306
## 6  0 0 -971.4642

El mejor modelo es un ARMA(0,1)

modelo<- arma(diff,order = c(0,1))
summary(modelo)
## 
## Call:
## arma(x = diff, order = c(0, 1))
## 
## Model:
## ARMA(0,1)
## 
## Residuals:
##       Min        1Q    Median        3Q       Max 
## -0.121422 -0.017203 -0.001684  0.019549  0.098182 
## 
## Coefficient(s):
##            Estimate  Std. Error  t value Pr(>|t|)    
## ma1       0.3553318   0.0641204    5.542    3e-08 ***
## intercept 0.0003626   0.0029026    0.125    0.901    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Fit:
## sigma^2 estimated as 0.001182,  Conditional Sum-of-Squares = 0.3,  AIC = -995.11
residuos2<- na.omit(modelo$residuals)^2
acf(residuos2)

pacf(residuos2)

modelo1<- garchFit(~garch(1,5),data = residuos2,trace = T)
## 
## Series Initialization:
##  ARMA Model:                arma
##  Formula Mean:              ~ arma(0, 0)
##  GARCH Model:               garch
##  Formula Variance:          ~ garch(1, 5)
##  ARMA Order:                0 0
##  Max ARMA Order:            0
##  GARCH Order:               1 5
##  Max GARCH Order:           5
##  Maximum Order:             5
##  Conditional Dist:          norm
##  h.start:                   6
##  llh.start:                 1
##  Length of Series:          255
##  Recursion Init:            mci
##  Series Scale:              0.002164843
## 
## Parameter Initialization:
##  Initial Parameters:          $params
##  Limits of Transformations:   $U, $V
##  Which Parameters are Fixed?  $includes
##  Parameter Matrix:
##                      U          V    params includes
##     mu     -5.43796108   5.437961 0.5437961     TRUE
##     omega   0.00000100 100.000000 0.1000000     TRUE
##     alpha1  0.00000001   1.000000 0.1000000     TRUE
##     gamma1 -0.99999999   1.000000 0.1000000    FALSE
##     beta1   0.00000001   1.000000 0.1600000     TRUE
##     beta2   0.00000001   1.000000 0.1600000     TRUE
##     beta3   0.00000001   1.000000 0.1600000     TRUE
##     beta4   0.00000001   1.000000 0.1600000     TRUE
##     beta5   0.00000001   1.000000 0.1600000     TRUE
##     delta   0.00000000   2.000000 2.0000000    FALSE
##     skew    0.10000000  10.000000 1.0000000    FALSE
##     shape   1.00000000  10.000000 4.0000000    FALSE
##  Index List of Parameters to be Optimized:
##     mu  omega alpha1  beta1  beta2  beta3  beta4  beta5 
##      1      2      3      5      6      7      8      9 
##  Persistence:                  0.9 
## 
## 
## --- START OF TRACE ---
## Selected Algorithm: nlminb 
## 
## R coded nlminb Solver: 
## 
##   0:     356.71787: 0.543796 0.100000 0.100000 0.160000 0.160000 0.160000 0.160000 0.160000
##   1:     355.97603: 0.543321 0.106605 0.103147 0.163110 0.162986 0.163417 0.162955 0.162591
##   2:     355.60609: 0.541799 0.111575 0.103433 0.159831 0.159355 0.160997 0.159214 0.157734
##   3:     346.25262: 0.476384 0.352949 0.186205 0.108351 0.0907383 0.145263 0.0859561 0.0339995
##   4:     341.23465: 0.391356 0.405459 0.390842 0.00660516 1.00000e-08 0.128689 1.00000e-08 1.00000e-08
##   5:     337.38201: 0.254881 0.460349 0.496737 1.00000e-08 1.00000e-08 0.0356458 0.144090 1.00000e-08
##   6:     335.38007: 0.292406 0.453374 0.510686 1.00000e-08 1.00000e-08 0.101270 0.0978221 1.00000e-08
##   7:     334.58721: 0.295088 0.428713 0.521204 1.00000e-08 1.00000e-08 0.0994741 0.0679574 1.00000e-08
##   8:     333.96895: 0.296974 0.423509 0.546686 1.00000e-08 1.00000e-08 0.129784 0.0623857 1.00000e-08
##   9:     333.69234: 0.298436 0.409535 0.557527 1.00000e-08 1.00000e-08 0.133284 0.0478348 1.00000e-08
##  10:     333.48381: 0.299387 0.406152 0.573767 1.00000e-08 1.00000e-08 0.149002 0.0521591 1.00000e-08
##  11:     333.32713: 0.312834 0.397654 0.608057 1.00000e-08 1.00000e-08 0.132682 0.0450714 1.00000e-08
##  12:     333.31331: 