This script is exactly, more or less, like the same file that used 3 most populated state cities, but this time we use the 10 most populated cities in each states. We gathered race demographics and median pay from data.census.gov for 2018 data that was the closest to this year’s date of 2020, yellowpages.com, Indeed.com, apartments.com data using webscrape scripts and Zillows’s research data for friendly sharing without webscraping. The two bedroom and two bath apartments were from aparments.com and we used multifamily home median values per city from Zillow data.

All webscrapes took only the first five pages of those listings. Later scripts had each iteration stop by uploading and writing the data after each of 500 iterations done in batches of 10-25 so that we could ethically grab the online data without tying up their servers. Because apartments.com (also rent.com) and yellowpages.com didn’t like that at all. Sometimes Indeed would boot the script off too. I even used a VPN to mix the IP shelling out $13/month but they knew the pattern of cities, and it got ugly when I tried to rearrange the batches. This could have gotten completed in less than a day, but because of the constant restarting of the computer or VPN and waiting to grab each of 500 city data on 20 Indeed jobs and 9 yellowpages businesses and 500 city’s first five pages of apartment listings, this took about two days.

All files are in the github repository located at https://github.com/JanJanJan2018/LMT-State-Licensing-Database and the census data that we start adding to this table is pulled from 2018 data from Data.census.gov demographics to add per state to state licensing requirements excel file: https://data.census.gov/cedsci/table?q=median%20pay%20by%20region%20and%20race&tid=ACSDP1Y2018.DP05&vintage=2018&cid=DP05_0001E&g=0100000US.04000.001&hidePreview=false

library(ggplot2)
library(grid)
library(gridExtra)
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following object is masked from 'package:gridExtra':
## 
##     combine
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(tidyr)
data <- read.csv('ACSDP1Y2018.DP05_data_with_overlays_2020-07-07T154725.csv',
                 sep=',',
                 header=TRUE, na.strings = c('',' ','NA'))
                 
meta <- read.csv('ACSDP1Y2018.DP05_metadata_2020-07-07T154725.csv',header=TRUE, 
                 sep=',',na.strings=c('',' ','NA'))
head(data)
##        GEO_ID                 NAME                              DP05_0001E
## 1          id Geographic Area Name Estimate!!SEX AND AGE!!Total population
## 2 0400000US17             Illinois                                12741080
## 3 0400000US19                 Iowa                                 3156145
## 4 0400000US29             Missouri                                 6126452
## 5 0400000US32               Nevada                                 3034392
## 6 0400000US42         Pennsylvania                                12807060
##                                       DP05_0001M
## 1 Margin of Error!!SEX AND AGE!!Total population
## 2                                          *****
## 3                                          *****
## 4                                          *****
## 5                                          *****
## 6                                          *****
##                                       DP05_0001PE
## 1 Percent Estimate!!SEX AND AGE!!Total population
## 2                                        12741080
## 3                                         3156145
## 4                                         6126452
## 5                                         3034392
## 6                                        12807060
##                                              DP05_0001PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population
## 2                                                    (X)
## 3                                                    (X)
## 4                                                    (X)
## 5                                                    (X)
## 6                                                    (X)
##                                      DP05_0002E
## 1 Estimate!!SEX AND AGE!!Total population!!Male
## 2                                       6266062
## 3                                       1564888
## 4                                       3003165
## 5                                       1522374
## 6                                       6271620
##                                             DP05_0002M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Male
## 2                                                 4378
## 3                                                 3527
## 4                                                 4798
## 5                                                 2263
## 6                                                 4457
##                                             DP05_0002PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Male
## 2                                                  49.2
## 3                                                  49.6
## 4                                                  49.0
## 5                                                  50.2
## 6                                                  49.0
##                                                    DP05_0002PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Male
## 2                                                          0.1
## 3                                                          0.1
## 4                                                          0.1
## 5                                                          0.1
## 6                                                          0.1
##                                        DP05_0003E
## 1 Estimate!!SEX AND AGE!!Total population!!Female
## 2                                         6475018
## 3                                         1591257
## 4                                         3123287
## 5                                         1512018
## 6                                         6535440
##                                               DP05_0003M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Female
## 2                                                   4378
## 3                                                   3527
## 4                                                   4798
## 5                                                   2263
## 6                                                   4457
##                                               DP05_0003PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Female
## 2                                                    50.8
## 3                                                    50.4
## 4                                                    51.0
## 5                                                    49.8
## 6                                                    51.0
##                                                      DP05_0003PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Female
## 2                                                            0.1
## 3                                                            0.1
## 4                                                            0.1
## 5                                                            0.1
## 6                                                            0.1
##                                                                   DP05_0004E
## 1 Estimate!!SEX AND AGE!!Total population!!Sex ratio (males per 100 females)
## 2                                                                       96.8
## 3                                                                       98.3
## 4                                                                       96.2
## 5                                                                      100.7
## 6                                                                       96.0
##                                                                          DP05_0004M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Sex ratio (males per 100 females)
## 2                                                                               0.1
## 3                                                                               0.4
## 4                                                                               0.3
## 5                                                                               0.3
## 6                                                                               0.1
##                                                                          DP05_0004PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Sex ratio (males per 100 females)
## 2                                                                                (X)
## 3                                                                                (X)
## 4                                                                                (X)
## 5                                                                                (X)
## 6                                                                                (X)
##                                                                                 DP05_0004PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Sex ratio (males per 100 females)
## 2                                                                                       (X)
## 3                                                                                       (X)
## 4                                                                                       (X)
## 5                                                                                       (X)
## 6                                                                                       (X)
##                                               DP05_0005E
## 1 Estimate!!SEX AND AGE!!Total population!!Under 5 years
## 2                                                 759456
## 3                                                 197883
## 4                                                 370408
## 5                                                 184539
## 6                                                 700416
##                                                      DP05_0005M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Under 5 years
## 2                                                          2046
## 3                                                          2271
## 4                                                          2583
## 5                                                          1173
## 6                                                          2083
##                                                      DP05_0005PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Under 5 years
## 2                                                            6.0
## 3                                                            6.3
## 4                                                            6.0
## 5                                                            6.1
## 6                                                            5.5
##                                                             DP05_0005PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Under 5 years
## 2                                                                   0.1
## 3                                                                   0.1
## 4                                                                   0.1
## 5                                                                   0.1
## 6                                                                   0.1
##                                              DP05_0006E
## 1 Estimate!!SEX AND AGE!!Total population!!5 to 9 years
## 2                                                762237
## 3                                                197454
## 4                                                373737
## 5                                                188880
## 6                                                708163
##                                                     DP05_0006M
## 1 Margin of Error!!SEX AND AGE!!Total population!!5 to 9 years
## 2                                                        10975
## 3                                                         4889
## 4                                                         8163
## 5                                                         5734
## 6                                                         9762
##                                                     DP05_0006PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!5 to 9 years
## 2                                                           6.0
## 3                                                           6.3
## 4                                                           6.1
## 5                                                           6.2
## 6                                                           5.5
##                                                            DP05_0006PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!5 to 9 years
## 2                                                                  0.1
## 3                                                                  0.2
## 4                                                                  0.1
## 5                                                                  0.2
## 6                                                                  0.1
##                                                DP05_0007E
## 1 Estimate!!SEX AND AGE!!Total population!!10 to 14 years
## 2                                                  838140
## 3                                                  215222
## 4                                                  401199
## 5                                                  201625
## 6                                                  775827
##                                                       DP05_0007M
## 1 Margin of Error!!SEX AND AGE!!Total population!!10 to 14 years
## 2                                                          10161
## 3                                                           5215
## 4                                                           7657
## 5                                                           5704
## 6                                                           9517
##                                                       DP05_0007PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!10 to 14 years
## 2                                                             6.6
## 3                                                             6.8
## 4                                                             6.5
## 5                                                             6.6
## 6                                                             6.1
##                                                              DP05_0007PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!10 to 14 years
## 2                                                                    0.1
## 3                                                                    0.2
## 4                                                                    0.1
## 5                                                                    0.2
## 6                                                                    0.1
##                                                DP05_0008E
## 1 Estimate!!SEX AND AGE!!Total population!!15 to 19 years
## 2                                                  835845
## 3                                                  220659
## 4                                                  391923
## 5                                                  182398
## 6                                                  815621
##                                                       DP05_0008M
## 1 Margin of Error!!SEX AND AGE!!Total population!!15 to 19 years
## 2                                                           4854
## 3                                                           4122
## 4                                                           4812
## 5                                                           2209
## 6                                                           4096
##                                                       DP05_0008PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!15 to 19 years
## 2                                                             6.6
## 3                                                             7.0
## 4                                                             6.4
## 5                                                             6.0
## 6                                                             6.4
##                                                              DP05_0008PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!15 to 19 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0009E
## 1 Estimate!!SEX AND AGE!!Total population!!20 to 24 years
## 2                                                  839026
## 3                                                  220135
## 4                                                  406398
## 5                                                  180376
## 6                                                  812406
##                                                       DP05_0009M
## 1 Margin of Error!!SEX AND AGE!!Total population!!20 to 24 years
## 2                                                           5924
## 3                                                           3995
## 4                                                           5343
## 5                                                           2061
## 6                                                           5651
##                                                       DP05_0009PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!20 to 24 years
## 2                                                             6.6
## 3                                                             7.0
## 4                                                             6.6
## 5                                                             5.9
## 6                                                             6.3
##                                                              DP05_0009PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!20 to 24 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0010E
## 1 Estimate!!SEX AND AGE!!Total population!!25 to 34 years
## 2                                                 1765517
## 3                                                  394507
## 4                                                  819132
## 5                                                  442713
## 6                                                 1695073
##                                                       DP05_0010M
## 1 Margin of Error!!SEX AND AGE!!Total population!!25 to 34 years
## 2                                                           5311
## 3                                                           4452
## 4                                                           5822
## 5                                                           2829
## 6                                                           5655
##                                                       DP05_0010PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!25 to 34 years
## 2                                                            13.9
## 3                                                            12.5
## 4                                                            13.4
## 5                                                            14.6
## 6                                                            13.2
##                                                              DP05_0010PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!25 to 34 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0011E
## 1 Estimate!!SEX AND AGE!!Total population!!35 to 44 years
## 2                                                 1644390
## 3                                                  383617
## 4                                                  742343
## 5                                                  405128
## 6                                                 1496113
##                                                       DP05_0011M
## 1 Margin of Error!!SEX AND AGE!!Total population!!35 to 44 years
## 2                                                           5142
## 3                                                           3741
## 4                                                           3976
## 5                                                           2750
## 6                                                           4296
##                                                       DP05_0011PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!35 to 44 years
## 2                                                            12.9
## 3                                                            12.2
## 4                                                            12.1
## 5                                                            13.4
## 6                                                            11.7
##                                                              DP05_0011PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!35 to 44 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0012E
## 1 Estimate!!SEX AND AGE!!Total population!!45 to 54 years
## 2                                                 1636054
## 3                                                  369396
## 4                                                  753354
## 5                                                  396167
## 6                                                 1659541
##                                                       DP05_0012M
## 1 Margin of Error!!SEX AND AGE!!Total population!!45 to 54 years
## 2                                                           4871
## 3                                                           3161
## 4                                                           3315
## 5                                                           2674
## 6                                                           4842
##                                                       DP05_0012PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!45 to 54 years
## 2                                                            12.8
## 3                                                            11.7
## 4                                                            12.3
## 5                                                            13.1
## 6                                                            13.0
##                                                              DP05_0012PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!45 to 54 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0013E
## 1 Estimate!!SEX AND AGE!!Total population!!55 to 59 years
## 2                                                  855616
## 3                                                  213657
## 4                                                  419591
## 5                                                  191059
## 6                                                  916749
##                                                       DP05_0013M
## 1 Margin of Error!!SEX AND AGE!!Total population!!55 to 59 years
## 2                                                           9963
## 3                                                           4454
## 4                                                           7243
## 5                                                           4897
## 6                                                           9701
##                                                       DP05_0013PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!55 to 59 years
## 2                                                             6.7
## 3                                                             6.8
## 4                                                             6.8
## 5                                                             6.3
## 6                                                             7.2
##                                                              DP05_0013PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!55 to 59 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.2
## 6                                                                    0.1
##                                                DP05_0014E
## 1 Estimate!!SEX AND AGE!!Total population!!60 to 64 years
## 2                                                  814251
## 3                                                  205797
## 4                                                  413293
## 5                                                  186387
## 6                                                  894782
##                                                       DP05_0014M
## 1 Margin of Error!!SEX AND AGE!!Total population!!60 to 64 years
## 2                                                           9868
## 3                                                           4119
## 4                                                           7024
## 5                                                           5137
## 6                                                           9663
##                                                       DP05_0014PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!60 to 64 years
## 2                                                             6.4
## 3                                                             6.5
## 4                                                             6.7
## 5                                                             6.1
## 6                                                             7.0
##                                                              DP05_0014PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!60 to 64 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.2
## 6                                                                    0.1
##                                                DP05_0015E
## 1 Estimate!!SEX AND AGE!!Total population!!65 to 74 years
## 2                                                 1143329
## 3                                                  299333
## 4                                                  596623
## 5                                                  291996
## 6                                                 1311159
##                                                       DP05_0015M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 to 74 years
## 2                                                           2976
## 3                                                           1873
## 4                                                           2812
## 5                                                           1221
## 6                                                           3293
##                                                       DP05_0015PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 to 74 years
## 2                                                             9.0
## 3                                                             9.5
## 4                                                             9.7
## 5                                                             9.6
## 6                                                            10.2
##                                                              DP05_0015PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 to 74 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                DP05_0016E
## 1 Estimate!!SEX AND AGE!!Total population!!75 to 84 years
## 2                                                  587651
## 3                                                  162869
## 4                                                  313646
## 5                                                  138844
## 6                                                  707570
##                                                       DP05_0016M
## 1 Margin of Error!!SEX AND AGE!!Total population!!75 to 84 years
## 2                                                           6188
## 3                                                           3158
## 4                                                           5352
## 5                                                           3225
## 6                                                           7958
##                                                       DP05_0016PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!75 to 84 years
## 2                                                             4.6
## 3                                                             5.2
## 4                                                             5.1
## 5                                                             4.6
## 6                                                             5.5
##                                                              DP05_0016PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!75 to 84 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                   DP05_0017E
## 1 Estimate!!SEX AND AGE!!Total population!!85 years and over
## 2                                                     259568
## 3                                                      75616
## 4                                                     124805
## 5                                                      44280
## 6                                                     313640
##                                                          DP05_0017M
## 1 Margin of Error!!SEX AND AGE!!Total population!!85 years and over
## 2                                                              5554
## 3                                                              3074
## 4                                                              5244
## 5                                                              3193
## 6                                                              7963
##                                                          DP05_0017PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!85 years and over
## 2                                                                2.0
## 3                                                                2.4
## 4                                                                2.0
## 5                                                                1.5
## 6                                                                2.4
##                                                                 DP05_0017PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!85 years and over
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.1
## 6                                                                       0.1
##                                                    DP05_0018E
## 1 Estimate!!SEX AND AGE!!Total population!!Median age (years)
## 2                                                        38.3
## 3                                                        38.1
## 4                                                        38.8
## 5                                                        38.2
## 6                                                        40.8
##                                                           DP05_0018M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Median age (years)
## 2                                                                0.1
## 3                                                                0.2
## 4                                                                0.1
## 5                                                                0.2
## 6                                                                0.1
##                                                           DP05_0018PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Median age (years)
## 2                                                                 (X)
## 3                                                                 (X)
## 4                                                                 (X)
## 5                                                                 (X)
## 6                                                                 (X)
##                                                                  DP05_0018PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Median age (years)
## 2                                                                        (X)
## 3                                                                        (X)
## 4                                                                        (X)
## 5                                                                        (X)
## 6                                                                        (X)
##                                                DP05_0019E
## 1 Estimate!!SEX AND AGE!!Total population!!Under 18 years
## 2                                                 2855802
## 3                                                  733389
## 4                                                 1377726
## 5                                                  689220
## 6                                                 2647617
##                                                       DP05_0019M
## 1 Margin of Error!!SEX AND AGE!!Total population!!Under 18 years
## 2                                                           2274
## 3                                                           2389
## 4                                                           3160
## 5                                                            913
## 6                                                           1899
##                                                       DP05_0019PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!Under 18 years
## 2                                                            22.4
## 3                                                            23.2
## 4                                                            22.5
## 5                                                            22.7
## 6                                                            20.7
##                                                              DP05_0019PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!Under 18 years
## 2                                                                    0.1
## 3                                                                    0.1
## 4                                                                    0.1
## 5                                                                    0.1
## 6                                                                    0.1
##                                                   DP05_0020E
## 1 Estimate!!SEX AND AGE!!Total population!!16 years and over
## 2                                                   10216304
## 3                                                    2506580
## 4                                                    4907003
## 5                                                    2420990
## 6                                                   10470798
##                                                          DP05_0020M
## 1 Margin of Error!!SEX AND AGE!!Total population!!16 years and over
## 2                                                              5459
## 3                                                              3373
## 4                                                              4497
## 5                                                              3306
## 6                                                              5368
##                                                          DP05_0020PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!16 years and over
## 2                                                               80.2
## 3                                                               79.4
## 4                                                               80.1
## 5                                                               79.8
## 6                                                               81.8
##                                                                 DP05_0020PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!16 years and over
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.1
## 6                                                                       0.1
##                                                   DP05_0021E
## 1 Estimate!!SEX AND AGE!!Total population!!18 years and over
## 2                                                    9885278
## 3                                                    2422756
## 4                                                    4748726
## 5                                                    2345172
## 6                                                   10159443
##                                                          DP05_0021M
## 1 Margin of Error!!SEX AND AGE!!Total population!!18 years and over
## 2                                                              2274
## 3                                                              2389
## 4                                                              3160
## 5                                                               913
## 6                                                              1899
##                                                          DP05_0021PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!18 years and over
## 2                                                               77.6
## 3                                                               76.8
## 4                                                               77.5
## 5                                                               77.3
## 6                                                               79.3
##                                                                 DP05_0021PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!18 years and over
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.1
## 6                                                                       0.1
##                                                   DP05_0022E
## 1 Estimate!!SEX AND AGE!!Total population!!21 years and over
## 2                                                    9379230
## 3                                                    2277260
## 4                                                    4505646
## 5                                                    2236266
## 6                                                    9635621
##                                                          DP05_0022M
## 1 Margin of Error!!SEX AND AGE!!Total population!!21 years and over
## 2                                                              8440
## 3                                                              5679
## 4                                                              6850
## 5                                                              4122
## 6                                                              7363
##                                                          DP05_0022PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!21 years and over
## 2                                                               73.6
## 3                                                               72.2
## 4                                                               73.5
## 5                                                               73.7
## 6                                                               75.2
##                                                                 DP05_0022PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!21 years and over
## 2                                                                       0.1
## 3                                                                       0.2
## 4                                                                       0.1
## 5                                                                       0.1
## 6                                                                       0.1
##                                                   DP05_0023E
## 1 Estimate!!SEX AND AGE!!Total population!!62 years and over
## 2                                                    2459839
## 3                                                     661366
## 4                                                    1284321
## 5                                                     589051
## 6                                                    2861918
##                                                          DP05_0023M
## 1 Margin of Error!!SEX AND AGE!!Total population!!62 years and over
## 2                                                              9329
## 3                                                              4411
## 4                                                              6208
## 5                                                              4630
## 6                                                              9666
##                                                          DP05_0023PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!62 years and over
## 2                                                               19.3
## 3                                                               21.0
## 4                                                               21.0
## 5                                                               19.4
## 6                                                               22.3
##                                                                 DP05_0023PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!62 years and over
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.2
## 6                                                                       0.1
##                                                   DP05_0024E
## 1 Estimate!!SEX AND AGE!!Total population!!65 years and over
## 2                                                    1990548
## 3                                                     537818
## 4                                                    1035074
## 5                                                     475120
## 6                                                    2332369
##                                                          DP05_0024M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 years and over
## 2                                                              2970
## 3                                                              2027
## 4                                                              3446
## 5                                                              1480
## 6                                                              2802
##                                                          DP05_0024PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 years and over
## 2                                                               15.6
## 3                                                               17.0
## 4                                                               16.9
## 5                                                               15.7
## 6                                                               18.2
##                                                                 DP05_0024PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 years and over
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.1
## 6                                                                       0.1
##                                                   DP05_0025E
## 1 Estimate!!SEX AND AGE!!Total population!!18 years and over
## 2                                                    9885278
## 3                                                    2422756
## 4                                                    4748726
## 5                                                    2345172
## 6                                                   10159443
##                                                          DP05_0025M
## 1 Margin of Error!!SEX AND AGE!!Total population!!18 years and over
## 2                                                              2274
## 3                                                              2389
## 4                                                              3160
## 5                                                               913
## 6                                                              1899
##                                                          DP05_0025PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!18 years and over
## 2                                                            9885278
## 3                                                            2422756
## 4                                                            4748726
## 5                                                            2345172
## 6                                                           10159443
##                                                                 DP05_0025PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!18 years and over
## 2                                                                       (X)
## 3                                                                       (X)
## 4                                                                       (X)
## 5                                                                       (X)
## 6                                                                       (X)
##                                                         DP05_0026E
## 1 Estimate!!SEX AND AGE!!Total population!!18 years and over!!Male
## 2                                                          4801941
## 3                                                          1188114
## 4                                                          2298091
## 5                                                          1169070
## 6                                                          4919474
##                                                                DP05_0026M
## 1 Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Male
## 2                                                                    3028
## 3                                                                    2543
## 4                                                                    3571
## 5                                                                    1337
## 6                                                                    3260
##                                                                DP05_0026PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!18 years and over!!Male
## 2                                                                     48.6
## 3                                                                     49.0
## 4                                                                     48.4
## 5                                                                     49.9
## 6                                                                     48.4
##                                                                       DP05_0026PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Male
## 2                                                                             0.1
## 3                                                                             0.1
## 4                                                                             0.1
## 5                                                                             0.1
## 6                                                                             0.1
##                                                           DP05_0027E
## 1 Estimate!!SEX AND AGE!!Total population!!18 years and over!!Female
## 2                                                            5083337
## 3                                                            1234642
## 4                                                            2450635
## 5                                                            1176102
## 6                                                            5239969
##                                                                  DP05_0027M
## 1 Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Female
## 2                                                                      2781
## 3                                                                      2254
## 4                                                                      3289
## 5                                                                      1437
## 6                                                                      3023
##                                                                  DP05_0027PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!18 years and over!!Female
## 2                                                                       51.4
## 3                                                                       51.0
## 4                                                                       51.6
## 5                                                                       50.1
## 6                                                                       51.6
##                                                                         DP05_0027PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Female
## 2                                                                               0.1
## 3                                                                               0.1
## 4                                                                               0.1
## 5                                                                               0.1
## 6                                                                               0.1
##                                                                                      DP05_0028E
## 1 Estimate!!SEX AND AGE!!Total population!!18 years and over!!Sex ratio (males per 100 females)
## 2                                                                                          94.5
## 3                                                                                          96.2
## 4                                                                                          93.8
## 5                                                                                          99.4
## 6                                                                                          93.9
##                                                                                             DP05_0028M
## 1 Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                  0.1
## 3                                                                                                  0.3
## 4                                                                                                  0.2
## 5                                                                                                  0.2
## 6                                                                                                  0.1
##                                                                                             DP05_0028PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!18 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                   (X)
## 3                                                                                                   (X)
## 4                                                                                                   (X)
## 5                                                                                                   (X)
## 6                                                                                                   (X)
##                                                                                                    DP05_0028PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!18 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                          (X)
## 3                                                                                                          (X)
## 4                                                                                                          (X)
## 5                                                                                                          (X)
## 6                                                                                                          (X)
##                                                   DP05_0029E
## 1 Estimate!!SEX AND AGE!!Total population!!65 years and over
## 2                                                    1990548
## 3                                                     537818
## 4                                                    1035074
## 5                                                     475120
## 6                                                    2332369
##                                                          DP05_0029M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 years and over
## 2                                                              2970
## 3                                                              2027
## 4                                                              3446
## 5                                                              1480
## 6                                                              2802
##                                                          DP05_0029PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 years and over
## 2                                                            1990548
## 3                                                             537818
## 4                                                            1035074
## 5                                                             475120
## 6                                                            2332369
##                                                                 DP05_0029PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 years and over
## 2                                                                       (X)
## 3                                                                       (X)
## 4                                                                       (X)
## 5                                                                       (X)
## 6                                                                       (X)
##                                                         DP05_0030E
## 1 Estimate!!SEX AND AGE!!Total population!!65 years and over!!Male
## 2                                                           869736
## 3                                                           239515
## 4                                                           456820
## 5                                                           223916
## 6                                                          1020825
##                                                                DP05_0030M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Male
## 2                                                                    1783
## 3                                                                    1176
## 4                                                                    2154
## 5                                                                    1014
## 6                                                                    1549
##                                                                DP05_0030PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 years and over!!Male
## 2                                                                     43.7
## 3                                                                     44.5
## 4                                                                     44.1
## 5                                                                     47.1
## 6                                                                     43.8
##                                                                       DP05_0030PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Male
## 2                                                                             0.1
## 3                                                                             0.1
## 4                                                                             0.1
## 5                                                                             0.1
## 6                                                                             0.1
##                                                           DP05_0031E
## 1 Estimate!!SEX AND AGE!!Total population!!65 years and over!!Female
## 2                                                            1120812
## 3                                                             298303
## 4                                                             578254
## 5                                                             251204
## 6                                                            1311544
##                                                                  DP05_0031M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Female
## 2                                                                      2090
## 3                                                                      1394
## 4                                                                      2434
## 5                                                                       930
## 6                                                                      2017
##                                                                  DP05_0031PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 years and over!!Female
## 2                                                                       56.3
## 3                                                                       55.5
## 4                                                                       55.9
## 5                                                                       52.9
## 6                                                                       56.2
##                                                                         DP05_0031PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Female
## 2                                                                               0.1
## 3                                                                               0.1
## 4                                                                               0.1
## 5                                                                               0.1
## 6                                                                               0.1
##                                                                                      DP05_0032E
## 1 Estimate!!SEX AND AGE!!Total population!!65 years and over!!Sex ratio (males per 100 females)
## 2                                                                                          77.6
## 3                                                                                          80.3
## 4                                                                                          79.0
## 5                                                                                          89.1
## 6                                                                                          77.8
##                                                                                             DP05_0032M
## 1 Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                  0.2
## 3                                                                                                  0.5
## 4                                                                                                  0.5
## 5                                                                                                  0.5
## 6                                                                                                  0.1
##                                                                                             DP05_0032PE
## 1 Percent Estimate!!SEX AND AGE!!Total population!!65 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                   (X)
## 3                                                                                                   (X)
## 4                                                                                                   (X)
## 5                                                                                                   (X)
## 6                                                                                                   (X)
##                                                                                                    DP05_0032PM
## 1 Percent Margin of Error!!SEX AND AGE!!Total population!!65 years and over!!Sex ratio (males per 100 females)
## 2                                                                                                          (X)
## 3                                                                                                          (X)
## 4                                                                                                          (X)
## 5                                                                                                          (X)
## 6                                                                                                          (X)
##                         DP05_0033E                              DP05_0033M
## 1 Estimate!!RACE!!Total population Margin of Error!!RACE!!Total population
## 2                         12741080                                   *****
## 3                          3156145                                   *****
## 4                          6126452                                   *****
## 5                          3034392                                   *****
## 6                         12807060                                   *****
##                                DP05_0033PE
## 1 Percent Estimate!!RACE!!Total population
## 2                                 12741080
## 3                                  3156145
## 4                                  6126452
## 5                                  3034392
## 6                                 12807060
##                                       DP05_0033PM
## 1 Percent Margin of Error!!RACE!!Total population
## 2                                             (X)
## 3                                             (X)
## 4                                             (X)
## 5                                             (X)
## 6                                             (X)
##                                   DP05_0034E
## 1 Estimate!!RACE!!Total population!!One race
## 2                                   12400103
## 3                                    3086877
## 4                                    5952588
## 5                                    2878562
## 6                                   12473515
##                                          DP05_0034M
## 1 Margin of Error!!RACE!!Total population!!One race
## 2                                             12577
## 3                                              5586
## 4                                              7671
## 5                                              9895
## 6                                             13725
##                                          DP05_0034PE
## 1 Percent Estimate!!RACE!!Total population!!One race
## 2                                               97.3
## 3                                               97.8
## 4                                               97.2
## 5                                               94.9
## 6                                               97.4
##                                                 DP05_0034PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race
## 2                                                       0.1
## 3                                                       0.2
## 4                                                       0.1
## 5                                                       0.3
## 6                                                       0.1
##                                            DP05_0035E
## 1 Estimate!!RACE!!Total population!!Two or more races
## 2                                              340977
## 3                                               69268
## 4                                              173864
## 5                                              155830
## 6                                              333545
##                                                   DP05_0035M
## 1 Margin of Error!!RACE!!Total population!!Two or more races
## 2                                                      12577
## 3                                                       5586
## 4                                                       7671
## 5                                                       9895
## 6                                                      13725
##                                                   DP05_0035PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races
## 2                                                         2.7
## 3                                                         2.2
## 4                                                         2.8
## 5                                                         5.1
## 6                                                         2.6
##                                                          DP05_0035PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races
## 2                                                                0.1
## 3                                                                0.2
## 4                                                                0.1
## 5                                                                0.3
## 6                                                                0.1
##                                   DP05_0036E
## 1 Estimate!!RACE!!Total population!!One race
## 2                                   12400103
## 3                                    3086877
## 4                                    5952588
## 5                                    2878562
## 6                                   12473515
##                                          DP05_0036M
## 1 Margin of Error!!RACE!!Total population!!One race
## 2                                             12577
## 3                                              5586
## 4                                              7671
## 5                                              9895
## 6                                             13725
##                                          DP05_0036PE
## 1 Percent Estimate!!RACE!!Total population!!One race
## 2                                               97.3
## 3                                               97.8
## 4                                               97.2
## 5                                               94.9
## 6                                               97.4
##                                                 DP05_0036PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race
## 2                                                       0.1
## 3                                                       0.2
## 4                                                       0.1
## 5                                                       0.3
## 6                                                       0.1
##                                          DP05_0037E
## 1 Estimate!!RACE!!Total population!!One race!!White
## 2                                           9135145
## 3                                           2846099
## 4                                           5035197
## 5                                           1924976
## 6                                          10256084
##                                                 DP05_0037M
## 1 Margin of Error!!RACE!!Total population!!One race!!White
## 2                                                    26772
## 3                                                     5629
## 4                                                     7994
## 5                                                    16699
## 6                                                    17296
##                                                 DP05_0037PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!White
## 2                                                      71.7
## 3                                                      90.2
## 4                                                      82.2
## 5                                                      63.4
## 6                                                      80.1
##                                                        DP05_0037PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!White
## 2                                                              0.2
## 3                                                              0.2
## 4                                                              0.1
## 5                                                              0.6
## 6                                                              0.1
##                                                              DP05_0038E
## 1 Estimate!!RACE!!Total population!!One race!!Black or African American
## 2                                                               1793079
## 3                                                                115137
## 4                                                                704327
## 5                                                                280385
## 6                                                               1428406
##                                                                     DP05_0038M
## 1 Margin of Error!!RACE!!Total population!!One race!!Black or African American
## 2                                                                        10015
## 3                                                                         4782
## 4                                                                         6416
## 5                                                                         7032
## 6                                                                        12545
##                                                                     DP05_0038PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Black or African American
## 2                                                                          14.1
## 3                                                                           3.6
## 4                                                                          11.5
## 5                                                                           9.2
## 6                                                                          11.2
##                                                                            DP05_0038PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Black or African American
## 2                                                                                  0.1
## 3                                                                                  0.2
## 4                                                                                  0.1
## 5                                                                                  0.2
## 6                                                                                  0.1
##                                                                      DP05_0039E
## 1 Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native
## 2                                                                         35846
## 3                                                                         11494
## 4                                                                         27705
## 5                                                                         44666
## 6                                                                         21418
##                                                                             DP05_0039M
## 1 Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native
## 2                                                                                 4591
## 3                                                                                 1274
## 4                                                                                 3183
## 5                                                                                 3794
## 6                                                                                 2246
##                                                                             DP05_0039PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native
## 2                                                                                   0.3
## 3                                                                                   0.4
## 4                                                                                   0.5
## 5                                                                                   1.5
## 6                                                                                   0.2
##                                                                                    DP05_0039PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native
## 2                                                                                          0.1
## 3                                                                                          0.1
## 4                                                                                          0.1
## 5                                                                                          0.1
## 6                                                                                          0.1
##                                                                                                DP05_0040E
## 1 Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Cherokee tribal grouping
## 2                                                                                                    3055
## 3                                                                                                     603
## 4                                                                                                    8373
## 5                                                                                                    2626
## 6                                                                                                    2569
##                                                                                                       DP05_0040M
## 1 Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Cherokee tribal grouping
## 2                                                                                                           1023
## 3                                                                                                            412
## 4                                                                                                           1600
## 5                                                                                                           1119
## 6                                                                                                           1058
##                                                                                                       DP05_0040PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Cherokee tribal grouping
## 2                                                                                                             0.0
## 3                                                                                                             0.0
## 4                                                                                                             0.1
## 5                                                                                                             0.1
## 6                                                                                                             0.0
##                                                                                                              DP05_0040PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Cherokee tribal grouping
## 2                                                                                                                    0.1
## 3                                                                                                                    0.1
## 4                                                                                                                    0.1
## 5                                                                                                                    0.1
## 6                                                                                                                    0.1
##                                                                                                DP05_0041E
## 1 Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Chippewa tribal grouping
## 2                                                                                                    2651
## 3                                                                                                     153
## 4                                                                                                     462
## 5                                                                                                     512
## 6                                                                                                     351
##                                                                                                       DP05_0041M
## 1 Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Chippewa tribal grouping
## 2                                                                                                           1224
## 3                                                                                                            142
## 4                                                                                                            359
## 5                                                                                                            505
## 6                                                                                                            267
##                                                                                                       DP05_0041PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Chippewa tribal grouping
## 2                                                                                                             0.0
## 3                                                                                                             0.0
## 4                                                                                                             0.0
## 5                                                                                                             0.0
## 6                                                                                                             0.0
##                                                                                                              DP05_0041PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Chippewa tribal grouping
## 2                                                                                                                    0.1
## 3                                                                                                                    0.1
## 4                                                                                                                    0.1
## 5                                                                                                                    0.1
## 6                                                                                                                    0.1
##                                                                                              DP05_0042E
## 1 Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Navajo tribal grouping
## 2                                                                                                   135
## 3                                                                                                   264
## 4                                                                                                  1210
## 5                                                                                                  2425
## 6                                                                                                   302
##                                                                                                     DP05_0042M
## 1 Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Navajo tribal grouping
## 2                                                                                                          212
## 3                                                                                                          218
## 4                                                                                                          790
## 5                                                                                                         1174
## 6                                                                                                          372
##                                                                                                     DP05_0042PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Navajo tribal grouping
## 2                                                                                                           0.0
## 3                                                                                                           0.0
## 4                                                                                                           0.0
## 5                                                                                                           0.1
## 6                                                                                                           0.0
##                                                                                                            DP05_0042PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Navajo tribal grouping
## 2                                                                                                                  0.1
## 3                                                                                                                  0.1
## 4                                                                                                                  0.1
## 5                                                                                                                  0.1
## 6                                                                                                                  0.1
##                                                                                             DP05_0043E
## 1 Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Sioux tribal grouping
## 2                                                                                                  222
## 3                                                                                                 1964
## 4                                                                                                  653
## 5                                                                                                  857
## 6                                                                                                  447
##                                                                                                    DP05_0043M
## 1 Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Sioux tribal grouping
## 2                                                                                                         174
## 3                                                                                                         681
## 4                                                                                                         330
## 5                                                                                                         451
## 6                                                                                                         425
##                                                                                                    DP05_0043PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Sioux tribal grouping
## 2                                                                                                          0.0
## 3                                                                                                          0.1
## 4                                                                                                          0.0
## 5                                                                                                          0.0
## 6                                                                                                          0.0
##                                                                                                           DP05_0043PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!American Indian and Alaska Native!!Sioux tribal grouping
## 2                                                                                                                 0.1
## 3                                                                                                                 0.1
## 4                                                                                                                 0.1
## 5                                                                                                                 0.1
## 6                                                                                                                 0.1
##                                          DP05_0044E
## 1 Estimate!!RACE!!Total population!!One race!!Asian
## 2                                            717938
## 3                                             79971
## 4                                            121417
## 5                                            250137
## 6                                            455027
##                                                 DP05_0044M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian
## 2                                                     6617
## 3                                                     3082
## 4                                                     3689
## 5                                                     5954
## 6                                                     6288
##                                                 DP05_0044PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian
## 2                                                       5.6
## 3                                                       2.5
## 4                                                       2.0
## 5                                                       8.2
## 6                                                       3.6
##                                                        DP05_0044PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian
## 2                                                              0.1
## 3                                                              0.1
## 4                                                              0.1
## 5                                                              0.2
## 6                                                              0.1
##                                                        DP05_0045E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Asian Indian
## 2                                                          256122
## 3                                                           12415
## 4                                                           30435
## 5                                                           11123
## 6                                                          143539
##                                                               DP05_0045M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Asian Indian
## 2                                                                  10098
## 3                                                                   2942
## 4                                                                   3766
## 5                                                                   2466
## 6                                                                   8217
##                                                               DP05_0045PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Asian Indian
## 2                                                                     2.0
## 3                                                                     0.4
## 4                                                                     0.5
## 5                                                                     0.4
## 6                                                                     1.1
##                                                                      DP05_0045PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Asian Indian
## 2                                                                            0.1
## 3                                                                            0.1
## 4                                                                            0.1
## 5                                                                            0.1
## 6                                                                            0.1
##                                                   DP05_0046E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Chinese
## 2                                                     132447
## 3                                                      13121
## 4                                                      29621
## 5                                                      39196
## 6                                                     119817
##                                                          DP05_0046M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Chinese
## 2                                                              8810
## 3                                                              1977
## 4                                                              3299
## 5                                                              5103
## 6                                                              7260
##                                                          DP05_0046PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Chinese
## 2                                                                1.0
## 3                                                                0.4
## 4                                                                0.5
## 5                                                                1.3
## 6                                                                0.9
##                                                                 DP05_0046PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Chinese
## 2                                                                       0.1
## 3                                                                       0.1
## 4                                                                       0.1
## 5                                                                       0.2
## 6                                                                       0.1
##                                                    DP05_0047E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Filipino
## 2                                                      124649
## 3                                                        5029
## 4                                                       11302
## 5                                                      129739
## 6                                                       25128
##                                                           DP05_0047M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Filipino
## 2                                                               8120
## 3                                                               1225
## 4                                                               2102
## 5                                                               7539
## 6                                                               3284
##                                                           DP05_0047PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Filipino
## 2                                                                 1.0
## 3                                                                 0.2
## 4                                                                 0.2
## 5                                                                 4.3
## 6                                                                 0.2
##                                                                  DP05_0047PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Filipino
## 2                                                                        0.1
## 3                                                                        0.1
## 4                                                                        0.1
## 5                                                                        0.2
## 6                                                                        0.1
##                                                    DP05_0048E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Japanese
## 2                                                       17958
## 3                                                        1494
## 4                                                        2388
## 5                                                       11514
## 6                                                        5056
##                                                           DP05_0048M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Japanese
## 2                                                               2295
## 3                                                                775
## 4                                                               1159
## 5                                                               2257
## 6                                                               1189
##                                                           DP05_0048PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Japanese
## 2                                                                 0.1
## 3                                                                 0.0
## 4                                                                 0.0
## 5                                                                 0.4
## 6                                                                 0.0
##                                                                  DP05_0048PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Japanese
## 2                                                                        0.1
## 3                                                                        0.1
## 4                                                                        0.1
## 5                                                                        0.1
## 6                                                                        0.1
##                                                  DP05_0049E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Korean
## 2                                                     56597
## 3                                                      6717
## 4                                                     11526
## 5                                                     11750
## 6                                                     39144
##                                                         DP05_0049M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Korean
## 2                                                             5468
## 3                                                             1890
## 4                                                             1973
## 5                                                             2453
## 6                                                             4971
##                                                         DP05_0049PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Korean
## 2                                                               0.4
## 3                                                               0.2
## 4                                                               0.2
## 5                                                               0.4
## 6                                                               0.3
##                                                                DP05_0049PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Korean
## 2                                                                      0.1
## 3                                                                      0.1
## 4                                                                      0.1
## 5                                                                      0.1
## 6                                                                      0.1
##                                                      DP05_0050E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Vietnamese
## 2                                                         35367
## 3                                                         11705
## 4                                                         17208
## 5                                                         17744
## 6                                                         40920
##                                                             DP05_0050M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Vietnamese
## 2                                                                 6566
## 3                                                                 2817
## 4                                                                 4212
## 5                                                                 4766
## 6                                                                 4670
##                                                             DP05_0050PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Vietnamese
## 2                                                                   0.3
## 3                                                                   0.4
## 4                                                                   0.3
## 5                                                                   0.6
## 6                                                                   0.3
##                                                                    DP05_0050PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Vietnamese
## 2                                                                          0.1
## 3                                                                          0.1
## 4                                                                          0.1
## 5                                                                          0.2
## 6                                                                          0.1
##                                                       DP05_0051E
## 1 Estimate!!RACE!!Total population!!One race!!Asian!!Other Asian
## 2                                                          94798
## 3                                                          29490
## 4                                                          18937
## 5                                                          29071
## 6                                                          81423
##                                                              DP05_0051M
## 1 Margin of Error!!RACE!!Total population!!One race!!Asian!!Other Asian
## 2                                                                  8476
## 3                                                                  3525
## 4                                                                  3013
## 5                                                                  4901
## 6                                                                  6597
##                                                              DP05_0051PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Asian!!Other Asian
## 2                                                                    0.7
## 3                                                                    0.9
## 4                                                                    0.3
## 5                                                                    1.0
## 6                                                                    0.6
##                                                                     DP05_0051PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Asian!!Other Asian
## 2                                                                           0.1
## 3                                                                           0.1
## 4                                                                           0.1
## 5                                                                           0.2
## 6                                                                           0.1
##                                                                               DP05_0052E
## 1 Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander
## 2                                                                                   5317
## 3                                                                                   3463
## 4                                                                                   7385
## 5                                                                                  19612
## 6                                                                                   5008
##                                                                                      DP05_0052M
## 1 Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander
## 2                                                                                          1835
## 3                                                                                          1362
## 4                                                                                          1417
## 5                                                                                          1707
## 6                                                                                          1684
##                                                                                      DP05_0052PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander
## 2                                                                                            0.0
## 3                                                                                            0.1
## 4                                                                                            0.1
## 5                                                                                            0.6
## 6                                                                                            0.0
##                                                                                             DP05_0052PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander
## 2                                                                                                   0.1
## 3                                                                                                   0.1
## 4                                                                                                   0.1
## 5                                                                                                   0.1
## 6                                                                                                   0.1
##                                                                                                DP05_0053E
## 1 Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Native Hawaiian
## 2                                                                                                    1927
## 3                                                                                                     541
## 4                                                                                                    1844
## 5                                                                                                    6472
## 6                                                                                                     935
##                                                                                                       DP05_0053M
## 1 Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Native Hawaiian
## 2                                                                                                            757
## 3                                                                                                            474
## 4                                                                                                           1238
## 5                                                                                                           1757
## 6                                                                                                            498
##                                                                                                       DP05_0053PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Native Hawaiian
## 2                                                                                                             0.0
## 3                                                                                                             0.0
## 4                                                                                                             0.0
## 5                                                                                                             0.2
## 6                                                                                                             0.0
##                                                                                                              DP05_0053PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Native Hawaiian
## 2                                                                                                                    0.1
## 3                                                                                                                    0.1
## 4                                                                                                                    0.1
## 5                                                                                                                    0.1
## 6                                                                                                                    0.1
##                                                                                                      DP05_0054E