0.310723 0.398762 0.603130 1.00000e-08 1.00000e-08 0.136054 0.0463267 0.000389833
##  13:     333.24924: 0.309896 0.398667 0.607493 1.00000e-08 1.00000e-08 0.141674 0.0470864 8.57348e-07
##  14:     333.06167: 0.304026 0.384319 0.639902 1.00000e-08 1.00000e-08 0.171178 0.0341186 1.00000e-08
##  15:     333.04731: 0.303594 0.375388 0.649324 1.00000e-08 1.00000e-08 0.158943 0.0486405 1.00000e-08
##  16:     332.99664: 0.307792 0.377381 0.666817 1.00000e-08 1.00000e-08 0.154458 0.0368066 1.00000e-08
##  17:     332.99110: 0.308961 0.379655 0.673556 1.00000e-08 1.00000e-08 0.155348 0.0399580 0.00481331
##  18:     332.96242: 0.305592 0.382293 0.670578 1.00000e-08 1.00000e-08 0.154527 0.0400570 1.00000e-08
##  19:     332.95117: 0.306855 0.382306 0.678996 1.00000e-08 1.00000e-08 0.152574 0.0381422 0.00231546
##  20:     332.93741: 0.306387 0.382156 0.692553 1.00000e-08 1.00000e-08 0.149023 0.0361194 1.00000e-08
##  21:     332.91374: 0.296920 0.385409 0.686438 1.00000e-08 1.00000e-08 0.150363 0.0353241 0.00169715
##  22:     332.90859: 0.296456 0.385413 0.689450 1.00000e-08 1.00000e-08 0.148874 0.0386495 0.00199010
##  23:     332.90122: 0.295082 0.385905 0.692182 1.00000e-08 1.00000e-08 0.146744 0.0373606 0.000296801
##  24:     332.89273: 0.296245 0.386838 0.695828 1.00000e-08 1.00000e-08 0.145884 0.0366460 0.00207713
##  25:     332.88604: 0.295687 0.387475 0.699938 1.00000e-08 1.00000e-08 0.144064 0.0362705 0.000914115
##  26:     332.87476: 0.291804 0.389795 0.705008 1.00000e-08 1.00000e-08 0.141327 0.0378745 0.00162117
##  27:     332.86060: 0.292974 0.391186 0.713189 1.00000e-08 1.00000e-08 0.137890 0.0352522 0.00229156
##  28:     332.84935: 0.290778 0.390832 0.721134 1.00000e-08 1.00000e-08 0.135179 0.0373447 0.00112532
##  29:     332.84008: 0.290767 0.392779 0.730119 1.00000e-08 1.00000e-08 0.133315 0.0368326 0.00321619
##  30:     332.82522: 0.287762 0.393583 0.736194 1.00000e-08 1.00000e-08 0.128882 0.0346281 0.00299168
##  31:     332.81788: 0.287192 0.394982 0.745537 1.00000e-08 1.00000e-08 0.129116 0.0354383 0.00173625
##  32:     332.80791: 0.284452 0.394163 0.752299 1.00000e-08 1.00000e-08 0.124972 0.0361171 0.00352425
##  33:     332.79770: 0.283315 0.395617 0.760949 1.00000e-08 1.00000e-08 0.122656 0.0336746 0.00357982
##  34:     332.79487: 0.281287 0.395630 0.769019 1.00000e-08 1.00000e-08 0.119599 0.0347298 0.00180845
##  35:     332.76136: 0.268464 0.405448 0.829814 1.00000e-08 1.00000e-08 0.101401 0.0314693 0.00422851
##  36:     332.76015: 0.264287 0.399468 0.857180 1.00000e-08 1.00000e-08 0.0963046 0.0306363 0.00604896
##  37:     332.75669: 0.263310 0.406380 0.862556 1.00000e-08 1.00000e-08 0.0887676 0.0314555 0.00549533
##  38:     332.75667: 0.261935 0.406247 0.862256 1.00000e-08 1.00000e-08 0.0935537 0.0309101 0.00477625
##  39:     332.75532: 0.261994 0.405824 0.864348 1.00000e-08 1.00000e-08 0.0918800 0.0308666 0.00520809
##  40:     332.75512: 0.261782 0.405855 0.867078 1.00000e-08 1.00000e-08 0.0903847 0.0309289 0.00535105
##  41:     332.75512: 0.261607 0.405938 0.867901 1.00000e-08 1.00000e-08 0.0901403 0.0308938 0.00536878
##  42:     332.75512: 0.261472 0.406013 0.868539 1.00000e-08 1.00000e-08 0.0899519 0.0308822 0.00537842
##  43:     332.75512: 0.261472 0.406015 0.868543 1.00000e-08 1.00000e-08 0.0899511 0.0308802 0.00537798
## 
## Final Estimate of the Negative LLH:
##  LLH:  -1231.774    norm LLH:  -4.830485 
##           mu        omega       alpha1        beta1        beta2        beta3 
## 5.660456e-04 1.902807e-06 8.685428e-01 1.000000e-08 1.000000e-08 8.995110e-02 
##        beta4        beta5 
## 3.088018e-02 5.377977e-03 
## 
## R-optimhess Difference Approximated Hessian Matrix:
##                   mu         omega        alpha1         beta1         beta2
## mu      -75100864.15  4.586876e+09 -1.220671e+04  