## 1 Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Guamanian or Chamorro
## 2                                                                                                           789
## 3                                                                                                           561
## 4                                                                                                           226
## 5                                                                                                          5668
## 6                                                                                                           746
##                                                                                                             DP05_0054M
## 1 Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Guamanian or Chamorro
## 2                                                                                                                  461
## 3                                                                                                                  469
## 4                                                                                                                  247
## 5                                                                                                                 2108
## 6                                                                                                                  528
##                                                                                                             DP05_0054PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Guamanian or Chamorro
## 2                                                                                                                   0.0
## 3                                                                                                                   0.0
## 4                                                                                                                   0.0
## 5                                                                                                                   0.2
## 6                                                                                                                   0.0
##                                                                                                                    DP05_0054PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Guamanian or Chamorro
## 2                                                                                                                          0.1
## 3                                                                                                                          0.1
## 4                                                                                                                          0.1
## 5                                                                                                                          0.1
## 6                                                                                                                          0.1
##                                                                                       DP05_0055E
## 1 Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Samoan
## 2                                                                                            710
## 3                                                                                            348
## 4                                                                                           2729
## 5                                                                                           3528
## 6                                                                                            766
##                                                                                              DP05_0055M
## 1 Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Samoan
## 2                                                                                                   681
## 3                                                                                                   473
## 4                                                                                                   828
## 5                                                                                                  1359
## 6                                                                                                   483
##                                                                                              DP05_0055PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Samoan
## 2                                                                                                    0.0
## 3                                                                                                    0.0
## 4                                                                                                    0.0
## 5                                                                                                    0.1
## 6                                                                                                    0.0
##                                                                                                     DP05_0055PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Samoan
## 2                                                                                                           0.1
## 3                                                                                                           0.1
## 4                                                                                                           0.1
## 5                                                                                                           0.1
## 6                                                                                                           0.1
##                                                                                                       DP05_0056E
## 1 Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Other Pacific Islander
## 2                                                                                                           1891
## 3                                                                                                           2013
## 4                                                                                                           2586
## 5                                                                                                           3944
## 6                                                                                                           2561
##                                                                                                              DP05_0056M
## 1 Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Other Pacific Islander
## 2                                                                                                                  1640
## 3                                                                                                                  1109
## 4                                                                                                                   660
## 5                                                                                                                  1984
## 6                                                                                                                  1515
##                                                                                                              DP05_0056PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Other Pacific Islander
## 2                                                                                                                    0.0
## 3                                                                                                                    0.1
## 4                                                                                                                    0.0
## 5                                                                                                                    0.1
## 6                                                                                                                    0.0
##                                                                                                                     DP05_0056PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Other Pacific Islander
## 2                                                                                                                           0.1
## 3                                                                                                                           0.1
## 4                                                                                                                           0.1
## 5                                                                                                                           0.1
## 6                                                                                                                           0.1
##                                                    DP05_0057E
## 1 Estimate!!RACE!!Total population!!One race!!Some other race
## 2                                                      712778
## 3                                                       30713
## 4                                                       56557
## 5                                                      358786
## 6                                                      307572
##                                                           DP05_0057M
## 1 Margin of Error!!RACE!!Total population!!One race!!Some other race
## 2                                                              25545
## 3                                                               5286
## 4                                                               6735
## 5                                                              16689
## 6                                                              16186
##                                                           DP05_0057PE
## 1 Percent Estimate!!RACE!!Total population!!One race!!Some other race
## 2                                                                 5.6
## 3                                                                 1.0
## 4                                                                 0.9
## 5                                                                11.8
## 6                                                                 2.4
##                                                                  DP05_0057PM
## 1 Percent Margin of Error!!RACE!!Total population!!One race!!Some other race
## 2                                                                        0.2
## 3                                                                        0.2
## 4                                                                        0.1
## 5                                                                        0.5
## 6                                                                        0.1
##                                            DP05_0058E
## 1 Estimate!!RACE!!Total population!!Two or more races
## 2                                              340977
## 3                                               69268
## 4                                              173864
## 5                                              155830
## 6                                              333545
##                                                   DP05_0058M
## 1 Margin of Error!!RACE!!Total population!!Two or more races
## 2                                                      12577
## 3                                                       5586
## 4                                                       7671
## 5                                                       9895
## 6                                                      13725
##                                                   DP05_0058PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races
## 2                                                         2.7
## 3                                                         2.2
## 4                                                         2.8
## 5                                                         5.1
## 6                                                         2.6
##                                                          DP05_0058PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races
## 2                                                                0.1
## 3                                                                0.2
## 4                                                                0.1
## 5                                                                0.3
## 6                                                                0.1
##                                                                                 DP05_0059E
## 1 Estimate!!RACE!!Total population!!Two or more races!!White and Black or African American
## 2                                                                                   116872
## 3                                                                                    30402
## 4                                                                                    75345
## 5                                                                                    32463
## 6                                                                                   148313
##                                                                                        DP05_0059M
## 1 Margin of Error!!RACE!!Total population!!Two or more races!!White and Black or African American
## 2                                                                                            7015
## 3                                                                                            3934
## 4                                                                                            5750
## 5                                                                                            5046
## 6                                                                                            9404
##                                                                                        DP05_0059PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races!!White and Black or African American
## 2                                                                                              0.9
## 3                                                                                              1.0
## 4                                                                                              1.2
## 5                                                                                              1.1
## 6                                                                                              1.2
##                                                                                               DP05_0059PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races!!White and Black or African American
## 2                                                                                                     0.1
## 3                                                                                                     0.1
## 4                                                                                                     0.1
## 5                                                                                                     0.2
## 6                                                                                                     0.1
##                                                                                         DP05_0060E
## 1 Estimate!!RACE!!Total population!!Two or more races!!White and American Indian and Alaska Native
## 2                                                                                            35817
## 3                                                                                             9285
## 4                                                                                            39150
## 5                                                                                            14754
## 6                                                                                            32795
##                                                                                                DP05_0060M
## 1 Margin of Error!!RACE!!Total population!!Two or more races!!White and American Indian and Alaska Native
## 2                                                                                                    3506
## 3                                                                                                    1612
## 4                                                                                                    3567
## 5                                                                                                    2162
## 6                                                                                                    2462
##                                                                                                DP05_0060PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races!!White and American Indian and Alaska Native
## 2                                                                                                      0.3
## 3                                                                                                      0.3
## 4                                                                                                      0.6
## 5                                                                                                      0.5
## 6                                                                                                      0.3
##                                                                                                       DP05_0060PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races!!White and American Indian and Alaska Native
## 2                                                                                                             0.1
## 3                                                                                                             0.1
## 4                                                                                                             0.1
## 5                                                                                                             0.1
## 6                                                                                                             0.1
##                                                             DP05_0061E
## 1 Estimate!!RACE!!Total population!!Two or more races!!White and Asian
## 2                                                                82982
## 3                                                                13266
## 4                                                                29126
## 5                                                                38991
## 6                                                                55627
##                                                                    DP05_0061M
## 1 Margin of Error!!RACE!!Total population!!Two or more races!!White and Asian
## 2                                                                        7432
## 3                                                                        2302
## 4                                                                        3547
## 5                                                                        5565
## 6                                                                        5231
##                                                                    DP05_0061PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races!!White and Asian
## 2                                                                          0.7
## 3                                                                          0.4
## 4                                                                          0.5
## 5                                                                          1.3
## 6                                                                          0.4
##                                                                           DP05_0061PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races!!White and Asian
## 2                                                                                 0.1
## 3                                                                                 0.1
## 4                                                                                 0.1
## 5                                                                                 0.2
## 6                                                                                 0.1
##                                                                                                             DP05_0062E
## 1 Estimate!!RACE!!Total population!!Two or more races!!Black or African American and American Indian and Alaska Native
## 2                                                                                                                 8368
## 3                                                                                                                 1951
## 4                                                                                                                 4404
## 5                                                                                                                 5393
## 6                                                                                                                11223
##                                                                                                                    DP05_0062M
## 1 Margin of Error!!RACE!!Total population!!Two or more races!!Black or African American and American Indian and Alaska Native
## 2                                                                                                                        2255
## 3                                                                                                                        1063
## 4                                                                                                                        1478
## 5                                                                                                                        2120
## 6                                                                                                                        2142
##                                                                                                                    DP05_0062PE
## 1 Percent Estimate!!RACE!!Total population!!Two or more races!!Black or African American and American Indian and Alaska Native
## 2                                                                                                                          0.1
## 3                                                                                                                          0.1
## 4                                                                                                                          0.1
## 5                                                                                                                          0.2
## 6                                                                                                                          0.1
##                                                                                                                           DP05_0062PM
## 1 Percent Margin of Error!!RACE!!Total population!!Two or more races!!Black or African American and American Indian and Alaska Native
## 2                                                                                                                                 0.1
## 3                                                                                                                                 0.1
## 4                                                                                                                                 0.1
## 5                                                                                                                                 0.1
## 6                                                                                                                                 0.1
##                                                                              DP05_0063E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population
## 2                                                                              12741080
## 3                                                                               3156145
## 4                                                                               6126452
## 5                                                                               3034392
## 6                                                                              12807060
##                                                                                     DP05_0063M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population
## 2                                                                                        *****
## 3                                                                                        *****
## 4                                                                                        *****
## 5                                                                                        *****
## 6                                                                                        *****
##                                                                                     DP05_0063PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population
## 2                                                                                      12741080
## 3                                                                                       3156145
## 4                                                                                       6126452
## 5                                                                                       3034392
## 6                                                                                      12807060
##                                                                                            DP05_0063PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population
## 2                                                                                                  (X)
## 3                                                                                                  (X)
## 4                                                                                                  (X)
## 5                                                                                                  (X)
## 6                                                                                                  (X)
##                                                                                     DP05_0064E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!White
## 2                                                                                      9431680
## 3                                                                                      2909568
## 4                                                                                      5196815
## 5                                                                                      2050048
## 6                                                                                     10543254
##                                                                                            DP05_0064M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!White
## 2                                                                                               27696
## 3                                                                                                7192
## 4                                                                                               10284
## 5                                                                                               19415
## 6                                                                                               19389
##                                                                                            DP05_0064PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!White
## 2                                                                                                 74.0
## 3                                                                                                 92.2
## 4                                                                                                 84.8
## 5                                                                                                 67.6
## 6                                                                                                 82.3
##                                                                                                   DP05_0064PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!White
## 2                                                                                                         0.2
## 3                                                                                                         0.2
## 4                                                                                                         0.2
## 5                                                                                                         0.6
## 6                                                                                                         0.2
##                                                                                                         DP05_0065E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!Black or African American
## 2                                                                                                          1952694
## 3                                                                                                           151562
## 4                                                                                                           794984
## 5                                                                                                           337660
## 6                                                                                                          1632035
##                                                                                                                DP05_0065M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Black or African American
## 2                                                                                                                    6946
## 3                                                                                                                    2986
## 4                                                                                                                    4485
## 5                                                                                                                    5928
## 6                                                                                                                    9570
##                                                                                                                DP05_0065PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!Black or African American
## 2                                                                                                                     15.3
## 3                                                                                                                      4.8
## 4                                                                                                                     13.0
## 5                                                                                                                     11.1
## 6                                                                                                                     12.7
##                                                                                                                       DP05_0065PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Black or African American
## 2                                                                                                                             0.1
## 3                                                                                                                             0.1
## 4                                                                                                                             0.1
## 5                                                                                                                             0.2
## 6                                                                                                                             0.1
##                                                                                                                 DP05_0066E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!American Indian and Alaska Native
## 2                                                                                                                   100555
## 3                                                                                                                    27116
## 4                                                                                                                    79954
## 5                                                                                                                    71817
## 6                                                                                                                    89728
##                                                                                                                        DP05_0066M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!American Indian and Alaska Native
## 2                                                                                                                            6939
## 3                                                                                                                            2729
## 4                                                                                                                            4579
## 5                                                                                                                            4490
## 6                                                                                                                            5118
##                                                                                                                        DP05_0066PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!American Indian and Alaska Native
## 2                                                                                                                              0.8
## 3                                                                                                                              0.9
## 4                                                                                                                              1.3
## 5                                                                                                                              2.4
## 6                                                                                                                              0.7
##                                                                                                                               DP05_0066PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!American Indian and Alaska Native
## 2                                                                                                                                     0.1
## 3                                                                                                                                     0.1
## 4                                                                                                                                     0.1
## 5                                                                                                                                     0.1
## 6                                                                                                                                     0.1
##                                                                                     DP05_0067E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!Asian
## 2                                                                                       831487
## 3                                                                                        98900
## 4                                                                                       159166
## 5                                                                                       318010
## 6                                                                                       536235
##                                                                                            DP05_0067M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Asian
## 2                                                                                                4879
## 3                                                                                                2688
## 4                                                                                                2654
## 5                                                                                                4322
## 6                                                                                                4513
##                                                                                            DP05_0067PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!Asian
## 2                                                                                                  6.5
## 3                                                                                                  3.1
## 4                                                                                                  2.6
## 5                                                                                                 10.5
## 6                                                                                                  4.2
##                                                                                                   DP05_0067PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Asian
## 2                                                                                                         0.1
## 3                                                                                                         0.1
## 4                                                                                                         0.1
## 5                                                                                                         0.1
## 6                                                                                                         0.1
##                                                                                                                          DP05_0068E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!Native Hawaiian and Other Pacific Islander
## 2                                                                                                                             16444
## 3                                                                                                                              6579
## 4                                                                                                                             13760
## 5                                                                                                                             41746
## 6                                                                                                                             18764
##                                                                                                                                 DP05_0068M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Native Hawaiian and Other Pacific Islander
## 2                                                                                                                                     3163
## 3                                                                                                                                     1746
## 4                                                                                                                                     2328
## 5                                                                                                                                     3352
## 6                                                                                                                                     3667
##                                                                                                                                 DP05_0068PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!Native Hawaiian and Other Pacific Islander
## 2                                                                                                                                       0.1
## 3                                                                                                                                       0.2
## 4                                                                                                                                       0.2
## 5                                                                                                                                       1.4
## 6                                                                                                                                       0.1
##                                                                                                                                        DP05_0068PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Native Hawaiian and Other Pacific Islander
## 2                                                                                                                                              0.1
## 3                                                                                                                                              0.1
## 4                                                                                                                                              0.1
## 5                                                                                                                                              0.1
## 6                                                                                                                                              0.1
##                                                                                               DP05_0069E
## 1 Estimate!!Race alone or in combination with one or more other races!!Total population!!Some other race
## 2                                                                                                 776129
## 3                                                                                                  37007
## 4                                                                                                  66685
## 5                                                                                                 390057
## 6                                                                                                 355417
##                                                                                                      DP05_0069M
## 1 Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Some other race
## 2                                                                                                         26600
## 3                                                                                                          5555
## 4                                                                                                          7078
## 5                                                                                                         15973
## 6                                                                                                         16623
##                                                                                                      DP05_0069PE
## 1 Percent Estimate!!Race alone or in combination with one or more other races!!Total population!!Some other race
## 2                                                                                                            6.1
## 3                                                                                                            1.2
## 4                                                                                                            1.1
## 5                                                                                                           12.9
## 6                                                                                                            2.8
##                                                                                                             DP05_0069PM
## 1 Percent Margin of Error!!Race alone or in combination with one or more other races!!Total population!!Some other race
## 2                                                                                                                   0.2
## 3                                                                                                                   0.2
## 4                                                                                                                   0.1
## 5                                                                                                                   0.5
## 6                                                                                                                   0.1
##                                                DP05_0070E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population
## 2                                                12741080
## 3                                                 3156145
## 4                                                 6126452
## 5                                                 3034392
## 6                                                12807060
##                                                       DP05_0070M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population
## 2                                                          *****
## 3                                                          *****
## 4                                                          *****
## 5                                                          *****
## 6                                                          *****
##                                                       DP05_0070PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population
## 2                                                        12741080
## 3                                                         3156145
## 4                                                         6126452
## 5                                                         3034392
## 6                                                        12807060
##                                                              DP05_0070PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population
## 2                                                                    (X)
## 3                                                                    (X)
## 4                                                                    (X)
## 5                                                                    (X)
## 6                                                                    (X)
##                                                                                  DP05_0071E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)
## 2                                                                                   2208868
## 3                                                                                    191473
## 4                                                                                    253474
## 5                                                                                    881145
## 6                                                                                    974763
##                                                                                         DP05_0071M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)
## 2                                                                                             1158
## 3                                                                                              901
## 4                                                                                             2044
## 5                                                                                            *****
## 6                                                                                             1237
##                                                                                         DP05_0071PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)
## 2                                                                                              17.3
## 3                                                                                               6.1
## 4                                                                                               4.1
## 5                                                                                              29.0
## 6                                                                                               7.6
##                                                                                                DP05_0071PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)
## 2                                                                                                      0.1
## 3                                                                                                      0.1
## 4                                                                                                      0.1
## 5                                                                                                    *****
## 6                                                                                                      0.1
##                                                                                           DP05_0072E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Mexican
## 2                                                                                            1744028
## 3                                                                                             155179
## 4                                                                                             179787
## 5                                                                                             668365
## 6                                                                                             158286
##                                                                                                  DP05_0072M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Mexican
## 2                                                                                                     18280
## 3                                                                                                      4714
## 4                                                                                                      5745
## 5                                                                                                     11586
## 6                                                                                                     10718
##                                                                                                  DP05_0072PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Mexican
## 2                                                                                                       13.7
## 3                                                                                                        4.9
## 4                                                                                                        2.9
## 5                                                                                                       22.0
## 6                                                                                                        1.2
##                                                                                                         DP05_0072PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Mexican
## 2                                                                                                               0.1
## 3                                                                                                               0.1
## 4                                                                                                               0.1
## 5                                                                                                               0.4
## 6                                                                                                               0.1
##                                                                                                DP05_0073E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Puerto Rican
## 2                                                                                                  206543
## 3                                                                                                    7792
## 4                                                                                                   16816
## 5                                                                                                   25740
## 6                                                                                                  477312
##                                                                                                       DP05_0073M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Puerto Rican
## 2                                                                                                          13313
## 3                                                                                                           2075
## 4                                                                                                           3020
## 5                                                                                                           3589
## 6                                                                                                          13697
##                                                                                                       DP05_0073PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Puerto Rican
## 2                                                                                                             1.6
## 3                                                                                                             0.2
## 4                                                                                                             0.3
## 5                                                                                                             0.8
## 6                                                                                                             3.7
##                                                                                                              DP05_0073PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Puerto Rican
## 2                                                                                                                    0.1
## 3                                                                                                                    0.1
## 4                                                                                                                    0.1
## 5                                                                                                                    0.1
## 6                                                                                                                    0.1
##                                                                                         DP05_0074E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Cuban
## 2                                                                                            27617
## 3                                                                                             1714
## 4                                                                                             8220
## 5                                                                                            35071
## 6                                                                                            24185
##                                                                                                DP05_0074M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Cuban
## 2                                                                                                    3919
## 3                                                                                                     696
## 4                                                                                                    2577
## 5                                                                                                    5849
## 6                                                                                                    3640
##                                                                                                DP05_0074PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Cuban
## 2                                                                                                      0.2
## 3                                                                                                      0.1
## 4                                                                                                      0.1
## 5                                                                                                      1.2
## 6                                                                                                      0.2
##                                                                                                       DP05_0074PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Cuban
## 2                                                                                                             0.1
## 3                                                                                                             0.1
## 4                                                                                                             0.1
## 5                                                                                                             0.2
## 6                                                                                                             0.1
##                                                                                                            DP05_0075E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Other Hispanic or Latino
## 2                                                                                                              230680
## 3                                                                                                               26788
## 4                                                                                                               48651
## 5                                                                                                              151969
## 6                                                                                                              314980
##                                                                                                                   DP05_0075M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Other Hispanic or Latino
## 2                                                                                                                      14103
## 3                                                                                                                       4189
## 4                                                                                                                       5487
## 5                                                                                                                      10271
## 6                                                                                                                      15287
##                                                                                                                   DP05_0075PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Other Hispanic or Latino
## 2                                                                                                                         1.8
## 3                                                                                                                         0.8
## 4                                                                                                                         0.8
## 5                                                                                                                         5.0
## 6                                                                                                                         2.5
##                                                                                                                          DP05_0075PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Other Hispanic or Latino
## 2                                                                                                                                0.1
## 3                                                                                                                                0.1
## 4                                                                                                                                0.1
## 5                                                                                                                                0.3
## 6                                                                                                                                0.1
##                                                                        DP05_0076E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino
## 2                                                                        10532212
## 3                                                                         2964672
## 4                                                                         5872978
## 5                                                                         2153247
## 6                                                                        11832297
##                                                                               DP05_0076M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino
## 2                                                                                   1158
## 3                                                                                    901
## 4                                                                                   2044
## 5                                                                                  *****
## 6                                                                                   1237
##                                                                               DP05_0076PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino
## 2                                                                                    82.7
## 3                                                                                    93.9
## 4                                                                                    95.9
## 5                                                                                    71.0
## 6                                                                                    92.4
##                                                                                      DP05_0076PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino
## 2                                                                                            0.1
## 3                                                                                            0.1
## 4                                                                                            0.1
## 5                                                                                          *****
## 6                                                                                            0.1
##                                                                                     DP05_0077E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!White alone
## 2                                                                                      7760732
## 3                                                                                      2695583
## 4                                                                                      4857174
## 5                                                                                      1469593
## 6                                                                                      9723288
##                                                                                            DP05_0077M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!White alone
## 2                                                                                                3669
## 3                                                                                                2165
## 4                                                                                                2076
## 5                                                                                                1806
## 6                                                                                                3360
##                                                                                            DP05_0077PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!White alone
## 2                                                                                                 60.9
## 3                                                                                                 85.4
## 4                                                                                                 79.3
## 5                                                                                                 48.4
## 6                                                                                                 75.9
##                                                                                                   DP05_0077PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!White alone
## 2                                                                                                         0.1
## 3                                                                                                         0.1
## 4                                                                                                         0.1
## 5                                                                                                         0.1
## 6                                                                                                         0.1
##                                                                                                         DP05_0078E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Black or African American alone
## 2                                                                                                          1759316
## 3                                                                                                           113562
## 4                                                                                                           698641
## 5                                                                                                           266440
## 6                                                                                                          1352804
##                                                                                                                DP05_0078M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Black or African American alone
## 2                                                                                                                    8262
## 3                                                                                                                    4619
## 4                                                                                                                    6145
## 5                                                                                                                    5865
## 6                                                                                                                    9315
##                                                                                                                DP05_0078PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Black or African American alone
## 2                                                                                                                     13.8
## 3                                                                                                                      3.6
## 4                                                                                                                     11.4
## 5                                                                                                                      8.8
## 6                                                                                                                     10.6
##                                                                                                                       DP05_0078PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Black or African American alone
## 2                                                                                                                             0.1
## 3                                                                                                                             0.1
## 4                                                                                                                             0.1
## 5                                                                                                                             0.2
## 6                                                                                                                             0.1
##                                                                                                                 DP05_0079E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!American Indian and Alaska Native alone
## 2                                                                                                                    17215
## 3                                                                                                                     9710
## 4                                                                                                                    23149
## 5                                                                                                                    30185
## 6                                                                                                                    14367
##                                                                                                                        DP05_0079M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!American Indian and Alaska Native alone
## 2                                                                                                                            2351
## 3                                                                                                                             951
## 4                                                                                                                            2507
## 5                                                                                                                            2060
## 6                                                                                                                            1986
##                                                                                                                        DP05_0079PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!American Indian and Alaska Native alone
## 2                                                                                                                              0.1
## 3                                                                                                                              0.3
## 4                                                                                                                              0.4
## 5                                                                                                                              1.0
## 6                                                                                                                              0.1
##                                                                                                                               DP05_0079PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!American Indian and Alaska Native alone
## 2                                                                                                                                     0.1
## 3                                                                                                                                     0.1
## 4                                                                                                                                     0.1
## 5                                                                                                                                     0.1
## 6                                                                                                                                     0.1
##                                                                                     DP05_0080E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Asian alone
## 2                                                                                       711970
## 3                                                                                        79643
## 4                                                                                       120440
## 5                                                                                       244471
## 6                                                                                       450077
##                                                                                            DP05_0080M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Asian alone
## 2                                                                                                6521
## 3                                                                                                3042
## 4                                                                                                3635
## 5                                                                                                5630
## 6                                                                                                5816
##                                                                                            DP05_0080PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Asian alone
## 2                                                                                                  5.6
## 3                                                                                                  2.5
## 4                                                                                                  2.0
## 5                                                                                                  8.1
## 6                                                                                                  3.5
##                                                                                                   DP05_0080PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Asian alone
## 2                                                                                                         0.1
## 3                                                                                                         0.1
## 4                                                                                                         0.1
## 5                                                                                                         0.2
## 6                                                                                                         0.1
##                                                                                                                          DP05_0081E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Native Hawaiian and Other Pacific Islander alone
## 2                                                                                                                              2887
## 3                                                                                                                              2945
## 4                                                                                                                              7095
## 5                                                                                                                             18249
## 6                                                                                                                              3557
##                                                                                                                                 DP05_0081M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Native Hawaiian and Other Pacific Islander alone
## 2                                                                                                                                      697
## 3                                                                                                                                     1388
## 4                                                                                                                                     1376
## 5                                                                                                                                     1393
## 6                                                                                                                                     1479
##                                                                                                                                 DP05_0081PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Native Hawaiian and Other Pacific Islander alone
## 2                                                                                                                                       0.0
## 3                                                                                                                                       0.1
## 4                                                                                                                                       0.1
## 5                                                                                                                                       0.6
## 6                                                                                                                                       0.0
##                                                                                                                                        DP05_0081PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Native Hawaiian and Other Pacific Islander alone
## 2                                                                                                                                              0.1
## 3                                                                                                                                              0.1
## 4                                                                                                                                              0.1
## 5                                                                                                                                              0.1
## 6                                                                                                                                              0.1
##                                                                                               DP05_0082E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Some other race alone
## 2                                                                                                  24310
## 3                                                                                                   4000
## 4                                                                                                   9832
## 5                                                                                                  11810
## 6                                                                                                  21357
##                                                                                                      DP05_0082M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Some other race alone
## 2                                                                                                          3879
## 3                                                                                                          1973
## 4                                                                                                          2191
## 5                                                                                                          3634
## 6                                                                                                          3645
##                                                                                                      DP05_0082PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Some other race alone
## 2                                                                                                            0.2
## 3                                                                                                            0.1
## 4                                                                                                            0.2
## 5                                                                                                            0.4
## 6                                                                                                            0.2
##                                                                                                             DP05_0082PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Some other race alone
## 2                                                                                                                   0.1
## 3                                                                                                                   0.1
## 4                                                                                                                   0.1
## 5                                                                                                                   0.1
## 6                                                                                                                   0.1
##                                                                                           DP05_0083E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races
## 2                                                                                             255782
## 3                                                                                              59229
## 4                                                                                             156647
## 5                                                                                             112499
## 6                                                                                             266847
##                                                                                                  DP05_0083M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races
## 2                                                                                                     10111
## 3                                                                                                      4832
## 4                                                                                                      6711
## 5                                                                                                      8253
## 6                                                                                                     11020
##                                                                                                  DP05_0083PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races
## 2                                                                                                        2.0
## 3                                                                                                        1.9
## 4                                                                                                        2.6
## 5                                                                                                        3.7
## 6                                                                                                        2.1
##                                                                                                         DP05_0083PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races
## 2                                                                                                               0.1
## 3                                                                                                               0.2
## 4                                                                                                               0.1
## 5                                                                                                               0.3
## 6                                                                                                               0.1
##                                                                                                                                DP05_0084E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races including Some other race
## 2                                                                                                                                   11405
## 3                                                                                                                                     493
## 4                                                                                                                                    2330
## 5                                                                                                                                    3740
## 6                                                                                                                                   11356
##                                                                                                                                       DP05_0084M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races including Some other race
## 2                                                                                                                                           2606
## 3                                                                                                                                            321
## 4                                                                                                                                           1060
## 5                                                                                                                                           1741
## 6                                                                                                                                           2873
##                                                                                                                                       DP05_0084PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races including Some other race
## 2                                                                                                                                             0.1
## 3                                                                                                                                             0.0
## 4                                                                                                                                             0.0
## 5                                                                                                                                             0.1
## 6                                                                                                                                             0.1
##                                                                                                                                              DP05_0084PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races including Some other race
## 2                                                                                                                                                    0.1
## 3                                                                                                                                                    0.1
## 4                                                                                                                                                    0.1
## 5                                                                                                                                                    0.1
## 6                                                                                                                                                    0.1
##                                                                                                                                                         DP05_0085E
## 1 Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races excluding Some other race, and Three or more races
## 2                                                                                                                                                           244377
## 3                                                                                                                                                            58736
## 4                                                                                                                                                           154317
## 5                                                                                                                                                           108759
## 6                                                                                                                                                           255491
##                                                                                                                                                                DP05_0085M
## 1 Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races excluding Some other race, and Three or more races
## 2                                                                                                                                                                   10212
## 3                                                                                                                                                                    4738
## 4                                                                                                                                                                    6664
## 5                                                                                                                                                                    8217
## 6                                                                                                                                                                   10346
##                                                                                                                                                                DP05_0085PE
## 1 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races excluding Some other race, and Three or more races
## 2                                                                                                                                                                      1.9
## 3                                                                                                                                                                      1.9
## 4                                                                                                                                                                      2.5
## 5                                                                                                                                                                      3.6
## 6                                                                                                                                                                      2.0
##                                                                                                                                                                       DP05_0085PM
## 1 Percent Margin of Error!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races excluding Some other race, and Three or more races
## 2                                                                                                                                                                             0.1
## 3                                                                                                                                                                             0.2
## 4                                                                                                                                                                             0.1
## 5                                                                                                                                                                             0.3
## 6                                                                                                                                                                             0.1
##                      DP05_0086E                           DP05_0086M
## 1 Estimate!!Total housing units Margin of Error!!Total housing units
## 2                       5376176                                  518
## 3                       1409568                                  354
## 4                       2806296                                  623
## 5                       1268717                                  151
## 6                       5713136                                  439
##                             DP05_0086PE
## 1 Percent Estimate!!Total housing units
## 2                                   (X)
## 3                                   (X)
## 4                                   (X)
## 5                                   (X)
## 6                                   (X)
##                                    DP05_0086PM
## 1 Percent Margin of Error!!Total housing units
## 2                                          (X)
## 3                                          (X)
## 4                                          (X)
## 5                                          (X)
## 6                                          (X)
##                                                                  DP05_0087E
## 1 Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population
## 2                                                                   9074766
## 3                                                                   2327219
## 4                                                                   4633370
## 5                                                                   2075166
## 6                                                                   9781212
##                                                                         DP05_0087M
## 1 Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population
## 2                                                                            18777
## 3                                                                             6259
## 4                                                                             7810
## 5                                                                             9912
## 6                                                                            13540
##                                                                         DP05_0087PE
## 1 Percent Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population
## 2                                                                           9074766
## 3                                                                           2327219
## 4                                                                           4633370
## 5                                                                           2075166
## 6                                                                           9781212
##                                                                                DP05_0087PM
## 1 Percent Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population
## 2                                                                                      (X)
## 3                                                                                      (X)
## 4                                                                                      (X)
## 5                                                                                      (X)
## 6                                                                                      (X)
##                                                                        DP05_0088E
## 1 Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Male
## 2                                                                         4385340
## 3                                                                         1139250
## 4                                                                         2240784
## 5                                                                         1036350
## 6                                                                         4726343
##                                                                               DP05_0088M
## 1 Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Male
## 2                                                                                  12630
## 3                                                                                   3838
## 4                                                                                   5295
## 5                                                                                   6057
## 6                                                                                   8924
##                                                                               DP05_0088PE
## 1 Percent Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Male
## 2                                                                                    48.3
## 3                                                                                    49.0
## 4                                                                                    48.4
## 5                                                                                    49.9
## 6                                                                                    48.3
##                                                                                      DP05_0088PM
## 1 Percent Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Male
## 2                                                                                            0.1
## 3                                                                                            0.1
## 4                                                                                            0.1
## 5                                                                                            0.2
## 6                                                                                            0.1
##                                                                          DP05_0089E
## 1 Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Female
## 2                                                                           4689426
## 3                                                                           1187969
## 4                                                                           2392586
## 5                                                                           1038816
## 6                                                                           5054869
##                                                                                 DP05_0089M
## 1 Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Female
## 2                                                                                    12019
## 3                                                                                     4084
## 4                                                                                     5182
## 5                                                                                     5752
## 6                                                                                     8755
##                                                                                 DP05_0089PE
## 1 Percent Estimate!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Female
## 2                                                                                      51.7
## 3                                                                                      51.0
## 4                                                                                      51.6
## 5                                                                                      50.1
## 6                                                                                      51.7
##                                                                                        DP05_0089PM
## 1 Percent Margin of Error!!CITIZEN, VOTING AGE POPULATION!!Citizen, 18 and over population!!Female
## 2                                                                                              0.1
## 3                                                                                              0.1
## 4                                                                                              0.1
## 5                                                                                              0.2
## 6                                                                                              0.1
meta <- meta[,-3]              
head(meta)
##        GEO_ID                                                     id
## 1        NAME                                   Geographic Area Name
## 2  DP05_0001E                Estimate!!SEX AND AGE!!Total population
## 3  DP05_0001M         Margin of Error!!SEX AND AGE!!Total population
## 4 DP05_0001PE        Percent Estimate!!SEX AND AGE!!Total population
## 5 DP05_0001PM Percent Margin of Error!!SEX AND AGE!!Total population
## 6  DP05_0002E          Estimate!!SEX AND AGE!!Total population!!Male
df <- data[-c(1,21,40),-1]
row.names(df) <- NULL
df$NAME <- as.character(paste(df$NAME))
metanames <- meta$GEO_ID
dfnames <- as.factor(colnames(df))
length(metanames)==length(dfnames)
## [1] TRUE
g <- metanames==dfnames
sum(g==TRUE)
## [1] 357
meta$id <- as.character(paste(meta$id))

err <- grep('Error',meta$id)

DF <- df[,-err]
head(DF)
##           NAME DP05_0001E DP05_0001PE DP05_0002E DP05_0002PE DP05_0003E
## 1     Illinois   12741080    12741080    6266062        49.2    6475018
## 2         Iowa    3156145     3156145    1564888        49.6    1591257
## 3     Missouri    6126452     6126452    3003165        49.0    3123287
## 4       Nevada    3034392     3034392    1522374        50.2    1512018
## 5 Pennsylvania   12807060    12807060    6271620        49.0    6535440
## 6         Utah    3161105     3161105    1592457        50.4    1568648
##   DP05_0003PE DP05_0004E DP05_0004PE DP05_0005E DP05_0005PE DP05_0006E
## 1        50.8       96.8         (X)     759456         6.0     762237
## 2        50.4       98.3         (X)     197883         6.3     197454
## 3        51.0       96.2         (X)     370408         6.0     373737
## 4        49.8      100.7         (X)     184539         6.1     188880
## 5        51.0       96.0         (X)     700416         5.5     708163
## 6        49.6      101.5         (X)     250194         7.9     257110
##   DP05_0006PE DP05_0007E DP05_0007PE DP05_0008E DP05_0008PE DP05_0009E
## 1         6.0     838140         6.6     835845         6.6     839026
## 2         6.3     215222         6.8     220659         7.0     220135
## 3         6.1     401199         6.5     391923         6.4     406398
## 4         6.2     201625         6.6     182398         6.0     180376
## 5         5.5     775827         6.1     815621         6.4     812406
## 6         8.1     270952         8.6     250173         7.9     260774
##   DP05_0009PE DP05_0010E DP05_0010PE DP05_0011E DP05_0011PE DP05_0012E
## 1         6.6    1765517        13.9    1644390        12.9    1636054
## 2         7.0     394507        12.5     383617        12.2     369396
## 3         6.6     819132        13.4     742343        12.1     753354
## 4         5.9     442713        14.6     405128        13.4     396167
## 5         6.3    1695073        13.2    1496113        11.7    1659541
## 6         8.2     463344        14.7     437953        13.9     319031
##   DP05_0012PE DP05_0013E DP05_0013PE DP05_0014E DP05_0014PE DP05_0015E
## 1        12.8     855616         6.7     814251         6.4    1143329
## 2        11.7     213657         6.8     205797         6.5     299333
## 3        12.3     419591         6.8     413293         6.7     596623
## 4        13.1     191059         6.3     186387         6.1     291996
## 5        13.0     916749         7.2     894782         7.0    1311159
## 6        10.1     152425         4.8     147852         4.7     212206
##   DP05_0015PE DP05_0016E DP05_0016PE DP05_0017E DP05_0017PE DP05_0018E
## 1         9.0     587651         4.6     259568         2.0       38.3
## 2         9.5     162869         5.2      75616         2.4       38.1
## 3         9.7     313646         5.1     124805         2.0       38.8
## 4         9.6     138844         4.6      44280         1.5       38.2
## 5        10.2     707570         5.5     313640         2.4       40.8
## 6         6.7     103828         3.3      35263         1.1       31.0
##   DP05_0018PE DP05_0019E DP05_0019PE DP05_0020E DP05_0020PE DP05_0021E
## 1         (X)    2855802        22.4   10216304        80.2    9885278
## 2         (X)     733389        23.2    2506580        79.4    2422756
## 3         (X)    1377726        22.5    4907003        80.1    4748726
## 4         (X)     689220        22.7    2420990        79.8    2345172
## 5         (X)    2647617        20.7   10470798        81.8   10159443
## 6         (X)     931831        29.5    2329530        73.7    2229274
##   DP05_0021PE DP05_0022E DP05_0022PE DP05_0023E DP05_0023PE DP05_0024E
## 1        77.6    9379230        73.6    2459839        19.3    1990548
## 2        76.8    2277260        72.2     661366        21.0     537818
## 3        77.5    4505646        73.5    1284321        21.0    1035074
## 4        77.3    2236266        73.7     589051        19.4     475120
## 5        79.3    9635621        75.2    2861918        22.3    2332369
## 6        70.5    2087145        66.0     439430        13.9     351297
##   DP05_0024PE DP05_0025E DP05_0025PE DP05_0026E DP05_0026PE DP05_0027E
## 1        15.6    9885278     9885278    4801941        48.6    5083337
## 2        17.0    2422756     2422756    1188114        49.0    1234642
## 3        16.9    4748726     4748726    2298091        48.4    2450635
## 4        15.7    2345172     2345172    1169070        49.9    1176102
## 5        18.2   10159443    10159443    4919474        48.4    5239969
## 6        11.1    2229274     2229274    1113904        50.0    1115370
##   DP05_0027PE DP05_0028E DP05_0028PE DP05_0029E DP05_0029PE DP05_0030E
## 1        51.4       94.5         (X)    1990548     1990548     869736
## 2        51.0       96.2         (X)     537818      537818     239515
## 3        51.6       93.8         (X)    1035074     1035074     456820
## 4        50.1       99.4         (X)     475120      475120     223916
## 5        51.6       93.9         (X)    2332369     2332369    1020825
## 6        50.0       99.9         (X)     351297      351297     164068
##   DP05_0030PE DP05_0031E DP05_0031PE DP05_0032E DP05_0032PE DP05_0033E
## 1        43.7    1120812        56.3       77.6         (X)   12741080
## 2        44.5     298303        55.5       80.3         (X)    3156145
## 3        44.1     578254        55.9       79.0         (X)    6126452
## 4        47.1     251204        52.9       89.1         (X)    3034392
## 5        43.8    1311544        56.2       77.8         (X)   12807060
## 6        46.7     187229        53.3       87.6         (X)    3161105
##   DP05_0033PE DP05_0034E DP05_0034PE DP05_0035E DP05_0035PE DP05_0036E
## 1    12741080   12400103        97.3     340977         2.7   12400103
## 2     3156145    3086877        97.8      69268         2.2    3086877
## 3     6126452    5952588        97.2     173864         2.8    5952588
## 4     3034392    2878562        94.9     155830         5.1    2878562
## 5    12807060   12473515        97.4     333545         2.6   12473515
## 6     3161105    3059954        96.8     101151         3.2    3059954
##   DP05_0036PE DP05_0037E DP05_0037PE DP05_0038E DP05_0038PE DP05_0039E
## 1        97.3    9135145        71.7    1793079        14.1      35846
## 2        97.8    2846099        90.2     115137         3.6      11494
## 3        97.2    5035197        82.2     704327        11.5      27705
## 4        94.9    1924976        63.4     280385         9.2      44666
## 5        97.4   10256084        80.1    1428406        11.2      21418
## 6        96.8    2708195        85.7      40365         1.3      34678
##   DP05_0039PE DP05_0040E DP05_0040PE DP05_0041E DP05_0041PE DP05_0042E
## 1         0.3       3055         0.0       2651         0.0        135
## 2         0.4        603         0.0        153         0.0        264
## 3         0.5       8373         0.1        462         0.0       1210
## 4         1.5       2626         0.1        512         0.0       2425
## 5         0.2       2569         0.0        351         0.0        302
## 6         1.1        709         0.0          0         0.0      15970
##   DP05_0042PE DP05_0043E DP05_0043PE DP05_0044E DP05_0044PE DP05_0045E
## 1         0.0        222         0.0     717938         5.6     256122
## 2         0.0       1964         0.1      79971         2.5      12415
## 3         0.0        653         0.0     121417         2.0      30435
## 4         0.1        857         0.0     250137         8.2      11123
## 5         0.0        447         0.0     455027         3.6     143539
## 6         0.5       2265         0.1      75898         2.4      12079
##   DP05_0045PE DP05_0046E DP05_0046PE DP05_0047E DP05_0047PE DP05_0048E
## 1         2.0     132447         1.0     124649         1.0      17958
## 2         0.4      13121         0.4       5029         0.2       1494
## 3         0.5      29621         0.5      11302         0.2       2388
## 4         0.4      39196         1.3     129739         4.3      11514
## 5         1.1     119817         0.9      25128         0.2       5056
## 6         0.4      14285         0.5       8034         0.3       6208
##   DP05_0048PE DP05_0049E DP05_0049PE DP05_0050E DP05_0050PE DP05_0051E
## 1         0.1      56597         0.4      35367         0.3      94798
## 2         0.0       6717         0.2      11705         0.4      29490
## 3         0.0      11526         0.2      17208         0.3      18937
## 4         0.4      11750         0.4      17744         0.6      29071
## 5         0.0      39144         0.3      40920         0.3      81423
## 6         0.2       6756         0.2       9663         0.3      18873
##   DP05_0051PE DP05_0052E DP05_0052PE DP05_0053E DP05_0053PE DP05_0054E
## 1         0.7       5317         0.0       1927         0.0        789
## 2         0.9       3463         0.1        541         0.0        561
## 3         0.3       7385         0.1       1844         0.0        226
## 4         1.0      19612         0.6       6472         0.2       5668
## 5         0.6       5008         0.0        935         0.0        746
## 6         0.6      29362         0.9       2090         0.1        836
##   DP05_0054PE DP05_0055E DP05_0055PE DP05_0056E DP05_0056PE DP05_0057E
## 1         0.0        710         0.0       1891         0.0     712778
## 2         0.0        348         0.0       2013         0.1      30713
## 3         0.0       2729         0.0       2586         0.0      56557
## 4         0.2       3528         0.1       3944         0.1     358786
## 5         0.0        766         0.0       2561         0.0     307572
## 6         0.0       8386         0.3      18050         0.6     171456
##   DP05_0057PE DP05_0058E DP05_0058PE DP05_0059E DP05_0059PE DP05_0060E
## 1         5.6     340977         2.7     116872         0.9      35817
## 2         1.0      69268         2.2      30402         1.0       9285
## 3         0.9     173864         2.8      75345         1.2      39150
## 4        11.8     155830         5.1      32463         1.1      14754
## 5         2.4     333545         2.6     148313         1.2      32795
## 6         5.4     101151         3.2      12469         0.4      17190
##   DP05_0060PE DP05_0061E DP05_0061PE DP05_0062E DP05_0062PE DP05_0063E
## 1         0.3      82982         0.7       8368         0.1   12741080
## 2         0.3      13266         0.4       1951         0.1    3156145
## 3         0.6      29126         0.5       4404         0.1    6126452
## 4         0.5      38991         1.3       5393         0.2    3034392
## 5         0.3      55627         0.4      11223         0.1   12807060
## 6         0.5      29698         0.9        988         0.0    3161105
##   DP05_0063PE DP05_0064E DP05_0064PE DP05_0065E DP05_0065PE DP05_0066E
## 1    12741080    9431680        74.0    1952694        15.3     100555
## 2     3156145    2909568        92.2     151562         4.8      27116
## 3     6126452    5196815        84.8     794984        13.0      79954
## 4     3034392    2050048        67.6     337660        11.1      71817
## 5    12807060   10543254        82.3    1632035        12.7      89728
## 6     3161105    2800377        88.6      58241         1.8      56454
##   DP05_0066PE DP05_0067E DP05_0067PE DP05_0068E DP05_0068PE DP05_0069E
## 1         0.8     831487         6.5      16444         0.1     776129
## 2         0.9      98900         3.1       6579         0.2      37007
## 3         1.3     159166         2.6      13760         0.2      66685
## 4         2.4     318010        10.5      41746         1.4     390057
## 5         0.7     536235         4.2      18764         0.1     355417
## 6         1.8     115638         3.7      47609         1.5     191869
##   DP05_0069PE DP05_0070E DP05_0070PE DP05_0071E DP05_0071PE DP05_0072E
## 1         6.1   12741080    12741080    2208868        17.3    1744028
## 2         1.2    3156145     3156145     191473         6.1     155179
## 3         1.1    6126452     6126452     253474         4.1     179787
## 4        12.9    3034392     3034392     881145        29.0     668365
## 5         2.8   12807060    12807060     974763         7.6     158286
## 6         6.1    3161105     3161105     450220        14.2     313226
##   DP05_0072PE DP05_0073E DP05_0073PE DP05_0074E DP05_0074PE DP05_0075E
## 1        13.7     206543         1.6      27617         0.2     230680
## 2         4.9       7792         0.2       1714         0.1      26788
## 3         2.9      16816         0.3       8220         0.1      48651
## 4        22.0      25740         0.8      35071         1.2     151969
## 5         1.2     477312         3.7      24185         0.2     314980
## 6         9.9      12566         0.4       2766         0.1     121662
##   DP05_0075PE DP05_0076E DP05_0076PE DP05_0077E DP05_0077PE DP05_0078E
## 1         1.8   10532212        82.7    7760732        60.9    1759316
## 2         0.8    2964672        93.9    2695583        85.4     113562
## 3         0.8    5872978        95.9    4857174        79.3     698641
## 4         5.0    2153247        71.0    1469593        48.4     266440
## 5         2.5   11832297        92.4    9723288        75.9    1352804
## 6         3.8    2710885        85.8    2459891        77.8      37546
##   DP05_0078PE DP05_0079E DP05_0079PE DP05_0080E DP05_0080PE DP05_0081E
## 1        13.8      17215         0.1     711970         5.6       2887
## 2         3.6       9710         0.3      79643         2.5       2945
## 3        11.4      23149         0.4     120440         2.0       7095
## 4         8.8      30185         1.0     244471         8.1      18249
## 5        10.6      14367         0.1     450077         3.5       3557
## 6         1.2      27959         0.9      74784         2.4      28810
##   DP05_0081PE DP05_0082E DP05_0082PE DP05_0083E DP05_0083PE DP05_0084E
## 1         0.0      24310         0.2     255782         2.0      11405
## 2         0.1       4000         0.1      59229         1.9        493
## 3         0.1       9832         0.2     156647         2.6       2330
## 4         0.6      11810         0.4     112499         3.7       3740
## 5         0.0      21357         0.2     266847         2.1      11356
## 6         0.9       6356         0.2      75539         2.4       2925
##   DP05_0084PE DP05_0085E DP05_0085PE DP05_0086E DP05_0086PE DP05_0087E
## 1         0.1     244377         1.9    5376176         (X)    9074766
## 2         0.0      58736         1.9    1409568         (X)    2327219
## 3         0.0     154317         2.5    2806296         (X)    4633370
## 4         0.1     108759         3.6    1268717         (X)    2075166
## 5         0.1     255491         2.0    5713136         (X)    9781212
## 6         0.1      72614         2.3    1108739         (X)    2087341
##   DP05_0087PE DP05_0088E DP05_0088PE DP05_0089E DP05_0089PE
## 1     9074766    4385340        48.3    4689426        51.7
## 2     2327219    1139250        49.0    1187969        51.0
## 3     4633370    2240784        48.4    2392586        51.6
## 4     2075166    1036350        49.9    1038816        50.1
## 5     9781212    4726343        48.3    5054869        51.7
## 6     2087341    1041497        49.9    1045844        50.1
estimate <- grep('Estimate',meta$id)