1.862682e+04  1.948589e+04
## omega  4586876040.77 -2.181944e+13 -7.067313e+06 -6.421670e+07 -3.762490e+07
## alpha1     -12206.71 -7.067313e+06 -3.322641e+01 -1.003544e+02 -1.196316e+02
## beta1       18626.82 -6.421670e+07 -1.003544e+02  5.451743e+02 -2.615641e+02
## beta2       19485.89 -3.762490e+07 -1.196316e+02 -2.615641e+02  1.786614e+03
## beta3       64074.07 -6.601167e+07 -8.540182e+01 -5.046462e+02 -2.008471e+02
## beta4       45465.40 -6.770394e+07 -1.088177e+02 -5.302876e+02 -2.620294e+02
## beta5      -24847.89 -1.014525e+08 -5.203549e+01 -5.191999e+02 -1.019285e+03
##                beta3         beta4         beta5
## mu      6.407407e+04  4.546540e+04 -2.484789e+04
## omega  -6.601167e+07 -6.770394e+07 -1.014525e+08
## alpha1 -8.540182e+01 -1.088177e+02 -5.203549e+01
## beta1  -5.046462e+02 -5.302876e+02 -5.191999e+02
## beta2  -2.008471e+02 -2.620294e+02 -1.019285e+03
## beta3  -4.699877e+02 -4.154809e+02 -4.709222e+02
## beta4  -4.154809e+02 -1.944734e+03 -7.828817e+02
## beta5  -4.709222e+02 -7.828817e+02 -3.991730e+03
## attr(,"time")
## Time difference of 0.03501487 secs
## 
## --- END OF TRACE ---
## Warning in sqrt(diag(fit$cvar)): Se han producido NaNs
## 
## Time to Estimate Parameters:
##  Time difference of 0.133019 secs
summary(modelo1)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 5), data = residuos2, trace = T) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 5)
## <environment: 0x00000000194253f8>
##  [data = residuos2]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##         mu       omega      alpha1       beta1       beta2       beta3  
## 5.6605e-04  1.9028e-06  8.6854e-01  1.0000e-08  1.0000e-08  8.9951e-02  
##      beta4       beta5  
## 3.0880e-02  5.3780e-03  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)    
## mu     5.660e-04   1.815e-04    3.118  0.00182 ** 
## omega  1.903e-06   3.323e-07    5.725 1.03e-08 ***
## alpha1 8.685e-01   3.395e-01    2.558  0.01051 *  
## beta1  1.000e-08          NA       NA       NA    
## beta2  1.000e-08          NA       NA       NA    
## beta3  8.995e-02   1.155e-01    0.779  0.43610    
## beta4  3.088e-02   2.678e-02    1.153  0.24891    
## beta5  5.378e-03   1.686e-02    0.319  0.74975    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  1231.774    normalized:  4.830485 
## 
## Description:
##  Thu Jul 23 16:50:14 2020 by user: daffy 
## 
## 
## Standardised Residuals Tests:
##                                 Statistic p-Value   
##  Jarque-Bera Test   R    Chi^2  4419.968  0         
##  Shapiro-Wilk Test  R    W      0.589105  0         
##  Ljung-Box Test     R    Q(10)  19.62779  0.03297636
##  Ljung-Box Test     R    Q(15)  20.91263  0.1396441 
##  Ljung-Box Test     R    Q(20)  21.15406  0.388115  
##  Ljung-Box Test     R^2  Q(10)  1.616987  0.9985224 
##  Ljung-Box Test     R^2  Q(15)  3.033181  0.9995694 
##  Ljung-Box Test     R^2  Q(20)  3.780562  0.9999708 
##  LM Arch Test       R    TR^2   2.675193  0.997435  
## 
## Information Criterion Statistics:
##       AIC       BIC       SIC      HQIC 
## -9.598225 -9.487127 -9.600115 -9.553537
modelo2<- garchFit(~garch(2,5),data = residuos2,trace = T)
## 
## Series Initialization:
##  ARMA Model:                arma
##  Formula Mean:              ~ arma(0, 0)
##  GARCH Model:               garch
##  Formula Variance:          ~ garch(2, 5)
##  ARMA Order:                0 0
##  Max ARMA Order:            0
##  GARCH Order:               2 5
##  Max GARCH Order:           5
##  Maximum Order:             5
##  Conditional Dist:          norm
##  h.start:                   6
##  llh.start:                 1
##  Length of Series:          255
##  Recursion Init:            mci
##  Series Scale:              0.002164843
## 
## Parameter Initialization:
##  Initial Parameters:          $params
##  Limits of Transformations:   $U, $V
##  Which Parameters are Fixed?  $includes
##  Parameter Matrix:
##                      U          V    params includes
##     mu     -5.43796108   5.437961 0.5437961     TRUE
##     omega   0.00000100 100.000000 0.1000000     TRUE
##     alpha1  0.00000001   1.000000 0.0500000     TRUE
##     alpha2  0.00000001   1.000000 0.0500000     TRUE
##     gamma1 -0.99999999   1.000000 0.1000000    FALSE
##     gamma2 -0.99999999   1.000000 0.1000000    FALSE
##     beta1   0.00000001   1.000000 0.1600000     TRUE
##     beta2   0.00000001   1.000000 0.1600000     TRUE
##     beta3   0.00000001   1.000000 0.1600000     TRUE
##     beta4   0.00000001   1.000000 0.1600000     TRUE
##     beta5   0.00000001   1.000000 0.1600000     TRUE
##     delta   0.00000000   2.000000 2.0000000    FALSE
##     skew    0.10000000  10.000000 1.0000000    FALSE
##     shape   1.00000000  10.000000 4.0000000    FALSE
##  Index List of Parameters to be Optimized:
##     mu  omega alpha1 alpha2  beta1  beta2  beta3  beta4  beta5 
##      1      2      3      4      7      8      9     10     11 
##  Persistence:                  0.9 
## 
## 
## --- START OF TRACE ---
## Selected Algorithm: nlminb 
## 
## R coded nlminb Solver: 
## 
##   0:     358.85856: 0.543796 0.100000 0.0500000 0.0500000 0.160000 0.160000 0.160000 0.160000 0.160000
##   1:     357.87159: 0.543447 0.106148 0.0538157 0.0516416 0.163060 0.163161 0.163147 0.162786 0.162743
##   2:     357.55497: 0.542281 0.110230 0.0558122 0.0471575 0.160074 0.160432 0.160394 0.158949 0.158746
##   3:     348.88002: 0.503527 0.280931 0.164901 1.00000e-08 0.124467 0.130860 0.132941 0.0952450 0.0867086
##   4:     347.79454: 0.443762 0.269468 0.314281 1.00000e-08 0.0767527 0.0517589 0.130356 0.0432213 1.00000e-08
##   5:     337.04478: 0.307531 0.416864 0.558915 1.00000e-08 1.00000e-08 1.00000e-08 0.270088 0.0560437 1.00000e-08
##   6:     336.86319: 0.277697 0.341712 0.647233 1.00000e-08 1.00000e-08 1.00000e-08 0.156802 1.00000e-08 1.00000e-08
##   7:     334.65194: 0.264916 0.368625 0.674213 1.00000e-08 0.00909822 1.00000e-08 0.171047 0.0760328 0.00605687
##   8:     334.31887: 0.262184 0.341091 0.706519 1.00000e-08 1.00000e-08 1.00000e-08 0.0998883 0.0756601 1.00000e-08
##   9:     333.92697: 0.266900 0.416429 0.716520 1.00000e-08 1.00000e-08 1.00000e-08 0.145799 0.0634373 1.00000e-08
##  10:     332.95216: 0.269074 0.402238 0.714527 1.00000e-08 1.00000e-08 1.00000e-08 0.130482 0.0388182 1.00000e-08
##  11:     332.90556: 0.270981 0.398283 0.716233 1.00000e-08 1.00000e-08 1.00000e-08 0.127438 0.0338635 0.00403908
##  12:     332.89270: 0.273475 0.395308 0.720600 1.00000e-08 1.00000e-08 1.00000e-08 0.126768 0.0369569 1.00000e-08
##  13:     332.87067: 0.276886 0.397907 0.724008 1.00000e-08 1.00000e-08 1.00000e-08 0.125049 0.0384811 0.00424035
##  14:     332.84455: 0.278364 0.395379 0.729877 1.00000e-08 1.00000e-08 1.00000e-08 0.127038 0.0332837 0.00290658
##  15:     332.83001: 0.281458 0.397432 0.735329 1.00000e-08 1.00000e-08 1.00000e-08 0.124607 0.0362450 0.00302141
##  16:     332.81898: 0.280790 0.394627 0.743293 1.00000e-08 1.00000e-08 1.00000e-08 0.123176 0.0337692 0.00315022
##  17:     332.81670: 0.280359 0.394435 0.746155 1.00000e-08 1.00000e-08 1.00000e-08 0.124386 0.0348669 0.00488673
##  18:     332.80910: 0.280553 0.395090 0.749096 1.00000e-08 1.00000e-08 1.00000e-08 0.123040 0.0349052 0.00300696
##  19:     332.80533: 0.280168 0.394603 0.752619 1.00000e-08 1.00000e-08 1.00000e-08 0.123067 0.0341845 0.00394211
##  20:     332.79563: 0.277710 0.395243 0.765687 1.00000e-08 1.00000e-08 1.00000e-08 0.116019 0.0356820 0.00386032
##  21:     332.79145: 0.278328 0.399314 0.779611 1.00000e-08 1.00000e-08 1.00000e-08 0.118107 0.0306232 0.00250001
##  22:     