Estimate <- meta[estimate,]
head(Estimate)
##         GEO_ID                                                      id
## 2   DP05_0001E                 Estimate!!SEX AND AGE!!Total population
## 4  DP05_0001PE         Percent Estimate!!SEX AND AGE!!Total population
## 6   DP05_0002E           Estimate!!SEX AND AGE!!Total population!!Male
## 8  DP05_0002PE   Percent Estimate!!SEX AND AGE!!Total population!!Male
## 10  DP05_0003E         Estimate!!SEX AND AGE!!Total population!!Female
## 12 DP05_0003PE Percent Estimate!!SEX AND AGE!!Total population!!Female
age <- Estimate[grep('AGE',Estimate$id),]
head(age)
##         GEO_ID                                                      id
## 2   DP05_0001E                 Estimate!!SEX AND AGE!!Total population
## 4  DP05_0001PE         Percent Estimate!!SEX AND AGE!!Total population
## 6   DP05_0002E           Estimate!!SEX AND AGE!!Total population!!Male
## 8  DP05_0002PE   Percent Estimate!!SEX AND AGE!!Total population!!Male
## 10  DP05_0003E         Estimate!!SEX AND AGE!!Total population!!Female
## 12 DP05_0003PE Percent Estimate!!SEX AND AGE!!Total population!!Female
race <- Estimate[grep('RACE',Estimate$id),]
head(race)
##          GEO_ID                                                          id
## 130  DP05_0033E                            Estimate!!RACE!!Total population
## 132 DP05_0033PE                    Percent Estimate!!RACE!!Total population
## 134  DP05_0034E                  Estimate!!RACE!!Total population!!One race
## 136 DP05_0034PE          Percent Estimate!!RACE!!Total population!!One race
## 138  DP05_0035E         Estimate!!RACE!!Total population!!Two or more races
## 140 DP05_0035PE Percent Estimate!!RACE!!Total population!!Two or more races
percentRace <- race[grep('Percent',race$id),]
percentRace$id <- gsub('Percent Estimate!!RACE!!','',percentRace$id)
percentRace
##          GEO_ID
## 132 DP05_0033PE
## 136 DP05_0034PE
## 140 DP05_0035PE
## 144 DP05_0036PE
## 148 DP05_0037PE
## 152 DP05_0038PE
## 156 DP05_0039PE
## 160 DP05_0040PE
## 164 DP05_0041PE
## 168 DP05_0042PE
## 172 DP05_0043PE
## 176 DP05_0044PE
## 180 DP05_0045PE
## 184 DP05_0046PE
## 188 DP05_0047PE
## 192 DP05_0048PE
## 196 DP05_0049PE
## 200 DP05_0050PE
## 204 DP05_0051PE
## 208 DP05_0052PE
## 212 DP05_0053PE
## 216 DP05_0054PE
## 220 DP05_0055PE
## 224 DP05_0056PE
## 228 DP05_0057PE
## 232 DP05_0058PE
## 236 DP05_0059PE
## 240 DP05_0060PE
## 244 DP05_0061PE
## 248 DP05_0062PE
## 280 DP05_0070PE
## 284 DP05_0071PE
## 288 DP05_0072PE
## 292 DP05_0073PE
## 296 DP05_0074PE
## 300 DP05_0075PE
## 304 DP05_0076PE
## 308 DP05_0077PE
## 312 DP05_0078PE
## 316 DP05_0079PE
## 320 DP05_0080PE
## 324 DP05_0081PE
## 328 DP05_0082PE
## 332 DP05_0083PE
## 336 DP05_0084PE
## 340 DP05_0085PE
##                                                                                                                                                                           id
## 132                                                                                                                                                         Total population
## 136                                                                                                                                               Total population!!One race
## 140                                                                                                                                      Total population!!Two or more races
## 144                                                                                                                                               Total population!!One race
## 148                                                                                                                                        Total population!!One race!!White
## 152                                                                                                                    Total population!!One race!!Black or African American
## 156                                                                                                            Total population!!One race!!American Indian and Alaska Native
## 160                                                                                  Total population!!One race!!American Indian and Alaska Native!!Cherokee tribal grouping
## 164                                                                                  Total population!!One race!!American Indian and Alaska Native!!Chippewa tribal grouping
## 168                                                                                    Total population!!One race!!American Indian and Alaska Native!!Navajo tribal grouping
## 172                                                                                     Total population!!One race!!American Indian and Alaska Native!!Sioux tribal grouping
## 176                                                                                                                                        Total population!!One race!!Asian
## 180                                                                                                                          Total population!!One race!!Asian!!Asian Indian
## 184                                                                                                                               Total population!!One race!!Asian!!Chinese
## 188                                                                                                                              Total population!!One race!!Asian!!Filipino
## 192                                                                                                                              Total population!!One race!!Asian!!Japanese
## 196                                                                                                                                Total population!!One race!!Asian!!Korean
## 200                                                                                                                            Total population!!One race!!Asian!!Vietnamese
## 204                                                                                                                           Total population!!One race!!Asian!!Other Asian
## 208                                                                                                   Total population!!One race!!Native Hawaiian and Other Pacific Islander
## 212                                                                                  Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Native Hawaiian
## 216                                                                            Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Guamanian or Chamorro
## 220                                                                                           Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Samoan
## 224                                                                           Total population!!One race!!Native Hawaiian and Other Pacific Islander!!Other Pacific Islander
## 228                                                                                                                              Total population!!One race!!Some other race
## 232                                                                                                                                      Total population!!Two or more races
## 236                                                                                                 Total population!!Two or more races!!White and Black or African American
## 240                                                                                         Total population!!Two or more races!!White and American Indian and Alaska Native
## 244                                                                                                                     Total population!!Two or more races!!White and Asian
## 248                                                                     Total population!!Two or more races!!Black or African American and American Indian and Alaska Native
## 280                                                                                                          Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population
## 284                                                                        Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)
## 288                                                               Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Mexican
## 292                                                          Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Puerto Rican
## 296                                                                 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Cuban
## 300                                              Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Hispanic or Latino (of any race)!!Other Hispanic or Latino
## 304                                                                                  Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino
## 308                                                                     Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!White alone
## 312                                                 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Black or African American alone
## 316                                         Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!American Indian and Alaska Native alone
## 320                                                                     Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Asian alone
## 324                                Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Native Hawaiian and Other Pacific Islander alone
## 328                                                           Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Some other race alone
## 332                                                               Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races
## 336                          Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races including Some other race
## 340 Percent Estimate!!HISPANIC OR LATINO AND RACE!!Total population!!Not Hispanic or Latino!!Two or more races!!Two races excluding Some other race, and Three or more races

Lets get the white, black, asian, native american indian, two or more total, pacific islander, and latino groups.

totalPop <- percentRace[1,]
black <- percentRace[6,]
white <- percentRace[5,]
twoOrMore <- percentRace[3,]
AmericanIndian <- percentRace[7,]
Asian <- percentRace[12,]
pacificIslander <- percentRace[20,]
LatinoHispanic <- percentRace[32,]

totalPop$id <- 'total_state_population'
black$id <- 'percent_black'
white$id <- 'percent_white'
twoOrMore$id <- 'percent_two_or_more'
AmericanIndian$id <- 'percent_Native_American'
Asian$id <- 'percent_Asian'
pacificIslander$id <- 'percent_Pacific_Islander'
LatinoHispanic$id <- 'percent_Latino'

EthnicBackground <- rbind(totalPop,black,white,twoOrMore,AmericanIndian,Asian,pacificIslander,LatinoHispanic)
EthnicBackground
##          GEO_ID                       id
## 132 DP05_0033PE   total_state_population
## 152 DP05_0038PE            percent_black
## 148 DP05_0037PE            percent_white
## 140 DP05_0035PE      percent_two_or_more
## 156 DP05_0039PE  percent_Native_American
## 176 DP05_0044PE            percent_Asian
## 208 DP05_0052PE percent_Pacific_Islander
## 284 DP05_0071PE           percent_Latino
IDs <- EthnicBackground$GEO_ID
class(IDs)
## [1] "factor"
IDs <- as.character(paste(IDs))
DF2 <- DF[,c('NAME',IDs)]
DF2
##              NAME DP05_0033PE DP05_0038PE DP05_0037PE DP05_0035PE DP05_0039PE
## 1        Illinois    12741080        14.1        71.7         2.7         0.3
## 2            Iowa     3156145         3.6        90.2         2.2         0.4
## 3        Missouri     6126452        11.5        82.2         2.8         0.5
## 4          Nevada     3034392         9.2        63.4         5.1         1.5
## 5    Pennsylvania    12807060        11.2        80.1         2.6         0.2
## 6            Utah     3161105         1.3        85.7         3.2         1.1
## 7   West Virginia     1805832         3.8        93.0         1.9         0.1
## 8        Colorado     5695564         4.2        84.1         4.0         1.0
## 9         Georgia    10519475        31.6        58.3         2.7         0.3
## 10          Idaho     1754208         0.7        89.9         3.0         1.3
## 11       Maryland     6042718        30.0        54.7         3.7         0.2
## 12     New Jersey     8908520        13.6        66.9         2.8         0.2
## 13     New Mexico     2095428         2.2        76.4         3.2         9.6
## 14           Ohio    11689442        12.4        81.0         3.1         0.2
## 15         Alaska      737438         3.4        64.4         8.4        15.1
## 16        Florida    21299325        16.0        74.6         2.9         0.3
## 17         Hawaii     1420491         2.0        24.3        24.3         0.2
## 18  Massachusetts     6902149         7.8        77.3         3.4         0.2
## 19 South Carolina     5084127        26.6        67.0         2.4         0.5
## 20          Maine     1338404         1.4        94.3         2.2         0.6
## 21 North Carolina    10383620        21.4        68.4         2.9         1.2
## 22   South Dakota      882235         2.2        84.0         2.7         8.8
## 23        Alabama     4887871        26.7        67.7         2.1         0.5
## 24        Indiana     6691878         9.5        82.8         2.7         0.2
## 25       Kentucky     4468402         7.9        86.7         2.4         0.2
## 26      Louisiana     4659978        32.4        61.7         2.3         0.6
## 27      Tennessee     6770010        16.8        77.3         2.2         0.3
## 28        Vermont      626299         1.2        94.1         2.0         0.3
## 29     Washington     7535591         3.9        74.8         6.0         1.3
## 30       Michigan     9995915        13.8        78.3         2.9         0.5
## 31       Nebraska     1929268         4.7        86.4         3.1         1.0
## 32  New Hampshire     1356458         1.7        92.4         2.2         0.3
## 33       Oklahoma     3943079         7.3        72.2         7.7         7.8
## 34         Oregon     4190713         2.0        83.9         4.7         1.2
## 35   Rhode Island     1057315         6.7        80.7         3.1         0.4
## 36      Wisconsin     5813568         6.4        85.3         2.5         0.9
## 37        Wyoming      577737         0.6        91.5         2.4         2.8
## 38       Arkansas     3013825        15.2        76.5         2.9         0.7
## 39     California    39557045         5.8        59.5         5.1         0.8
## 40       Delaware      967171        22.5        68.2         2.7         0.5
## 41         Kansas     2911510         5.9        84.0         3.7         0.9
## 42      Minnesota     5611179         6.6        82.5         3.1         1.1
## 43    Mississippi     2986530        38.0        58.1         1.5         0.4
## 44        Montana     1062305         0.5        88.6         3.1         6.4
## 45       Virginia     8517685        19.2        67.4         4.1         0.3
## 46        Arizona     7171646         4.7        78.0         4.0         4.6
## 47    Connecticut     3572665        11.0        75.2         3.4         0.3
## 48       New York    19542209        15.7        63.3         3.3         0.4
## 49   North Dakota      760077         3.4        85.7         2.3         5.4
## 50          Texas    28701845        12.3        73.5         2.7         0.5
##    DP05_0044PE DP05_0052PE DP05_0071PE
## 1          5.6         0.0        17.3
## 2          2.5         0.1         6.1
## 3          2.0         0.1         4.1
## 4          8.2         0.6        29.0
## 5          3.6         0.0         7.6
## 6          2.4         0.9        14.2
## 7          0.7         0.0         1.4
## 8          3.2         0.1        21.7
## 9          4.1         0.1         9.7
## 10         1.5         0.2        12.7
## 11         6.3         0.1        10.4
## 12         9.7         0.0        20.6
## 13         1.6         0.1        49.1
## 14         2.3         0.0         3.9
## 15         6.3         1.1         7.2
## 16         2.8         0.1        26.1
## 17        37.6        10.2        10.7
## 18         6.8         0.0        12.3
## 19         1.6         0.1         5.8
## 20         1.2         0.0         1.7
## 21         3.0         0.1         9.6
## 22         1.7         0.0         3.9
## 23         1.3         0.0         4.3
## 24         2.3         0.1         7.1
## 25         1.5         0.1         3.6
## 26         1.6         0.0         5.1
## 27         1.8         0.1         5.5
## 28         1.9         0.0         2.0
## 29         8.8         0.7        12.9
## 30         3.3         0.0         5.2
## 31         2.4         0.1        11.1
## 32         2.7         0.0         3.9
## 33         2.1         0.1        10.9
## 34         4.6         0.4        13.3
## 35         3.4         0.1        15.9
## 36         2.8         0.0         6.9
## 37         1.0         0.2        10.0
## 38         1.6         0.3         7.6
## 39        14.7         0.4        39.3
## 40         4.0         0.1         9.5
## 41         2.8         0.1        12.0
## 42         4.9         0.0         5.5
## 43         0.9         0.0         2.9
## 44         0.8         0.1         3.9
## 45         6.5         0.1         9.5
## 46         3.3         0.2        31.6
## 47         4.6         0.0        16.5
## 48         8.5         0.0        19.2
## 49         1.8         0.0         3.6
## 50         5.0         0.1        39.6
colnames(DF2) <- c('state',EthnicBackground$id)
DF2
##             state total_state_population percent_black percent_white
## 1        Illinois               12741080          14.1          71.7
## 2            Iowa                3156145           3.6          90.2
## 3        Missouri                6126452          11.5          82.2
## 4          Nevada                3034392           9.2          63.4
## 5    Pennsylvania               12807060          11.2          80.1
## 6            Utah                3161105           1.3          85.7
## 7   West Virginia                1805832           3.8          93.0
## 8        Colorado                5695564           4.2          84.1
## 9         Georgia               10519475          31.6          58.3
## 10          Idaho                1754208           0.7          89.9
## 11       Maryland                6042718          30.0          54.7
## 12     New Jersey                8908520          13.6          66.9
## 13     New Mexico                2095428           2.2          76.4
## 14           Ohio               11689442          12.4          81.0
## 15         Alaska                 737438           3.4          64.4
## 16        Florida               21299325          16.0          74.6
## 17         Hawaii                1420491           2.0          24.3
## 18  Massachusetts                6902149           7.8          77.3
## 19 South Carolina                5084127          26.6          67.0
## 20          Maine                1338404           1.4          94.3
## 21 North Carolina               10383620          21.4          68.4
## 22   South Dakota                 882235           2.2          84.0
## 23        Alabama                4887871          26.7          67.7
## 24        Indiana                6691878           9.5          82.8
## 25       Kentucky                4468402           7.9          86.7
## 26      Louisiana                4659978          32.4          61.7
## 27      Tennessee                6770010          16.8          77.3
## 28        Vermont                 626299           1.2          94.1
## 29     Washington                7535591           3.9          74.8
## 30       Michigan                9995915          13.8          78.3
## 31       Nebraska                1929268           4.7          86.4
## 32  New Hampshire                1356458           1.7          92.4
## 33       Oklahoma                3943079           7.3          72.2
## 34         Oregon                4190713           2.0          83.9
## 35   Rhode Island                1057315           6.7          80.7
## 36      Wisconsin                5813568           6.4          85.3
## 37        Wyoming                 577737           0.6          91.5
## 38       Arkansas                3013825          15.2          76.5
## 39     California               39557045           5.8          59.5
## 40       Delaware                 967171          22.5          68.2
## 41         Kansas                2911510           5.9          84.0
## 42      Minnesota                5611179           6.6          82.5
## 43    Mississippi                2986530          38.0          58.1
## 44        Montana                1062305           0.5          88.6
## 45       Virginia                8517685          19.2          67.4
## 46        Arizona                7171646           4.7          78.0
## 47    Connecticut                3572665          11.0          75.2
## 48       New York               19542209          15.7          63.3
## 49   North Dakota                 760077           3.4          85.7
## 50          Texas               28701845          12.3          73.5
##    percent_two_or_more percent_Native_American percent_Asian
## 1                  2.7                     0.3           5.6
## 2                  2.2                     0.4           2.5
## 3                  2.8                     0.5           2.0
## 4                  5.1                     1.5           8.2
## 5                  2.6                     0.2           3.6
## 6                  3.2                     1.1           2.4
## 7                  1.9                     0.1           0.7
## 8                  4.0                     1.0           3.2
## 9                  2.7                     0.3           4.1
## 10                 3.0                     1.3           1.5
## 11                 3.7                     0.2           6.3
## 12                 2.8                     0.2           9.7
## 13                 3.2                     9.6           1.6
## 14                 3.1                     0.2           2.3
## 15                 8.4                    15.1           6.3
## 16                 2.9                     0.3           2.8
## 17                24.3                     0.2          37.6
## 18                 3.4                     0.2           6.8
## 19                 2.4                     0.5           1.6
## 20                 2.2                     0.6           1.2
## 21                 2.9                     1.2           3.0
## 22                 2.7                     8.8           1.7
## 23                 2.1                     0.5           1.3
## 24                 2.7                     0.2           2.3
## 25                 2.4                     0.2           1.5
## 26                 2.3                     0.6           1.6
## 27                 2.2                     0.3           1.8
## 28                 2.0                     0.3           1.9
## 29                 6.0                     1.3           8.8
## 30                 2.9                     0.5           3.3
## 31                 3.1                     1.0           2.4
## 32                 2.2                     0.3           2.7
## 33                 7.7                     7.8           2.1
## 34                 4.7                     1.2           4.6
## 35                 3.1                     0.4           3.4
## 36                 2.5                     0.9           2.8
## 37                 2.4                     2.8           1.0
## 38                 2.9                     0.7           1.6
## 39                 5.1                     0.8          14.7
## 40                 2.7                     0.5           4.0
## 41                 3.7                     0.9           2.8
## 42                 3.1                     1.1           4.9
## 43                 1.5                     0.4           0.9
## 44                 3.1                     6.4           0.8
## 45                 4.1                     0.3           6.5
## 46                 4.0                     4.6           3.3
## 47                 3.4                     0.3           4.6
## 48                 3.3                     0.4           8.5
## 49                 2.3                     5.4           1.8
## 50                 2.7                     0.5           5.0
##    percent_Pacific_Islander percent_Latino
## 1                       0.0           17.3
## 2                       0.1            6.1
## 3                       0.1            4.1
## 4                       0.6           29.0
## 5                       0.0            7.6
## 6                       0.9           14.2
## 7                       0.0            1.4
## 8                       0.1           21.7
## 9                       0.1            9.7
## 10                      0.2           12.7
## 11                      0.1           10.4
## 12                      0.0           20.6
## 13                      0.1           49.1
## 14                      0.0            3.9
## 15                      1.1            7.2
## 16                      0.1           26.1
## 17                     10.2           10.7
## 18                      0.0           12.3
## 19                      0.1            5.8
## 20                      0.0            1.7
## 21                      0.1            9.6
## 22                      0.0            3.9
## 23                      0.0            4.3
## 24                      0.1            7.1
## 25                      0.1            3.6
## 26                      0.0            5.1
## 27                      0.1            5.5
## 28                      0.0            2.0
## 29                      0.7           12.9
## 30                      0.0            5.2
## 31                      0.1           11.1
## 32                      0.0            3.9
## 33                      0.1           10.9
## 34                      0.4           13.3
## 35                      0.1           15.9
## 36                      0.0            6.9
## 37                      0.2           10.0
## 38                      0.3            7.6
## 39                      0.4           39.3
## 40                      0.1            9.5
## 41                      0.1           12.0
## 42                      0.0            5.5
## 43                      0.0            2.9
## 44                      0.1            3.9
## 45                      0.1            9.5
## 46                      0.2           31.6
## 47                      0.0           16.5
## 48                      0.0           19.2
## 49                      0.0            3.6
## 50                      0.1           39.6
Ethnicities <- DF2[order(DF2$state),]
row.names(Ethnicities) <- NULL
Ethnicities
##             state total_state_population percent_black percent_white
## 1         Alabama                4887871          26.7          67.7
## 2          Alaska                 737438           3.4          64.4
## 3         Arizona                7171646           4.7          78.0
## 4        Arkansas                3013825          15.2          76.5
## 5      California               39557045           5.8          59.5
## 6        Colorado                5695564           4.2          84.1
## 7     Connecticut                3572665          11.0          75.2
## 8        Delaware                 967171          22.5          68.2
## 9         Florida               21299325          16.0          74.6
## 10        Georgia               10519475          31.6          58.3
## 11         Hawaii                1420491           2.0          24.3
## 12          Idaho                1754208           0.7          89.9
## 13       Illinois               12741080          14.1          71.7
## 14        Indiana                6691878           9.5          82.8
## 15           Iowa                3156145           3.6          90.2
## 16         Kansas                2911510           5.9          84.0
## 17       Kentucky                4468402           7.9          86.7
## 18      Louisiana                4659978          32.4          61.7
## 19          Maine                1338404           1.4          94.3
## 20       Maryland                6042718          30.0          54.7
## 21  Massachusetts                6902149           7.8          77.3
## 22       Michigan                9995915          13.8          78.3
## 23      Minnesota                5611179           6.6          82.5
## 24    Mississippi                2986530          38.0          58.1
## 25       Missouri                6126452          11.5          82.2
## 26        Montana                1062305           0.5          88.6
## 27       Nebraska                1929268           4.7          86.4
## 28         Nevada                3034392           9.2          63.4
## 29  New Hampshire                1356458           1.7          92.4
## 30     New Jersey                8908520          13.6          66.9
## 31     New Mexico                2095428           2.2          76.4
## 32       New York               19542209          15.7          63.3
## 33 North Carolina               10383620          21.4          68.4
## 34   North Dakota                 760077           3.4          85.7
## 35           Ohio               11689442          12.4          81.0
## 36       Oklahoma                3943079           7.3          72.2
## 37         Oregon                4190713           2.0          83.9
## 38   Pennsylvania               12807060          11.2          80.1
## 39   Rhode Island                1057315           6.7          80.7
## 40 South Carolina                5084127          26.6          67.0
## 41   South Dakota                 882235           2.2          84.0
## 42      Tennessee                6770010          16.8          77.3
## 43          Texas               28701845          12.3          73.5
## 44           Utah                3161105           1.3          85.7
## 45        Vermont                 626299           1.2          94.1
## 46       Virginia                8517685          19.2          67.4
## 47     Washington                7535591           3.9          74.8
## 48  West Virginia                1805832           3.8          93.0
## 49      Wisconsin                5813568           6.4          85.3
## 50        Wyoming                 577737           0.6          91.5
##    percent_two_or_more percent_Native_American percent_Asian
## 1                  2.1                     0.5           1.3
## 2                  8.4                    15.1           6.3
## 3                  4.0                     4.6           3.3
## 4                  2.9                     0.7           1.6
## 5                  5.1                     0.8          14.7
## 6                  4.0                     1.0           3.2
## 7                  3.4                     0.3           4.6
## 8                  2.7                     0.5           4.0
## 9                  2.9                     0.3           2.8
## 10                 2.7                     0.3           4.1
## 11                24.3                     0.2          37.6
## 12                 3.0                     1.3           1.5
## 13                 2.7                     0.3           5.6
## 14                 2.7                     0.2           2.3
## 15                 2.2                     0.4           2.5
## 16                 3.7                     0.9           2.8
## 17                 2.4                     0.2           1.5
## 18                 2.3                     0.6           1.6
## 19                 2.2                     0.6           1.2
## 20                 3.7                     0.2           6.3
## 21                 3.4                     0.2           6.8
## 22                 2.9                     0.5           3.3
## 23                 3.1                     1.1           4.9
## 24                 1.5                     0.4           0.9
## 25                 2.8                     0.5           2.0
## 26                 3.1                     6.4           0.8
## 27                 3.1                     1.0           2.4
## 28                 5.1                     1.5           8.2
## 29                 2.2                     0.3           2.7
## 30                 2.8                     0.2           9.7
## 31                 3.2                     9.6           1.6
## 32                 3.3                     0.4           8.5
## 33                 2.9                     1.2           3.0
## 34                 2.3                     5.4           1.8
## 35                 3.1                     0.2           2.3
## 36                 7.7                     7.8           2.1
## 37                 4.7                     1.2           4.6
## 38                 2.6                     0.2           3.6
## 39                 3.1                     0.4           3.4
## 40                 2.4                     0.5           1.6
## 41                 2.7                     8.8           1.7
## 42                 2.2                     0.3           1.8
## 43                 2.7                     0.5           5.0
## 44                 3.2                     1.1           2.4
## 45                 2.0                     0.3           1.9
## 46                 4.1                     0.3           6.5
## 47                 6.0                     1.3           8.8
## 48                 1.9                     0.1           0.7
## 49                 2.5                     0.9           2.8
## 50                 2.4                     2.8           1.0
##    percent_Pacific_Islander percent_Latino
## 1                       0.0            4.3
## 2                       1.1            7.2
## 3                       0.2           31.6
## 4                       0.3            7.6
## 5                       0.4           39.3
## 6                       0.1           21.7
## 7                       0.0           16.5
## 8                       0.1            9.5
## 9                       0.1           26.1
## 10                      0.1            9.7
## 11                     10.2           10.7
## 12                      0.2           12.7
## 13                      0.0           17.3
## 14                      0.1            7.1
## 15                      0.1            6.1
## 16                      0.1           12.0
## 17                      0.1            3.6
## 18                      0.0            5.1
## 19                      0.0            1.7
## 20                      0.1           10.4
## 21                      0.0           12.3
## 22                      0.0            5.2
## 23                      0.0            5.5
## 24                      0.0            2.9
## 25                      0.1            4.1
## 26                      0.1            3.9
## 27                      0.1           11.1
## 28                      0.6           29.0
## 29                      0.0            3.9
## 30                      0.0           20.6
## 31                      0.1           49.1
## 32                      0.0           19.2
## 33                      0.1            9.6
## 34                      0.0            3.6
## 35                      0.0            3.9
## 36                      0.1           10.9
## 37                      0.4           13.3
## 38                      0.0            7.6
## 39                      0.1           15.9
## 40                      0.1            5.8
## 41                      0.0            3.9
## 42                      0.1            5.5
## 43                      0.1           39.6
## 44                      0.9           14.2
## 45                      0.0            2.0
## 46                      0.1            9.5
## 47                      0.7           12.9
## 48                      0.0            1.4
## 49                      0.0            6.9
## 50                      0.2           10.0
write.csv(Ethnicities, 'race_distribution_2018.csv',row.names=FALSE)

Merge the state licensing excel file with this csv file to add in the demographic race data per state.

stateREQs <- read.csv('stateLicensingRequirements.csv', sep=',', header=TRUE, na.strings=c('',' ','NA'))
colnames(stateREQs)
##  [1] "state"                                    
##  [2] "massageBoard"                             
##  [3] "licenseByReciprocity"                     
##  [4] "proofOtherOrAllStateLicense"              
##  [5] "stateResidencyProof"                      
##  [6] "passportSizePhoto"                        
##  [7] "driversLicensePhotoCopy"                  
##  [8] "nameChangeProof"                          
##  [9] "socialSecurityCopy"                       
## [10] "Hours"                                    
## [11] "MBLEX_or_NCBTMB"                          
## [12] "goodHealthClearance"                      
## [13] "BoardBackgroundCheckFee"                  
## [14] "stateApplyingBackgroundCheck"             
## [15] "DOJ_backgroundCheck"                      
## [16] "applicationCost"                          
## [17] "licensingCost"                            
## [18] "licenseRenewalFee"                        
## [19] "CPR_certification"                        
## [20] "licensingETA"                             
## [21] "healthReferences"                         
## [22] "CEU"                                      
## [23] "timeLicenseValidYears"                    
## [24] "liabilityInsurance"                       
## [25] "schoolTranscripts"                        
## [26] "MBLEX_transcript"                         
## [27] "notes"                                    
## [28] "notes2"                                   
## [29] "notes3"                                   
## [30] "notes4"                                   
## [31] "citiesGreaterThan300k_orTop3"             
## [32] "LMT_medianJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyMedianPayRangeAdvertised_Indeed"
## [34] "LMT_AnualMedianPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityMedianHomeValue"          
## [36] "median2018IncomeByState"
stateREQs <- stateREQs[,1:36]
colnames(stateREQs)
##  [1] "state"                                    
##  [2] "massageBoard"                             
##  [3] "licenseByReciprocity"                     
##  [4] "proofOtherOrAllStateLicense"              
##  [5] "stateResidencyProof"                      
##  [6] "passportSizePhoto"                        
##  [7] "driversLicensePhotoCopy"                  
##  [8] "nameChangeProof"                          
##  [9] "socialSecurityCopy"                       
## [10] "Hours"                                    
## [11] "MBLEX_or_NCBTMB"                          
## [12] "goodHealthClearance"                      
## [13] "BoardBackgroundCheckFee"                  
## [14] "stateApplyingBackgroundCheck"             
## [15] "DOJ_backgroundCheck"                      
## [16] "applicationCost"                          
## [17] "licensingCost"                            
## [18] "licenseRenewalFee"                        
## [19] "CPR_certification"                        
## [20] "licensingETA"                             
## [21] "healthReferences"                         
## [22] "CEU"                                      
## [23] "timeLicenseValidYears"                    
## [24] "liabilityInsurance"                       
## [25] "schoolTranscripts"                        
## [26] "MBLEX_transcript"                         
## [27] "notes"                                    
## [28] "notes2"                                   
## [29] "notes3"                                   
## [30] "notes4"                                   
## [31] "citiesGreaterThan300k_orTop3"             
## [32] "LMT_medianJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyMedianPayRangeAdvertised_Indeed"
## [34] "LMT_AnualMedianPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityMedianHomeValue"          
## [36] "median2018IncomeByState"
Ethnicities$state <- as.factor(Ethnicities$state)
StateLicensing <- merge(stateREQs,Ethnicities, by.x='state',by.y='state')
dim(StateLicensing)
## [1] 50 44
colnames(StateLicensing)
##  [1] "state"                                    
##  [2] "massageBoard"                             
##  [3] "licenseByReciprocity"                     
##  [4] "proofOtherOrAllStateLicense"              
##  [5] "stateResidencyProof"                      
##  [6] "passportSizePhoto"                        
##  [7] "driversLicensePhotoCopy"                  
##  [8] "nameChangeProof"                          
##  [9] "socialSecurityCopy"                       
## [10] "Hours"                                    
## [11] "MBLEX_or_NCBTMB"                          
## [12] "goodHealthClearance"                      
## [13] "BoardBackgroundCheckFee"                  
## [14] "stateApplyingBackgroundCheck"             
## [15] "DOJ_backgroundCheck"                      
## [16] "applicationCost"                          
## [17] "licensingCost"                            
## [18] "licenseRenewalFee"                        
## [19] "CPR_certification"                        
## [20] "licensingETA"                             
## [21] "healthReferences"                         
## [22] "CEU"                                      
## [23] "timeLicenseValidYears"                    
## [24] "liabilityInsurance"                       
## [25] "schoolTranscripts"                        
## [26] "MBLEX_transcript"                         
## [27] "notes"                                    
## [28] "notes2"                                   
## [29] "notes3"                                   
## [30] "notes4"                                   
## [31] "citiesGreaterThan300k_orTop3"             
## [32] "LMT_medianJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyMedianPayRangeAdvertised_Indeed"
## [34] "LMT_AnualMedianPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityMedianHomeValue"          
## [36] "median2018IncomeByState"                  
## [37] "total_state_population"                   
## [38] "percent_black"                            
## [39] "percent_white"                            
## [40] "percent_two_or_more"                      
## [41] "percent_Native_American"                  
## [42] "percent_Asian"                            
## [43] "percent_Pacific_Islander"                 
## [44] "percent_Latino"

We added the demographics to the state licensing requirements and facts csv version of the excel version.

Now lets add in the fields from our Indeed web scrape to update the columns 32-34 of the StateLicensing table.We added them in manually before, but now that a table was made with the copy of the indeed web scrape script that uses the modified writeIndeedJobData5Pages() using the original getIndeedJobData5Pages(). We can update the table on the fly as needed as long as the Indeed site doesn’t change its layout. This file is the statesRates.csv file made in the ‘copy-indeed-webscrape-function-altered.Rmd’ script.

statesRates <- read.csv('./Indeed 10/jobListings_licensed massage therapist.csv', sep=',',header=TRUE, na.strings=c('',' ','NA'),
                       stringsAsFactors = FALSE)
head(statesRates)
##   state jobsListed                jobSearched MinHourlySalary MaxHourlySalary
## 1    ak         85 licensed massage therapist        30.00000        72.50000
## 2    al        110 licensed massage therapist        10.53333        40.13333
## 3    ar        195 licensed massage therapist              NA              NA
## 4    az        751 licensed massage therapist        13.14115        74.56724
## 5    ca        647 licensed massage therapist        14.66745        66.32399
## 6    co        708 licensed massage therapist        13.19844        64.06117
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        75000.00       120000.00  51.25000       97500.00
## 2        27614.67        51420.67  25.33333       39517.67
## 3        35305.43        49264.86        NA       42285.14
## 4        37214.18       111078.15  43.85419       74146.16
## 5        36218.37       120000.00  40.49572       78109.19
## 6        25868.75        60135.94  38.62980       43002.34
statesOrdered <- statesRates[order(statesRates$state),]
head(statesOrdered)
##   state jobsListed                jobSearched MinHourlySalary MaxHourlySalary
## 1    ak         85 licensed massage therapist        30.00000        72.50000
## 2    al        110 licensed massage therapist        10.53333        40.13333
## 3    ar        195 licensed massage therapist              NA              NA
## 4    az        751 licensed massage therapist        13.14115        74.56724
## 5    ca        647 licensed massage therapist        14.66745        66.32399
## 6    co        708 licensed massage therapist        13.19844        64.06117
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        75000.00       120000.00  51.25000       97500.00
## 2        27614.67        51420.67  25.33333       39517.67
## 3        35305.43        49264.86        NA       42285.14
## 4        37214.18       111078.15  43.85419       74146.16
## 5        36218.37       120000.00  40.49572       78109.19
## 6        25868.75        60135.94  38.62980       43002.34

When ordering by the state abbreviations, the order isn’t the same as by the state spelled out. So lets compare the two and adjust changes.

statesOrdered$state
##  [1] "ak" "al" "ar" "az" "ca" "co" "ct" "de" "fl" "ga" "hi" "ia" "id" "il" "in"
## [16] "ks" "ky" "la" "ma" "md" "me" "mi" "mn" "mo" "ms" "mt" "nc" "nd" "ne" "nh"
## [31] "nj" "nm" "nv" "ny" "oh" "ok" "or" "pa" "ri" "sc" "sd" "tn" "tx" "ut" "va"
## [46] "vt" "wa" "wi" "wv" "wy"

The statesOrdered has an NA, lets remove it.

statesOrdered <- statesOrdered[1:50,]
states <- c("Alaska"  ,"Alabama"     ,      "Arkansas"     ,     "Arizona"     ,    "California",    
 "Colorado"    ,   "Connecticut"  ,  "Delaware"     ,  "Florida"    ,    "Georgia"  ,     
"Hawaii"   ,     "Iowa"   , "Idaho"   ,       "Illinois"  ,     "Indiana"        ,       
 "Kansas"   ,      "Kentucky",       "Louisiana" ,  "Massachusetts",  "Maryland" , "Maine",     
  "Michigan"  ,     "Minnesota"   ,  "Missouri"  , "Mississippi"    ,    
"Montana"       , "North Carolina","North Dakota" ,"Nebraska"   ,  "New Hampshire" , "New Jersey", "New Mexico"     , "Nevada"       ,      
"New York"    ,      "Ohio"       ,   
"Oklahoma"      , "Oregon"       ,  "Pennsylvania"   ,"Rhode Island",   "South Carolina",
"South Dakota"  , "Tennessee"     , "Texas"          ,"Utah"       , "Virginia",   "Vermont",   
 "Washington" ,"Wisconsin" ,  "West Virginia"  ,   "Wyoming" )

states
##  [1] "Alaska"         "Alabama"        "Arkansas"       "Arizona"       
##  [5] "California"     "Colorado"       "Connecticut"    "Delaware"      
##  [9] "Florida"        "Georgia"        "Hawaii"         "Iowa"          
## [13] "Idaho"          "Illinois"       "Indiana"        "Kansas"        
## [17] "Kentucky"       "Louisiana"      "Massachusetts"  "Maryland"      
## [21] "Maine"          "Michigan"       "Minnesota"      "Missouri"      
## [25] "Mississippi"    "Montana"        "North Carolina" "North Dakota"  
## [29] "Nebraska"       "New Hampshire"  "New Jersey"     "New Mexico"    
## [33] "Nevada"         "New York"       "Ohio"           "Oklahoma"      
## [37] "Oregon"         "Pennsylvania"   "Rhode Island"   "South Carolina"
## [41] "South Dakota"   "Tennessee"      "Texas"          "Utah"          
## [45] "Virginia"       "Vermont"        "Washington"     "Wisconsin"     
## [49] "West Virginia"  "Wyoming"
statesOrdered$stateName <- states
statesOrdered$state <- toupper(statesOrdered$state)
statesOrdered <- statesOrdered[,c(1,10,2:9)]
statesOrdered <- statesOrdered[order(statesOrdered$stateName),]
head(statesOrdered)
##   state  stateName jobsListed                jobSearched MinHourlySalary
## 2    AL    Alabama        110 licensed massage therapist        10.53333
## 1    AK     Alaska         85 licensed massage therapist        30.00000
## 4    AZ    Arizona        751 licensed massage therapist        13.14115
## 3    AR   Arkansas        195 licensed massage therapist              NA
## 5    CA California        647 licensed massage therapist        14.66745
## 6    CO   Colorado        708 licensed massage therapist        13.19844
##   MaxHourlySalary MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 2        40.13333        27614.67        51420.67  25.33333       39517.67
## 1        72.50000        75000.00       120000.00  51.25000       97500.00
## 4        74.56724        37214.18       111078.15  43.85419       74146.16
## 3              NA        35305.43        49264.86        NA       42285.14
## 5        66.32399        36218.37       120000.00  40.49572       78109.19
## 6        64.06117        25868.75        60135.94  38.62980       43002.34

Lets make sure the stateName of the statesOrdered and the state of the StateLicensing tables are identical before updating the table with the latest job information from Indeed.

as.factor(statesOrdered$stateName)==StateLicensing$state
##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [46] TRUE TRUE TRUE TRUE TRUE

That checks out, so we can now update the information with the latest data.

StateLicensing$LMT_AnualMedianPayAdvertised_Indeed <- statesOrdered$avgAnualSalary
StateLicensing$LMT_HourlyMedianPayRangeAdvertised_Indeed <- statesOrdered$avgHourly
StateLicensing$LMT_medianJobsListed_IndeedFirst5pages <- statesOrdered$jobsListed
colnames(StateLicensing)
##  [1] "state"                                    
##  [2] "massageBoard"                             
##  [3] "licenseByReciprocity"                     
##  [4] "proofOtherOrAllStateLicense"              
##  [5] "stateResidencyProof"                      
##  [6] "passportSizePhoto"                        
##  [7] "driversLicensePhotoCopy"                  
##  [8] "nameChangeProof"                          
##  [9] "socialSecurityCopy"                       
## [10] "Hours"                                    
## [11] "MBLEX_or_NCBTMB"                          
## [12] "goodHealthClearance"                      
## [13] "BoardBackgroundCheckFee"                  
## [14] "stateApplyingBackgroundCheck"             
## [15] "DOJ_backgroundCheck"                      
## [16] "applicationCost"                          
## [17] "licensingCost"                            
## [18] "licenseRenewalFee"                        
## [19] "CPR_certification"                        
## [20] "licensingETA"                             
## [21] "healthReferences"                         
## [22] "CEU"                                      
## [23] "timeLicenseValidYears"                    
## [24] "liabilityInsurance"                       
## [25] "schoolTranscripts"                        
## [26] "MBLEX_transcript"                         
## [27] "notes"                                    
## [28] "notes2"                                   
## [29] "notes3"                                   
## [30] "notes4"                                   
## [31] "citiesGreaterThan300k_orTop3"             
## [32] "LMT_medianJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyMedianPayRangeAdvertised_Indeed"
## [34] "LMT_AnualMedianPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityMedianHomeValue"          
## [36] "median2018IncomeByState"                  
## [37] "total_state_population"                   
## [38] "percent_black"                            
## [39] "percent_white"                            
## [40] "percent_two_or_more"                      
## [41] "percent_Native_American"                  
## [42] "percent_Asian"                            
## [43] "percent_Pacific_Islander"                 
## [44] "percent_Latino"

We should change the names of those columns to say ‘avg’ instead of ‘median’.

colnames(StateLicensing)[32:34] <- gsub('[mM]edian','Avg',colnames(StateLicensing)[32:34])
colnames(StateLicensing)
##  [1] "state"                                 
##  [2] "massageBoard"                          
##  [3] "licenseByReciprocity"                  
##  [4] "proofOtherOrAllStateLicense"           
##  [5] "stateResidencyProof"                   
##  [6] "passportSizePhoto"                     
##  [7] "driversLicensePhotoCopy"               
##  [8] "nameChangeProof"                       
##  [9] "socialSecurityCopy"                    
## [10] "Hours"                                 
## [11] "MBLEX_or_NCBTMB"                       
## [12] "goodHealthClearance"                   
## [13] "BoardBackgroundCheckFee"               
## [14] "stateApplyingBackgroundCheck"          
## [15] "DOJ_backgroundCheck"                   
## [16] "applicationCost"                       
## [17] "licensingCost"                         
## [18] "licenseRenewalFee"                     
## [19] "CPR_certification"                     
## [20] "licensingETA"                          
## [21] "healthReferences"                      
## [22] "CEU"                                   
## [23] "timeLicenseValidYears"                 
## [24] "liabilityInsurance"                    
## [25] "schoolTranscripts"                     
## [26] "MBLEX_transcript"                      
## [27] "notes"                                 
## [28] "notes2"                                
## [29] "notes3"                                
## [30] "notes4"                                
## [31] "citiesGreaterThan300k_orTop3"          
## [32] "LMT_AvgJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyAvgPayRangeAdvertised_Indeed"
## [34] "LMT_AnualAvgPayAdvertised_Indeed"      
## [35] "Zillow_2BR_3cityMedianHomeValue"       
## [36] "median2018IncomeByState"               
## [37] "total_state_population"                
## [38] "percent_black"                         
## [39] "percent_white"                         
## [40] "percent_two_or_more"                   
## [41] "percent_Native_American"               
## [42] "percent_Asian"                         
## [43] "percent_Pacific_Islander"              
## [44] "percent_Latino"

The Zillow data was also added manually from the find3zillowCitiesFunctionMedian2BRHomeValues.Rmd file that used a downloaded Zillow dataset on 2 bedroom zillow home value index value per city. The file is ‘updatedZillow2BR.csv’ made from our copy-find10zillowCitiesFunctionMean2BRHomeValues.Rmd script.