332.78478: 0.278312 0.399277 0.779870 1.00000e-08 1.00000e-08 1.00000e-08 0.118178 0.0322054 0.00414316
##  23:     332.78216: 0.277941 0.398120 0.780923 1.00000e-08 1.00000e-08 1.00000e-08 0.117226 0.0326030 0.00300172
##  24:     332.77994: 0.277356 0.397507 0.782305 1.00000e-08 1.00000e-08 1.00000e-08 0.116714 0.0331341 0.00413760
##  25:     332.77818: 0.277002 0.397257 0.784271 1.00000e-08 1.00000e-08 1.00000e-08 0.115887 0.0331272 0.00364376
##  26:     332.77696: 0.277028 0.397718 0.786386 1.00000e-08 1.00000e-08 1.00000e-08 0.115247 0.0334458 0.00392455
##  27:     332.77198: 0.271632 0.396176 0.799489 1.00000e-08 1.00000e-08 1.00000e-08 0.111506 0.0329578 0.00493461
##  28:     332.76584: 0.269438 0.398631 0.815015 1.00000e-08 1.00000e-08 1.00000e-08 0.106740 0.0327755 0.00364247
##  29:     332.76052: 0.268990 0.400620 0.830195 1.00000e-08 1.00000e-08 1.00000e-08 0.0996298 0.0321963 0.00499340
##  30:     332.75958: 0.268901 0.401334 0.830453 1.00000e-08 1.00000e-08 1.00000e-08 0.100392 0.0325560 0.00512105
##  31:     332.75898: 0.268677 0.401528 0.831383 1.00000e-08 1.00000e-08 1.00000e-08 0.100227 0.0322476 0.00475452
##  32:     332.75840: 0.268206 0.402075 0.833414 1.00000e-08 1.00000e-08 1.00000e-08 0.100033 0.0320654 0.00502228
##  33:     332.75622: 0.265070 0.403451 0.847857 1.00000e-08 1.00000e-08 1.00000e-08 0.0957139 0.0314597 0.00523018
##  34:     332.75522: 0.262791 0.405128 0.862955 1.00000e-08 1.00000e-08 1.00000e-08 0.0919163 0.0311553 0.00526587
##  35:     332.75517: 0.261394 0.406347 0.868108 1.00000e-08 1.00000e-08 1.00000e-08 0.0898674 0.0307170 0.00535114
##  36:     332.75512: 0.261418 0.406024 0.868688 1.00000e-08 1.00000e-08 1.00000e-08 0.0898821 0.0308906 0.00538611
##  37:     332.75512: 0.261481 0.406006 0.868535 1.00000e-08 1.00000e-08 1.00000e-08 0.0899648 0.0308775 0.00537789
##  38:     332.75512: 0.261473 0.406015 0.868538 1.00000e-08 1.00000e-08 1.00000e-08 0.0899517 0.0308808 0.00537769
## 
## Final Estimate of the Negative LLH:
##  LLH:  -1231.774    norm LLH:  -4.830485 
##           mu        omega       alpha1       alpha2        beta1        beta2 
## 5.660472e-04 1.902810e-06 8.685377e-01 1.000000e-08 1.000000e-08 1.000000e-08 
##        beta3        beta4        beta5 
## 8.995167e-02 3.088079e-02 5.377694e-03 
## 
## R-optimhess Difference Approximated Hessian Matrix:
##                   mu         omega        alpha1        alpha2         beta1
## mu     -7.510089e+07  4.586798e+09 -1.220668e+04  7.115439e+03  1.862629e+04
## omega   4.586798e+09 -2.181932e+13 -7.067350e+06 -1.538738e+07 -6.421650e+07
## alpha1 -1.220668e+04 -7.067350e+06 -3.322676e+01 -5.186343e+01 -1.003544e+02
## alpha2  7.115439e+03 -1.538738e+07 -5.186343e+01  1.254035e+03  9.386402e+02
## beta1   1.862629e+04 -6.421650e+07 -1.003544e+02  9.386402e+02  5.451629e+02
## beta2   1.948559e+04 -3.762525e+07 -1.196314e+02 -1.536160e+02 -2.615660e+02
## beta3   6.407348e+04 -6.601156e+07 -8.540201e+01 -3.713053e+02 -5.046432e+02
## beta4   4.546461e+04 -6.770344e+07 -1.088175e+02 -2.328607e+02 -5.302779e+02
## beta5  -2.484877e+04 -1.014531e+08 -5.203438e+01 -1.622732e+02 -5.192082e+02
##                beta2         beta3         beta4         beta5
## mu      1.948559e+04  6.407348e+04  4.546461e+04 -2.484877e+04
## omega  -3.762525e+07 -6.601156e+07 -6.770344e+07 -1.014531e+08
## alpha1 -1.196314e+02 -8.540201e+01 -1.088175e+02 -5.203438e+01
## alpha2 -1.536160e+02 -3.713053e+02 -2.328607e+02 -1.622732e+02
## beta1  -2.615660e+02 -5.046432e+02 -5.302779e+02 -5.192082e+02
## beta2   1.786575e+03 -2.008473e+02 -2.620292e+02 -1.019291e+03
## beta3  -2.008473e+02 -4.699874e+02 -4.154780e+02 -4.709219e+02
## beta4  -2.620292e+02 -4.154780e+02 -1.944674e+03 -7.828807e+02
## beta5  -1.019291e+03 -4.709219e+02 -7.828807e+02 -3.991743e+03
## attr(,"time")
## Time difference of 0.05500293 secs
## 
## --- END OF TRACE ---
## Warning in sqrt(diag(fit$cvar)): Se han producido NaNs
## 
## Time to Estimate Parameters:
##  Time difference of 0.1360061 secs
summary(modelo2)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(2, 5), data = residuos2, trace = T) 
## 
## Mean and Variance Equation:
##  data ~ garch(2, 5)
## <environment: 0x000000001d0479b0>
##  [data = residuos2]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##         mu       omega      alpha1      alpha2       beta1       beta2  
## 5.6605e-04  1.9028e-06  8.6854e-01  1.0000e-08  1.0000e-08  1.0000e-08  
##      beta3       beta4       beta5  
## 8.9952e-02  3.0881e-02  5.3777e-03  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)    
## mu     5.660e-04   1.257e-04    4.504 6.66e-06 ***
## omega  1.903e-06          NA       NA       NA    
## alpha1 8.685e-01          NA       NA       NA    
## alpha2 1.000e-08          NA       NA       NA    
## beta1  1.000e-08          NA       NA       NA    
## beta2  1.000e-08          NA       NA       NA    
## beta3  8.995e-02   6.981e-02    1.288    0.198    
## beta4  3.088e-02   2.675e-02    1.154    0.248    
## beta5  5.378e-03   1.605e-02    0.335    0.738    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  1231.774    normalized:  4.830485 
## 
## Description:
##  Thu Jul 23 16:50:15 2020 by user: daffy 
## 
## 
## Standardised Residuals Tests:
##                                 Statistic p-Value  
##  Jarque-Bera Test   R    Chi^2  4419.944  0        
##  Shapiro-Wilk Test  R    W      0.5891052 0        
##  Ljung-Box Test     R    Q(10)  19.62788  0.0329754
##  Ljung-Box Test     R    Q(15)  20.91272  0.1396413
##  Ljung-Box Test     R    Q(20)  21.15415  0.3881099
##  Ljung-Box Test     R^2  Q(10)  1.61698   0.9985225
##  Ljung-Box Test     R^2  Q(15)  3.033179  0.9995694
##  Ljung-Box Test     R^2  Q(20)  3.780567  0.9999708
##  LM Arch Test       R    TR^2   2.675193  0.997435 
## 
## Information Criterion Statistics:
##       AIC       BIC       SIC      HQIC 
## -9.590382 -9.465396 -9.592762 -9.540108
modelo3<-garchFit(~garch(1,0),data = residuos2,trace = T)
## 
## Series Initialization:
##  ARMA Model:                arma
##  Formula Mean:              ~ arma(0, 0)
##  GARCH Model:               garch
##  Formula Variance:          ~ garch(1, 0)
##  ARMA Order:                0 0
##  Max ARMA Order:            0
##  GARCH Order:               1 0
##  Max GARCH Order:           1
##  Maximum Order:             1
##  Conditional Dist:          norm
##  h.start:                   2
##  llh.start:                 1
##  Length of Series:          255
##  Recursion Init:            mci
##  Series Scale:              0.002164843
## 
## Parameter Initialization:
##  Initial Parameters:          $params
##  Limits of Transformations:   $U, $V
##  Which Parameters are Fixed?  $includes
##  Parameter Matrix:
##                      U          V    params includes
##     mu     -5.43796108   5.437961 0.5437961     TRUE
##     omega   0.00000100 100.000000 0.1000000     TRUE
##     alpha1  0.00000001   1.000000 0.1000000     TRUE
##     gamma1 -0.99999999   1.000000 0.1000000    FALSE
##     delta   0.00000000   2.000000 2.0000000    FALSE
##     skew    0.10000000  10.000000 1.0000000    FALSE
##     shape   1.00000000  10.000000 4.0000000    FALSE
##  Index List of Parameters to be Optimized:
##     mu  omega alpha1 
##      1      2      3 
##  Persistence:                  0.1 
## 
## 
## --- START OF TRACE ---
## Selected Algorithm: nlminb 
## 
## R coded nlminb Solver: 
## 
##   0:     795.47308: 0.543796 0.100000 0.100000
##   1:     355.04218: 0.530870  1.06839 0.348310
##   2:     351.50125: 0.266658  1.02329 0.457395
##   3:     345.07443: 0.192659 