zillowData <- read.csv('updatedZillow2BR-10.csv',sep=',', header=TRUE, na.strings=c('',' ','NA'))
head(zillowData)
##   State X6.30.2020
## 1    AK   244501.7
## 2    AL   104537.1
## 3    AR   114929.8
## 4    AZ   240336.3
## 5    CA   669171.6
## 6    CO   327365.4
zillowData$State
##  [1] AK AL AR AZ CA CO CT DE FL GA HI IA ID IL IN KS KY LA MA MD ME MI MN MO MS
## [26] MT NC ND NE NH NJ NM NV NY OH OK OR PA RI SC SD TN TX UT VA VT WA WI WV WY
## 50 Levels: AK AL AR AZ CA CO CT DE FL GA HI IA ID IL IN KS KY LA MA MD ... WY
zillowData$stateName <- states
zillowData
##    State X6.30.2020      stateName
## 1     AK  244501.67         Alaska
## 2     AL  104537.10        Alabama
## 3     AR  114929.76       Arkansas
## 4     AZ  240336.29        Arizona
## 5     CA  669171.59     California
## 6     CO  327365.43       Colorado
## 7     CT  212252.40    Connecticut
## 8     DE  215976.06       Delaware
## 9     FL  215245.23        Florida
## 10    GA  192060.49        Georgia
## 11    HI  574836.56         Hawaii
## 12    IA  129324.62           Iowa
## 13    ID  238004.33          Idaho
## 14    IL  202689.33       Illinois
## 15    IN  125366.69        Indiana
## 16    KS  152226.63         Kansas
## 17    KY  193124.32       Kentucky
## 18    LA  141609.86      Louisiana
## 19    MA  537437.75  Massachusetts
## 20    MD  207428.66       Maryland
## 21    ME  301941.27          Maine
## 22    MI  107764.58       Michigan
## 23    MN  252568.04      Minnesota
## 24    MO  143279.22       Missouri
## 25    MS   81255.42    Mississippi
## 26    MT  240545.87        Montana
## 27    NC  166565.93 North Carolina
## 28    ND  160193.50   North Dakota
## 29    NE  192748.95       Nebraska
## 30    NH  227562.85  New Hampshire
## 31    NJ  259979.79     New Jersey
## 32    NM  180789.56     New Mexico
## 33    NV  264014.69         Nevada
## 34    NY  637718.65       New York
## 35    OH  102083.29           Ohio
## 36    OK  109105.35       Oklahoma
## 37    OR  364129.81         Oregon
## 38    PA  172920.62   Pennsylvania
## 39    RI  252537.90   Rhode Island
## 40    SC  181933.17 South Carolina
## 41    SD  164059.75   South Dakota
## 42    TN  177130.29      Tennessee
## 43    TX  195904.48          Texas
## 44    UT  319213.45           Utah
## 45    VA  252271.37       Virginia
## 46    VT  193815.55        Vermont
## 47    WA  417702.86     Washington
## 48    WI  170618.96      Wisconsin
## 49    WV   82370.00  West Virginia
## 50    WY  240742.71        Wyoming
zOrdered <- zillowData[order(zillowData$stateName),]
zOrdered
##    State X6.30.2020      stateName
## 2     AL  104537.10        Alabama
## 1     AK  244501.67         Alaska
## 4     AZ  240336.29        Arizona
## 3     AR  114929.76       Arkansas
## 5     CA  669171.59     California
## 6     CO  327365.43       Colorado
## 7     CT  212252.40    Connecticut
## 8     DE  215976.06       Delaware
## 9     FL  215245.23        Florida
## 10    GA  192060.49        Georgia
## 11    HI  574836.56         Hawaii
## 13    ID  238004.33          Idaho
## 14    IL  202689.33       Illinois
## 15    IN  125366.69        Indiana
## 12    IA  129324.62           Iowa
## 16    KS  152226.63         Kansas
## 17    KY  193124.32       Kentucky
## 18    LA  141609.86      Louisiana
## 21    ME  301941.27          Maine
## 20    MD  207428.66       Maryland
## 19    MA  537437.75  Massachusetts
## 22    MI  107764.58       Michigan
## 23    MN  252568.04      Minnesota
## 25    MS   81255.42    Mississippi
## 24    MO  143279.22       Missouri
## 26    MT  240545.87        Montana
## 29    NE  192748.95       Nebraska
## 33    NV  264014.69         Nevada
## 30    NH  227562.85  New Hampshire
## 31    NJ  259979.79     New Jersey
## 32    NM  180789.56     New Mexico
## 34    NY  637718.65       New York
## 27    NC  166565.93 North Carolina
## 28    ND  160193.50   North Dakota
## 35    OH  102083.29           Ohio
## 36    OK  109105.35       Oklahoma
## 37    OR  364129.81         Oregon
## 38    PA  172920.62   Pennsylvania
## 39    RI  252537.90   Rhode Island
## 40    SC  181933.17 South Carolina
## 41    SD  164059.75   South Dakota
## 42    TN  177130.29      Tennessee
## 43    TX  195904.48          Texas
## 44    UT  319213.45           Utah
## 46    VT  193815.55        Vermont
## 45    VA  252271.37       Virginia
## 47    WA  417702.86     Washington
## 49    WV   82370.00  West Virginia
## 48    WI  170618.96      Wisconsin
## 50    WY  240742.71        Wyoming
zillowOrdered <- zOrdered[,2:3]
colnames(zillowOrdered)[1] <- 'zillow2BR_2020June_10cities'
zillowOrdered
##    zillow2BR_2020June_10cities      stateName
## 2                    104537.10        Alabama
## 1                    244501.67         Alaska
## 4                    240336.29        Arizona
## 3                    114929.76       Arkansas
## 5                    669171.59     California
## 6                    327365.43       Colorado
## 7                    212252.40    Connecticut
## 8                    215976.06       Delaware
## 9                    215245.23        Florida
## 10                   192060.49        Georgia
## 11                   574836.56         Hawaii
## 13                   238004.33          Idaho
## 14                   202689.33       Illinois
## 15                   125366.69        Indiana
## 12                   129324.62           Iowa
## 16                   152226.63         Kansas
## 17                   193124.32       Kentucky
## 18                   141609.86      Louisiana
## 21                   301941.27          Maine
## 20                   207428.66       Maryland
## 19                   537437.75  Massachusetts
## 22                   107764.58       Michigan
## 23                   252568.04      Minnesota
## 25                    81255.42    Mississippi
## 24                   143279.22       Missouri
## 26                   240545.87        Montana
## 29                   192748.95       Nebraska
## 33                   264014.69         Nevada
## 30                   227562.85  New Hampshire
## 31                   259979.79     New Jersey
## 32                   180789.56     New Mexico
## 34                   637718.65       New York
## 27                   166565.93 North Carolina
## 28                   160193.50   North Dakota
## 35                   102083.29           Ohio
## 36                   109105.35       Oklahoma
## 37                   364129.81         Oregon
## 38                   172920.62   Pennsylvania
## 39                   252537.90   Rhode Island
## 40                   181933.17 South Carolina
## 41                   164059.75   South Dakota
## 42                   177130.29      Tennessee
## 43                   195904.48          Texas
## 44                   319213.45           Utah
## 46                   193815.55        Vermont
## 45                   252271.37       Virginia
## 47                   417702.86     Washington
## 49                    82370.00  West Virginia
## 48                   170618.96      Wisconsin
## 50                   240742.71        Wyoming
StateLicensing$state==zillowOrdered$stateName
##  [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [16] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [31] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [46] TRUE TRUE TRUE TRUE TRUE

Everything checks out so we can now update our zillow 2 bedroom median home values per state to the mean values per state instead. Some of the top 3 cities of population weren’t in the Zillow data, such as AL.

StateLicensing$Zillow_2BR_3cityMedianHomeValue <- zillowOrdered$zillow2BR_2020June_10cities
colnames(StateLicensing)[35] <- 'Zillow_2BR_10cityAverageHomeValue'
colnames(StateLicensing)
##  [1] "state"                                 
##  [2] "massageBoard"                          
##  [3] "licenseByReciprocity"                  
##  [4] "proofOtherOrAllStateLicense"           
##  [5] "stateResidencyProof"                   
##  [6] "passportSizePhoto"                     
##  [7] "driversLicensePhotoCopy"               
##  [8] "nameChangeProof"                       
##  [9] "socialSecurityCopy"                    
## [10] "Hours"                                 
## [11] "MBLEX_or_NCBTMB"                       
## [12] "goodHealthClearance"                   
## [13] "BoardBackgroundCheckFee"               
## [14] "stateApplyingBackgroundCheck"          
## [15] "DOJ_backgroundCheck"                   
## [16] "applicationCost"                       
## [17] "licensingCost"                         
## [18] "licenseRenewalFee"                     
## [19] "CPR_certification"                     
## [20] "licensingETA"                          
## [21] "healthReferences"                      
## [22] "CEU"                                   
## [23] "timeLicenseValidYears"                 
## [24] "liabilityInsurance"                    
## [25] "schoolTranscripts"                     
## [26] "MBLEX_transcript"                      
## [27] "notes"                                 
## [28] "notes2"                                
## [29] "notes3"                                
## [30] "notes4"                                
## [31] "citiesGreaterThan300k_orTop3"          
## [32] "LMT_AvgJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyAvgPayRangeAdvertised_Indeed"
## [34] "LMT_AnualAvgPayAdvertised_Indeed"      
## [35] "Zillow_2BR_10cityAverageHomeValue"     
## [36] "median2018IncomeByState"               
## [37] "total_state_population"                
## [38] "percent_black"                         
## [39] "percent_white"                         
## [40] "percent_two_or_more"                   
## [41] "percent_Native_American"               
## [42] "percent_Asian"                         
## [43] "percent_Pacific_Islander"              
## [44] "percent_Latino"

Now, we can write our table out to csv. We manually put in the 2018 median household income per state from data.census.gov, but we can update that later or as needed when more relevant data is available. That was two years ago, and there should be 2020 data soon because of the 2020 census.

Because this will be the same table but with added and updated columns, we should name it something else to keep separate from the original table with fewer columns.

write.csv(StateLicensing,'stateLicensingDemographicsAddedAndUpdated.csv',row.names=FALSE)

Note that the original csv file stateLicensingRequirements.csv has to be manually input for the changes, then use this script to add the demographics, updated Zillow 2BR home values, and update the average Indeed pay rates and job listings. Don’t make changes in the file just written out or else they will be lost if modifying the state by state licensing requirements of the first variables.


Now, lets add in the data on the alternate jobs available for a massage therapist looking to move to another state and work as a massage therapist, but needing alternate work to pay bills while waiting for license approval.

I have gathered the information on job title for the first five web pages of job listings on Indeed for similar jobs to a massage therapist or that might not need any license to work as. These jobs are: nanny, server, personal trainer, security, data science, house cleaner, warehouse worker, and cashier. The data scientist job is more relevant to me specifically, but some people could possibly have experience as a coder or computer programmer and statistical analyst to land a job in data science without the intense and rigorous education required in machine learning that I went through. It is not likely, but some people do make it to similar jobs with just a couple months to years of proving they are qualified as computer programmers and coders. So, we will assume that is the case, and that companies don’t want to pay higher salaries to arrogant top educated and possibly difficult to work with graduates and would rather pay motivated and slightly proven but coachable males and females from team building backgrounds or sports competitive athletes used to the heirarchical structure of ‘yes sir and mam’ to their directors at lower wages than a professional, skilled, and educated in the background theory that could possibly question the director’s motives, authority, and decisions, and possibly leak the lack of sound leadership within the company to something as viral as a social media site.

So, without further a do, lets start, shall we?

We will import the data sets individually for each of the 50 states’ counts, and salaries be it hourly, annual, or both from our top three populated cities of each state.

house cleaner:

houseCleaner <- read.csv('./Indeed 10/jobListings_house cleaner.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
houseCleaner$stateName <- states
houseCleaner <- houseCleaner[,c(1,10,2:9)]
head(houseCleaner)
##   state  stateName jobsListed   jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska         25 house cleaner       10.800000        12.40000
## 2    al    Alabama        250 house cleaner        9.520652        17.33043
## 3    ar   Arkansas        135 house cleaner       12.669231        14.74615
## 4    az    Arizona        677 house cleaner       10.044313        24.71196
## 5    ca California        581 house cleaner       11.935886        25.45009
## 6    co   Colorado        679 house cleaner       12.000000        23.93225
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA  11.60000             NA
## 2        17990.65        20000.00  13.42554       18995.33
## 3              NA              NA  13.70769             NA
## 4              NA              NA  17.37814             NA
## 5        33478.26        37130.43  18.69299       35304.35
## 6              NA              NA  17.96613             NA

nanny:

nanny <- read.csv('./Indeed 10/jobListings_nanny.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
nanny$stateName <- states
nanny <- nanny[,c(1,10,2:9)]
head(nanny)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska         95       nanny       10.947368        14.73684
## 2    al    Alabama        150       nanny        9.857143        16.00000
## 3    ar   Arkansas        288       nanny        9.823322        16.59011
## 4    az    Arizona        577       nanny       10.000000        24.39688
## 5    ca California        553       nanny       13.027125        43.99638
## 6    co   Colorado        521       nanny       11.896353        24.24184
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA  12.84211             NA
## 2              NA              NA  12.92857             NA
## 3              NA              NA  13.20671             NA
## 4         33000.0         60000.0  17.19844       46500.00
## 5         74682.2        109915.3  28.51175       92298.73
## 6              NA              NA  18.06910             NA

cashier:

cashier <- read.csv('./Indeed 10/jobListings_cashier.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
cashier$stateName <- states
cashier <- cashier[,c(1,10,2:9)]
head(cashier)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        307     cashier       10.991438        12.71747
## 2    al    Alabama        677     cashier        7.749261        13.27400
## 3    ar   Arkansas        594     cashier        9.076599        12.33249
## 4    az    Arizona        748     cashier        9.401070        15.83155
## 5    ca California        735     cashier       12.039456        17.71611
## 6    co   Colorado        717     cashier       10.192120        18.74756
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA  11.85445             NA
## 2              NA              NA  10.51163             NA
## 3              NA              NA  10.70455             NA
## 4           31200           31200  12.61631          31200
## 5              NA              NA  14.87778             NA
## 6              NA              NA  14.46984             NA

personal trainer:

personalTrainer <- read.csv('./Indeed 10/jobListings_personal trainer.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
personalTrainer$stateName <- states
personalTrainer <- personalTrainer[,c(1,10,2:9)]
head(personalTrainer)
##   state  stateName jobsListed      jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        120 personal trainer              NA              NA
## 2    al    Alabama        295 personal trainer        9.461538        48.03846
## 3    ar   Arkansas        275 personal trainer       15.461538        28.92308
## 4    az    Arizona        652 personal trainer        9.138037        50.56748
## 5    ca California        598 personal trainer       13.001672        65.78595
## 6    co   Colorado        576 personal trainer       12.000000        48.29947
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        35000.00        60000.00        NA       47500.00
## 2        40000.00        50000.00  28.75000       45000.00
## 3        50000.00        50000.00  22.19231       50000.00
## 4        29110.53        81184.50  29.85276       55147.52
## 5        41046.98        79374.78  39.39381       60210.88
## 6        51628.78        68861.71  30.14974       60245.25

security:

security <- read.csv('./Indeed 10/jobListings_security.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
security$stateName <- states
security <- security[,c(1,10,2:9)]
head(security)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        447    security       12.460850        16.86353
## 2    al    Alabama        613    security        7.880098        19.69005
## 3    ar   Arkansas        555    security       10.268468        13.44730
## 4    az    Arizona        660    security       12.934621        17.28432
## 5    ca California        656    security       14.369817        29.57553
## 6    co   Colorado        640    security       13.143359        42.11703
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        56171.68       116325.26  14.66219       86248.47
## 2        36977.98        76599.80  13.78507       56788.89
## 3        37857.54        87508.37  11.85788       62682.96
## 4        47058.42        78717.17  15.10947       62887.80
## 5        54392.37       115540.57  21.97268       84966.47
## 6        38239.93       113368.40  27.63020       75804.16
server <- read.csv('./Indeed 10/jobListings_server.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
server$stateName <- states
server <- server[,c(1,10,2:9)]
head(server)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        110      server       10.281765        11.69353
## 2    al    Alabama        719      server        7.543880        20.43811
## 3    ar   Arkansas        663      server        8.528025        18.44840
## 4    az    Arizona        750      server        9.000000        23.64400
## 5    ca California        724      server       12.205801        26.68612
## 6    co   Colorado        748      server        9.010132        32.61968
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA  10.98765             NA
## 2              NA              NA  13.99099             NA
## 3              NA              NA  13.48821             NA
## 4        43884.50          150000  16.32200       96942.25
## 5              NA              NA  19.44596             NA
## 6        56205.13          102000  20.81490       79102.56

warehouse worker:

warehouseWorker <- read.csv('./Indeed 10/jobListings_warehouse worker.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
warehouseWorker$stateName <- states
warehouseWorker <- warehouseWorker[,c(1,10,2:9)]
head(warehouseWorker)
##   state  stateName jobsListed      jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        628 warehouse worker       13.156847        21.13390
## 2    al    Alabama        734 warehouse worker        8.982970        19.18200
## 3    ar   Arkansas        693 warehouse worker        9.933622        18.30980
## 4    az    Arizona        779 warehouse worker       11.092426        22.51829
## 5    ca California        797 warehouse worker       12.748432        28.50040
## 6    co   Colorado        797 warehouse worker       12.000000        22.32227
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        52697.00        61420.00  17.14537       57058.50
## 2        31992.82        37607.59  14.08249       34800.21
## 3              NA              NA  14.12171             NA
## 4        35757.32        39125.52  16.80536       37441.42
## 5        30596.58        70272.95  20.62442       50434.77
## 6        27026.64        36896.71  17.16114       31961.68

data scientist:

dataScientist <- read.csv('./Indeed 10/jobListings_data scientist.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
dataScientist$stateName <- states
dataScientist <- dataScientist[,c(1,10,2:9)]
head(dataScientist)
##   state  stateName jobsListed    jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        113 data scientist         22.6300        22.63000
## 2    al    Alabama        350 data scientist              NA              NA
## 3    ar   Arkansas        231 data scientist              NA              NA
## 4    az    Arizona        702 data scientist              NA              NA
## 5    ca California        616 data scientist         23.8948        71.09955
## 6    co   Colorado        604 data scientist         16.0000        18.00000
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        63899.52       111430.56  22.63000       87665.04
## 2        65000.00        96164.38        NA       80582.19
## 3        59915.82        80445.94        NA       70180.88
## 4        64008.57       109240.91        NA       86624.74
## 5        75244.55       238089.89  47.49717      156667.22
## 6        65643.34        99476.32  17.00000       82559.83

tutor:

tutor <- read.csv('./Indeed 10/jobListings_tutor.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
tutor$stateName <- states
tutor <- tutor[,c(1,10,2:9)]
head(tutor)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        479       tutor        14.08207        28.24250
## 2    al    Alabama        536       tutor        12.29443        26.26042
## 3    ar   Arkansas        367       tutor        10.61468        14.76147
## 4    az    Arizona        714       tutor        11.79272        48.01120
## 5    ca California        715       tutor        12.24559        68.45175
## 6    co   Colorado        697       tutor        11.75337        34.98996
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA  21.16229             NA
## 2        21623.00        38100.00  19.27743       29861.50
## 3              NA              NA  12.68807             NA
## 4        41446.35        56452.57  29.90196       48949.46
## 5        39428.92        46878.07  40.34867       43153.49
## 6        27538.33        41416.86  23.37166       34477.59

clerical:

clerical <- read.csv('./Indeed 10/jobListings_clerical.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
clerical$stateName <- states
clerical <- clerical[,c(1,10,2:9)]
head(clerical)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        700    clerical       12.143571        30.60069
## 2    al    Alabama        750    clerical        8.251000        23.70667
## 3    ar   Arkansas        736    clerical        9.517323        19.03125
## 4    az    Arizona        788    clerical       11.701777        39.34822
## 5    ca California        795    clerical       12.505660        37.42408
## 6    co   Colorado        800    clerical       11.352500        28.75525
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        39538.02        82243.42  21.37213       60890.72
## 2        24886.80        72923.56  15.97883       48905.18
## 3        26819.00        63703.86  14.27429       45261.43
## 4        31224.94        66406.71  25.52500       48815.83
## 5        35536.35        78898.69  24.96487       57217.52
## 6        27401.44        66650.78  20.05388       47026.11

teacher:

teacher <- read.csv('./Indeed 10/jobListings_teacher.csv', header=TRUE,
                            na.strings=c('',' ','NA'), sep=',')
teacher$stateName <- states
teacher <- teacher[,c(1,10,2:9)]
head(teacher)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        652     teacher       12.476074        34.01506
## 2    al    Alabama        680     teacher        8.852279        30.48419
## 3    ar   Arkansas        710     teacher       10.407042        26.00000
## 4    az    Arizona        822     teacher       12.928224        52.02555
## 5    ca California        779     teacher       13.010552        59.55071
## 6    co   Colorado        794     teacher       12.738665        44.90806
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        40532.12        80259.20  23.24557       60395.66
## 2        34623.22        63647.46  19.66824       49135.34
## 3        33331.01        67995.02  18.20352       50663.02
## 4        23869.83        65322.71  32.47689       44596.27
## 5        30486.81        92173.60  36.28063       61330.20
## 6        26993.64        84405.27  28.82336       55699.46

Lets get only the columns needed.