0.856893  1.00000
##   4:     342.49367: 0.307253 0.810028  1.00000
##   5:     340.32963: 0.308108 0.752647  1.00000
##   6:     334.68672: 0.278555 0.529998 0.986080
##   7:     334.15165: 0.218520 0.494889  1.00000
##   8:     334.13356: 0.220896 0.520892  1.00000
##   9:     334.11067: 0.225210 0.511059  1.00000
##  10:     334.11047: 0.224118 0.510224  1.00000
##  11:     334.11046: 0.224259 0.510345  1.00000
##  12:     334.11046: 0.224260 0.510345  1.00000
## 
## Final Estimate of the Negative LLH:
##  LLH:  -1230.418    norm LLH:  -4.82517 
##           mu        omega       alpha1 
## 4.854875e-04 2.391756e-06 1.000000e+00 
## 
## R-optimhess Difference Approximated Hessian Matrix:
##                   mu         omega        alpha1
## mu      -82891027.36  7.554743e+09 -1.764294e+04
## omega  7554743130.23 -1.533268e+13 -5.775449e+06
## alpha1     -17642.94 -5.775449e+06 -2.183722e+01
## attr(,"time")
## Time difference of 0.008008003 secs
## 
## --- END OF TRACE ---
## 
## 
## Time to Estimate Parameters:
##  Time difference of 0.02999997 secs
summary(modelo3)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(1, 0), data = residuos2, trace = T) 
## 
## Mean and Variance Equation:
##  data ~ garch(1, 0)
## <environment: 0x000000001c1bd080>
##  [data = residuos2]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##         mu       omega      alpha1  
## 4.8549e-04  2.3918e-06  1.0000e+00  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)    
## mu     4.855e-04   1.315e-04    3.692 0.000223 ***
## omega  2.392e-06   2.932e-07    8.156 4.44e-16 ***
## alpha1 1.000e+00   2.639e-01    3.789 0.000151 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  1230.418    normalized:  4.82517 
## 
## Description:
##  Thu Jul 23 16:50:15 2020 by user: daffy 
## 
## 
## Standardised Residuals Tests:
##                                 Statistic p-Value   
##  Jarque-Bera Test   R    Chi^2  3442.491  0         
##  Shapiro-Wilk Test  R    W      0.5869282 0         
##  Ljung-Box Test     R    Q(10)  22.96062  0.01089288
##  Ljung-Box Test     R    Q(15)  24.3535   0.05932849
##  Ljung-Box Test     R    Q(20)  24.63026  0.2159442 
##  Ljung-Box Test     R^2  Q(10)  4.257838  0.9349667 
##  Ljung-Box Test     R^2  Q(15)  6.031047  0.9792215 
##  Ljung-Box Test     R^2  Q(20)  7.912376  0.9924318 
##  LM Arch Test       R    TR^2   5.349967  0.9452573 
## 
## Information Criterion Statistics:
##       AIC       BIC       SIC      HQIC 
## -9.626811 -9.585149 -9.627083 -9.610053
modelo4<-garchFit(~garch(2,0),data = residuos2,trace = T)
## 
## Series Initialization:
##  ARMA Model:                arma
##  Formula Mean:              ~ arma(0, 0)
##  GARCH Model:               garch
##  Formula Variance:          ~ garch(2, 0)
##  ARMA Order:                0 0
##  Max ARMA Order:            0
##  GARCH Order:               2 0
##  Max GARCH Order:           2
##  Maximum Order:             2
##  Conditional Dist:          norm
##  h.start:                   3
##  llh.start:                 1
##  Length of Series:          255
##  Recursion Init:            mci
##  Series Scale:              0.002164843
## 
## Parameter Initialization:
##  Initial Parameters:          $params
##  Limits of Transformations:   $U, $V
##  Which Parameters are Fixed?  $includes
##  Parameter Matrix:
##                      U          V    params includes
##     mu     -5.43796108   5.437961 0.5437961     TRUE
##     omega   0.00000100 100.000000 0.1000000     TRUE
##     alpha1  0.00000001   1.000000 0.0500000     TRUE
##     alpha2  0.00000001   1.000000 0.0500000     TRUE
##     gamma1 -0.99999999   1.000000 0.1000000    FALSE
##     gamma2 -0.99999999   1.000000 0.1000000    FALSE
##     delta   0.00000000   2.000000 2.0000000    FALSE
##     skew    0.10000000  10.000000 1.0000000    FALSE
##     shape   1.00000000  10.000000 4.0000000    FALSE
##  Index List of Parameters to be Optimized:
##     mu  omega alpha1 alpha2 
##      1      2      3      4 
##  Persistence:                  0.1 
## 
## 
## --- START OF TRACE ---
## Selected Algorithm: nlminb 
## 
## R coded nlminb Solver: 
## 
##   0:     771.16190: 0.543796 0.100000 0.0500000 0.0500000
##   1:     358.86014: 0.532960  1.00613 0.361643 0.335326
##   2:     353.94372: 0.263358 0.989628 0.400630 0.286207
##   3:     346.76526: 0.143362 0.506805  1.00000  1.00000
##   4:     343.79113: 0.263967 0.457723  1.00000 0.975928
##   5:     342.95770: 0.276257 0.521212  1.00000 0.756127
##   6:     341.86648: 0.276679 0.558907  1.00000 0.538949
##   7:     335.92006: 0.272499 0.604127  1.00000 1.00000e-08
##   8:     335.79177: 0.261008 0.603179  1.00000 1.00000e-08
##   9:     335.42963: 0.233238 0.588889  1.00000 1.00000e-08
##  10:     335.03509: 0.212895 0.559452  1.00000 1.00000e-08
##  11:     334.70631: 0.207083 0.516647  1.00000 1.00000e-08
##  12:     334.64231: 0.218573 0.510433  1.00000 1.00000e-08
##  13:     334.63459: 0.225148 0.512478  1.00000 1.00000e-08
##  14:     334.63457: 0.225045 0.512175  1.00000 1.00000e-08
##  15:     334.63457: 0.225043 0.512191  1.00000 1.00000e-08
##  16:     334.63457: 0.225043 0.512191  1.00000 1.00000e-08
## 
## Final Estimate of the Negative LLH:
##  LLH:  -1229.894    norm LLH:  -4.823115 
##           mu        omega       alpha1       alpha2 
## 4.871828e-04 2.400409e-06 1.000000e+00 1.000000e-08 
## 
## R-optimhess Difference Approximated Hessian Matrix:
##                   mu         omega        alpha1        alpha2
## mu      -82216931.93  7.471745e+09 -1.764285e+04  1.787917e+04
## omega  7471745107.92 -1.519656e+13 -5.693638e+06 -1.888723e+07
## alpha1     -17642.85 -5.693638e+06 -2.149857e+01 -3.793005e+01
## alpha2      17879.17 -1.888723e+07 -3.793005e+01  7.593479e+02
## attr(,"time")
## Time difference of 0.007987976 secs
## 
## --- END OF TRACE ---
## Warning in sqrt(diag(fit$cvar)): Se han producido NaNs
## 
## Time to Estimate Parameters:
##  Time difference of 0.02900195 secs
summary(modelo4)
## 
## Title:
##  GARCH Modelling 
## 
## Call:
##  garchFit(formula = ~garch(2, 0), data = residuos2, trace = T) 
## 
## Mean and Variance Equation:
##  data ~ garch(2, 0)
## <environment: 0x000000001cc28d48>
##  [data = residuos2]
## 
## Conditional Distribution:
##  norm 
## 
## Coefficient(s):
##         mu       omega      alpha1      alpha2  
## 4.8718e-04  2.4004e-06  1.0000e+00  1.0000e-08  
## 
## Std. Errors:
##  based on Hessian 
## 
## Error Analysis:
##         Estimate  Std. Error  t value Pr(>|t|)    
## mu     4.872e-04   1.302e-04    3.742 0.000182 ***
## omega  2.400e-06   2.947e-07    8.144 4.44e-16 ***
## alpha1 1.000e+00   2.545e-01    3.930 8.51e-05 ***
## alpha2 1.000e-08          NA       NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Log Likelihood:
##  1229.894    normalized:  4.823115 
## 
## Description:
##  Thu Jul 23 16:50:15 2020 by user: daffy 
## 
## 
## Standardised Residuals Tests:
##                                 Statistic p-Value   
##  Jarque-Bera Test   R    Chi^2  3438.372  0         
##  Shapiro-Wilk Test  R    W      0.5869367 0         
##  Ljung-Box Test     R    Q(10)  23.01554  0.01068938
##  Ljung-Box Test     R    Q(15)  24.40587  0.05851392
##  Ljung-Box Test     R    Q(20)  24.68229  0.2138573 
##  Ljung-Box Test     R^2  Q(10)  4.262055  0.9347518 
##  Ljung-Box Test     R^2  Q(15)  6.042036  0.979033  
##  Ljung-Box Test     R^2  Q(20)  7.919836  0.9923849 
##  LM Arch Test       R    TR^2   5.359499  0.9448816 
## 
## Information Criterion Statistics:
##       AIC       BIC       SIC      HQIC 
## -9.614857 -9.559308 -9.615339 -9.592513