dataScientist2 <- dataScientist[,c(2,3,10)]
colnames(dataScientist2)[2:3] <- paste('dataScientist',colnames(dataScientist2)[2:3],sep='_')
dataScientist2$dataScientist_avgHourly <- (dataScientist2$dataScientist_avgAnualSalary/52)/40
dataScientist2 <- dataScientist2[,c(1,2,4,3)]
head(dataScientist2)
##    stateName dataScientist_jobsListed dataScientist_avgHourly
## 1     Alaska                      113                42.14665
## 2    Alabama                      350                38.74144
## 3   Arkansas                      231                33.74081
## 4    Arizona                      702                41.64651
## 5 California                      616                75.32078
## 6   Colorado                      604                39.69223
##   dataScientist_avgAnualSalary
## 1                     87665.04
## 2                     80582.19
## 3                     70180.88
## 4                     86624.74
## 5                    156667.22
## 6                     82559.83
warehouseWorker2 <- warehouseWorker[,c(2,3,9)]
colnames(warehouseWorker2)[2:3] <- paste('warehouse',colnames(warehouseWorker2)[2:3],
                                         sep='_')
warehouseWorker2$warehouse_avgAnnualSalary <- warehouseWorker2$warehouse_avgHourly*52*40
head(warehouseWorker2)
##    stateName warehouse_jobsListed warehouse_avgHourly warehouse_avgAnnualSalary
## 1     Alaska                  628            17.14537                  35662.38
## 2    Alabama                  734            14.08249                  29291.57
## 3   Arkansas                  693            14.12171                  29373.16
## 4    Arizona                  779            16.80536                  34955.15
## 5 California                  797            20.62442                  42898.79
## 6   Colorado                  797            17.16114                  35695.16
nanny2 <- nanny[,c(2,3,9)]
colnames(nanny2)[2:3] <- paste('nanny',colnames(nanny2)[2:3],
                                         sep='_')
nanny2$nanny_avgAnnualSalary <- nanny2$nanny_avgHourly*52*40
head(nanny2)
##    stateName nanny_jobsListed nanny_avgHourly nanny_avgAnnualSalary
## 1     Alaska               95        12.84211              26711.58
## 2    Alabama              150        12.92857              26891.43
## 3   Arkansas              288        13.20671              27469.96
## 4    Arizona              577        17.19844              35772.76
## 5 California              553        28.51175              59304.45
## 6   Colorado              521        18.06910              37583.72
personalTrainer2 <- personalTrainer[,c(2,3,9)]
colnames(personalTrainer2)[2:3] <- paste('personalTrainer',colnames(personalTrainer2)[2:3],
                                         sep='_')
personalTrainer2$personalTrainer_avgAnnualSalary <-
                          personalTrainer2$personalTrainer_avgHourly*52*40
head(personalTrainer2)
##    stateName personalTrainer_jobsListed personalTrainer_avgHourly
## 1     Alaska                        120                        NA
## 2    Alabama                        295                  28.75000
## 3   Arkansas                        275                  22.19231
## 4    Arizona                        652                  29.85276
## 5 California                        598                  39.39381
## 6   Colorado                        576                  30.14974
##   personalTrainer_avgAnnualSalary
## 1                              NA
## 2                        59800.00
## 3                        46160.00
## 4                        62093.74
## 5                        81939.13
## 6                        62711.45
security2 <- security[,c(2,3,9)]
colnames(security2)[2:3] <- paste('security',colnames(security2)[2:3],
                                         sep='_')
security2$security_avgAnnualSalary <- security2$security_avgHourly*52*40
head(security2)
##    stateName security_jobsListed security_avgHourly security_avgAnnualSalary
## 1     Alaska                 447           14.66219                 30497.36
## 2    Alabama                 613           13.78507                 28672.95
## 3   Arkansas                 555           11.85788                 24664.40
## 4    Arizona                 660           15.10947                 31427.70
## 5 California                 656           21.97268                 45703.16
## 6   Colorado                 640           27.63020                 57470.81
houseCleaner2 <- houseCleaner[,c(2,3,9)]
colnames(houseCleaner2)[2:3] <- paste('houseCleaner',colnames(houseCleaner2)[2:3],
                                         sep='_')
houseCleaner2$houseCleaner_avgAnnualSalary <- houseCleaner2$houseCleaner_avgHourly*52*40
head(houseCleaner2)
##    stateName houseCleaner_jobsListed houseCleaner_avgHourly
## 1     Alaska                      25               11.60000
## 2    Alabama                     250               13.42554
## 3   Arkansas                     135               13.70769
## 4    Arizona                     677               17.37814
## 5 California                     581               18.69299
## 6   Colorado                     679               17.96613
##   houseCleaner_avgAnnualSalary
## 1                     24128.00
## 2                     27925.13
## 3                     28512.00
## 4                     36146.53
## 5                     38881.41
## 6                     37369.54
server2 <- server[,c(2,3,9)]
colnames(server2)[2:3] <- paste('server',colnames(server2)[2:3],
                                         sep='_')
server2$server_avgAnnualSalary <- server2$server_avgHourly*52*40
head(server2)
##    stateName server_jobsListed server_avgHourly server_avgAnnualSalary
## 1     Alaska               110         10.98765               22854.31
## 2    Alabama               719         13.99099               29101.27
## 3   Arkansas               663         13.48821               28055.48
## 4    Arizona               750         16.32200               33949.76
## 5 California               724         19.44596               40447.60
## 6   Colorado               748         20.81490               43295.00
cashier2 <- cashier[,c(2,3,9)]
colnames(cashier2)[2:3] <- paste('cashier',colnames(cashier2)[2:3],
                                         sep='_')
cashier2$cashier_avgAnnualSalary <- cashier2$cashier_avgHourly*52*40
head(cashier2)
##    stateName cashier_jobsListed cashier_avgHourly cashier_avgAnnualSalary
## 1     Alaska                307          11.85445                24657.26
## 2    Alabama                677          10.51163                21864.19
## 3   Arkansas                594          10.70455                22265.45
## 4    Arizona                748          12.61631                26241.93
## 5 California                735          14.87778                30945.79
## 6   Colorado                717          14.46984                30097.27
tutor2 <- tutor[,c(2,3,9)]
colnames(tutor2)[2:3] <- paste('tutor',colnames(tutor2)[2:3],
                                         sep='_')
tutor2$tutor_avgAnnualSalary <- tutor2$tutor_avgHourly*52*40
head(tutor2)
##    stateName tutor_jobsListed tutor_avgHourly tutor_avgAnnualSalary
## 1     Alaska              479        21.16229              44017.56
## 2    Alabama              536        19.27743              40097.05
## 3   Arkansas              367        12.68807              26391.19
## 4    Arizona              714        29.90196              62196.08
## 5 California              715        40.34867              83925.24
## 6   Colorado              697        23.37166              48613.06
clerical2 <- clerical[,c(2,3,9)]
colnames(clerical2)[2:3] <- paste('clerical',colnames(clerical2)[2:3],
                                         sep='_')
clerical2$clerical_avgAnnualSalary <- clerical2$clerical_avgHourly*52*40
head(clerical2)
##    stateName clerical_jobsListed clerical_avgHourly clerical_avgAnnualSalary
## 1     Alaska                 700           21.37213                 44454.03
## 2    Alabama                 750           15.97883                 33235.97
## 3   Arkansas                 736           14.27429                 29690.52
## 4    Arizona                 788           25.52500                 53092.00
## 5 California                 795           24.96487                 51926.93
## 6   Colorado                 800           20.05388                 41712.06
teacher2 <- teacher[,c(2,3,10)]
colnames(teacher2)[2:3] <- paste('teacher',colnames(teacher2)[2:3],sep='_')
teacher2$teacher_avgHourly <- (teacher2$teacher_avgAnualSalary/52)/40
teacher2 <- teacher2[,c(1,2,4,3)]
head(teacher2)
##    stateName teacher_jobsListed teacher_avgHourly teacher_avgAnualSalary
## 1     Alaska                652          29.03638               60395.66
## 2    Alabama                680          23.62276               49135.34
## 3   Arkansas                710          24.35722               50663.02
## 4    Arizona                822          21.44051               44596.27
## 5 California                779          29.48567               61330.20
## 6   Colorado                794          26.77858               55699.46

Lets add these new columns to our data table StateLicensing one at a time.

slr <- merge(StateLicensing,cashier2, by.x='state', by.y='stateName')
slr <- merge(slr, server2, by.x='state', by.y='stateName')
slr <- merge(slr, personalTrainer2, by.x='state', by.y='stateName')
slr <- merge(slr, houseCleaner2, by.x='state', by.y='stateName')
slr <- merge(slr, warehouseWorker2, by.x='state', by.y='stateName')
slr <- merge(slr, security2, by.x='state', by.y='stateName')
slr <- merge(slr, nanny2, by.x='state', by.y='stateName')
slr <- merge(slr, clerical2, by.x='state', by.y='stateName')
slr <- merge(slr, tutor2, by.x='state', by.y='stateName')
slr <- merge(slr, teacher2, by.x='state', by.y='stateName')
slr <- merge(slr, dataScientist2, by.x='state', by.y='stateName')


colnames(slr)
##  [1] "state"                                 
##  [2] "massageBoard"                          
##  [3] "licenseByReciprocity"                  
##  [4] "proofOtherOrAllStateLicense"           
##  [5] "stateResidencyProof"                   
##  [6] "passportSizePhoto"                     
##  [7] "driversLicensePhotoCopy"               
##  [8] "nameChangeProof"                       
##  [9] "socialSecurityCopy"                    
## [10] "Hours"                                 
## [11] "MBLEX_or_NCBTMB"                       
## [12] "goodHealthClearance"                   
## [13] "BoardBackgroundCheckFee"               
## [14] "stateApplyingBackgroundCheck"          
## [15] "DOJ_backgroundCheck"                   
## [16] "applicationCost"                       
## [17] "licensingCost"                         
## [18] "licenseRenewalFee"                     
## [19] "CPR_certification"                     
## [20] "licensingETA"                          
## [21] "healthReferences"                      
## [22] "CEU"                                   
## [23] "timeLicenseValidYears"                 
## [24] "liabilityInsurance"                    
## [25] "schoolTranscripts"                     
## [26] "MBLEX_transcript"                      
## [27] "notes"                                 
## [28] "notes2"                                
## [29] "notes3"                                
## [30] "notes4"                                
## [31] "citiesGreaterThan300k_orTop3"          
## [32] "LMT_AvgJobsListed_IndeedFirst5pages"   
## [33] "LMT_HourlyAvgPayRangeAdvertised_Indeed"
## [34] "LMT_AnualAvgPayAdvertised_Indeed"      
## [35] "Zillow_2BR_10cityAverageHomeValue"     
## [36] "median2018IncomeByState"               
## [37] "total_state_population"                
## [38] "percent_black"                         
## [39] "percent_white"                         
## [40] "percent_two_or_more"                   
## [41] "percent_Native_American"               
## [42] "percent_Asian"                         
## [43] "percent_Pacific_Islander"              
## [44] "percent_Latino"                        
## [45] "cashier_jobsListed"                    
## [46] "cashier_avgHourly"                     
## [47] "cashier_avgAnnualSalary"               
## [48] "server_jobsListed"                     
## [49] "server_avgHourly"                      
## [50] "server_avgAnnualSalary"                
## [51] "personalTrainer_jobsListed"            
## [52] "personalTrainer_avgHourly"             
## [53] "personalTrainer_avgAnnualSalary"       
## [54] "houseCleaner_jobsListed"               
## [55] "houseCleaner_avgHourly"                
## [56] "houseCleaner_avgAnnualSalary"          
## [57] "warehouse_jobsListed"                  
## [58] "warehouse_avgHourly"                   
## [59] "warehouse_avgAnnualSalary"             
## [60] "security_jobsListed"                   
## [61] "security_avgHourly"                    
## [62] "security_avgAnnualSalary"              
## [63] "nanny_jobsListed"                      
## [64] "nanny_avgHourly"                       
## [65] "nanny_avgAnnualSalary"                 
## [66] "clerical_jobsListed"                   
## [67] "clerical_avgHourly"                    
## [68] "clerical_avgAnnualSalary"              
## [69] "tutor_jobsListed"                      
## [70] "tutor_avgHourly"                       
## [71] "tutor_avgAnnualSalary"                 
## [72] "teacher_jobsListed"                    
## [73] "teacher_avgHourly"                     
## [74] "teacher_avgAnualSalary"                
## [75] "dataScientist_jobsListed"              
## [76] "dataScientist_avgHourly"               
## [77] "dataScientist_avgAnualSalary"

Lets now write this data table out to csv.

write.csv(slr,'stateLicensingDemographicsAddedAndUpdated.csv', row.names=FALSE)

Lets plot some of this data to get a good sense of what the job outlook is like compared to massage therapy for other professions.

numberOfJobs <- slr[,c(1,32,45,48,51,54,57,60,63,66,69,72,75)]
numberOfJobs
##             state LMT_AvgJobsListed_IndeedFirst5pages cashier_jobsListed
## 1         Alabama                                 110                677
## 2          Alaska                                  85                307
## 3         Arizona                                 751                748
## 4        Arkansas                                 195                594
## 5      California                                 647                735
## 6        Colorado                                 708                717
## 7     Connecticut                                 737                701
## 8        Delaware                                 530                684
## 9         Florida                                 649                713
## 10        Georgia                                 354                631
## 11         Hawaii                                 280                587
## 12          Idaho                                 368                663
## 13       Illinois                                 512                718
## 14        Indiana                                 394                719
## 15           Iowa                                 357                708
## 16         Kansas                                 433                707
## 17       Kentucky                                 481                715
## 18      Louisiana                                 160                697
## 19          Maine                                 225                682
## 20       Maryland                                 781                714
## 21  Massachusetts                                 768                725
## 22       Michigan                                 689                763
## 23      Minnesota                                 604                751
## 24    Mississippi                                 123                616
## 25       Missouri                                 591                719
## 26        Montana                                  40                515
## 27       Nebraska                                 160                498
## 28         Nevada                                 713                749
## 29  New Hampshire                                 458                696
## 30     New Jersey                                 783                735
## 31     New Mexico                                 150                589
## 32       New York                                 595                713
## 33 North Carolina                                 627                712
## 34   North Dakota                                  60                485
## 35           Ohio                                 575                715
## 36       Oklahoma                                 348                616
## 37         Oregon                                 468                705
## 38   Pennsylvania                                 554                729
## 39   Rhode Island                                 626                719
## 40 South Carolina                                 496                687
## 41   South Dakota                                  35                257
## 42      Tennessee                                 383                657
## 43          Texas                                 555                720
## 44           Utah                                 617                748
## 45        Vermont                                 160                583
## 46       Virginia                                 609                653
## 47     Washington                                 715                723
## 48  West Virginia                                 120                648
## 49      Wisconsin                                 400                701
## 50        Wyoming                                  55                417
##    server_jobsListed personalTrainer_jobsListed houseCleaner_jobsListed
## 1                719                        295                     250
## 2                110                        120                      25
## 3                750                        652                     677
## 4                663                        275                     135
## 5                724                        598                     581
## 6                748                        576                     679
## 7                711                        649                     561
## 8                709                        478                     699
## 9                750                        588                     608
## 10               660                        418                     460
## 11               626                        165                     112
## 12               686                        185                     391
## 13               718                        462                     490
## 14               740                        413                     390
## 15               708                        287                     378
## 16               730                        467                     450
## 17               726                        288                     371
## 18               713                        235                     225
## 19               639                        135                     486
## 20               758                        690                     685
## 21               766                        684                     652
## 22               792                        563                     645
## 23               745                        539                     613
## 24               647                        230                     216
## 25               753                        482                     526
## 26               450                         85                      48
## 27               521                        237                     186
## 28               721                        570                     644
## 29               704                        399                     538
## 30               789                        753                     715
## 31               600                        135                     100
## 32               773                        468                     641
## 33               760                        521                     677
## 34               483                         75                     323
## 35               716                        491                     558
## 36               666                        339                     275
## 37               702                        396                     421
## 38               726                        519                     501
## 39               765                        673                     616
## 40               719                        514                     636
## 41               295                         75                     136
## 42               729                        436                     527
## 43               747                        586                     506
## 44               729                        481                     538
## 45               463                         30                     217
## 46               703                        602                     614
## 47               715                        554                     678
## 48               687                        120                     185
## 49               738                        509                     295
## 50               245                         25                      53
##    warehouse_jobsListed security_jobsListed nanny_jobsListed
## 1                   734                 613              150
## 2                   628                 447               95
## 3                   779                 660              577
## 4                   693                 555              288
## 5                   797                 656              553
## 6                   797                 640              521
## 7                   798                 640              446
## 8                   763                 630              398
## 9                   740                 629              491
## 10                  685                 557              375
## 11                  767                 627              235
## 12                  760                 518              195
## 13                  785                 651              398
## 14                  768                 647              344
## 15                  773                 592              145
## 16                  759                 584              232
## 17                  784                 600              300
## 18                  732                 624               70
## 19                  773                 623              125
## 20                  778                 600              668
## 21                  825                 635              550
## 22                  772                 621              420
## 23                  802                 630              537
## 24                  706                 560              185
## 25                  770                 607              403
## 26                  564                 402               50
## 27                  731                 448              125
## 28                  767                 667              410
## 29                  780                 639              217
## 30                  812                 650              684
## 31                  517                 493              110
## 32                  796                 733              422
## 33                  761                 737              475
## 34                  584                 562               45
## 35                  779                 776              280
## 36                  687                 714              275
## 37                  763                 747              245
## 38                  787                 771              408
## 39                  839                 735              564
## 40                  766                 713              267
## 41                  500                 319               25
## 42                  775                 729              321
## 43                  763                 739              470
## 44                  786                 761              315
## 45                  703                 701              100
## 46                  686                 682              456
## 47                  797                 773              471
## 48                  700                 666               90
## 49                  787                 725              256
## 50                  327                 466               60
##    clerical_jobsListed tutor_jobsListed teacher_jobsListed
## 1                  750              536                680
## 2                  700              479                652
## 3                  788              714                822
## 4                  736              367                710
## 5                  795              715                779
## 6                  800              697                794
## 7                  781              711                794
## 8                  757              685                802
## 9                  768              722                820
## 10                 668              528                662
## 11                 792              661                722
## 12                 752              530                694
## 13                 771              736                788
## 14                 777              648                766
## 15                 768              653                710
## 16                 762              611                766
## 17                 767              615                694
## 18                 767              552                722
## 19                 780              590                755
## 20                 782              745                808
## 21                 786              743                808
## 22                 776              658                773
## 23                 783              757                788
## 24                 722              535                676
## 25                 764              646                762
## 26                 718              408                596
## 27                 747              573                619
## 28                 767              701                731
## 29                 782              617                755
## 30                 800              739                795
## 31                 713              533                647
## 32                 776              702                783
## 33                 766              662                799
## 34                 687              505                584
## 35                 779              688                791
## 36                 737              564                673
## 37                 786              529                694
## 38                 786              534                766
## 39                 784              707                785
## 40                 763              675                756
## 41                 660              383                512
## 42                 753              614                767
## 43                 756              670                740
## 44                 782              636                730
## 45                 743              424                717
## 46                 689              615                705
## 47                 788              675                765
## 48                 761              490                626
## 49                 777              626                762
## 50                 662              381                487
##    dataScientist_jobsListed
## 1                       350
## 2                       113
## 3                       702
## 4                       231
## 5                       616
## 6                       604
## 7                       718
## 8                       518
## 9                       468
## 10                      374
## 11                      433
## 12                      189
## 13                      509
## 14                      428
## 15                      280
## 16                      428
## 17                      285
## 18                      125
## 19                      161
## 20                      782
## 21                      703
## 22                      551
## 23                      559
## 24                       98
## 25                      547
## 26                       71
## 27                      122
## 28                      177
## 29                      413
## 30                      704
## 31                      302
## 32                      525
## 33                      588
## 34                       86
## 35                      399
## 36                      236
## 37                      295
## 38                      389
## 39                      571
## 40                      274
## 41                       95
## 42                      282
## 43                      547
## 44                      598
## 45                      119
## 46                      607
## 47                      611
## 48                      172
## 49                      451
## 50                      145
gg <- ggplot(numberOfJobs, aes(x=numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages))
gg <- gg + geom_histogram(binwidth=2, colour="black", 
                          aes(y=..density.., fill=..count..))
gg <- gg + stat_function(fun=dnorm,
                         color="red",
                         args=list(mean=mean(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages), 
                                  sd=sd(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages)))

gg

avg <- mean(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages)
m <- min(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages)
M <- max(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages)

ggplot(data = numberOfJobs, aes(y=numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages, x=numberOfJobs$state)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_y_continuous(breaks=c(m,avg,M),labels=c(m,avg,M))+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=mean(numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages), linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('LMT Average Job Listings in the US Top 3 Cities of each State')+
  ylab(NULL)+
  xlab(NULL)

Lets look at those states whose job listings on Indeed are more than the US average job listings for licensed massage therapists.

moreThanAvgLMT <- subset(numberOfJobs, numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages>avg)
moreThanAvgLMT$state
##  [1] Arizona        California     Colorado       Connecticut    Delaware      
##  [6] Florida        Illinois       Kentucky       Maryland       Massachusetts 
## [11] Michigan       Minnesota      Missouri       Nevada         New Hampshire 
## [16] New Jersey     New York       North Carolina Ohio           Oregon        
## [21] Pennsylvania   Rhode Island   South Carolina Texas          Utah          
## [26] Virginia       Washington    
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

The above list of 31 states look like heavily populated states, such as CA, CO, NY, and TX.

Now, lets see which states have fewer than the US average number of job listings for LMT on Indeed.

lessThanAvgLMT <- subset(numberOfJobs, numberOfJobs$LMT_AvgJobsListed_IndeedFirst5pages<avg)
lessThanAvgLMT$state
##  [1] Alabama       Alaska        Arkansas      Georgia       Hawaii       
##  [6] Idaho         Indiana       Iowa          Kansas        Louisiana    
## [11] Maine         Mississippi   Montana       Nebraska      New Mexico   
## [16] North Dakota  Oklahoma      South Dakota  Tennessee     Vermont      
## [21] West Virginia Wisconsin     Wyoming      
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

From the above, Alaska and many southern and sierra mountain range north mid-western states as well as Hawaii don’t have as many job listings for massage therapists as the more city or urban states do. Surprising Georgia is on this list, as that state has a large somewhat urban population and high pay for LMTs on average compared to other states. Lets look at the pay visually for the 50 states to see this claim just made as true or false.

payRates <- slr[,c(1,33,46,49,52,55,58,61,64,67,70,73,76)]
payRates
##             state LMT_HourlyAvgPayRangeAdvertised_Indeed cashier_avgHourly
## 1         Alabama                               25.33333         10.511632
## 2          Alaska                               51.25000         11.854452
## 3         Arizona                               43.85419         12.616310
## 4        Arkansas                                     NA         10.704545
## 5      California                               40.49572         14.877782
## 6        Colorado                               38.62980         14.469840
## 7     Connecticut                               37.14722         12.796362
## 8        Delaware                               27.00000         11.781615
## 9         Florida                               37.87288         11.270337
## 10        Georgia                               40.98837         15.004358
## 11         Hawaii                               31.00000         12.827300
## 12          Idaho                               37.25895         10.053356
## 13       Illinois                               37.82349         12.008705
## 14        Indiana                               33.28053         10.755042
## 15           Iowa                               32.18976         10.709583
## 16         Kansas                               32.20238         11.311528
## 17       Kentucky                               40.79202         10.878671
## 18      Louisiana                               38.00000          9.916786
## 19          Maine                               39.35227         13.225073
## 20       Maryland                               49.68886         13.902661
## 21  Massachusetts                               38.01172         15.783448
## 22       Michigan                               45.44481         12.859010
## 23      Minnesota                               34.00250         13.172623
## 24    Mississippi                               33.50000         10.254667
## 25       Missouri                               33.59983         12.379882
## 26        Montana                               28.31250         12.061337
## 27       Nebraska                               28.67188         10.797942
## 28         Nevada                               70.49456         14.074599
## 29  New Hampshire                               25.24781         11.545438
## 30     New Jersey                               55.25607         13.187075
## 31     New Mexico                               27.05769         11.893131
## 32       New York                               55.42593         14.276858
## 33 North Carolina                               41.96411         11.070822
## 34   North Dakota                               24.00000         11.698563
## 35           Ohio                               43.25913         11.479161
## 36       Oklahoma                               39.78305          9.736201
## 37         Oregon                               37.07051         14.278716
## 38   Pennsylvania                               33.25338         11.567833
## 39   Rhode Island                               40.97544         13.535118
## 40 South Carolina                               35.32258         11.808406
## 41   South Dakota                               28.53333         10.734795
## 42      Tennessee                               32.18391         11.758752
## 43          Texas                               34.09091         11.863168
## 44           Utah                               37.71880         12.613636
## 45        Vermont                               28.48387         12.309695
## 46       Virginia                               38.11412         11.590926
## 47     Washington                               50.56993         14.402939
## 48  West Virginia                               28.18421         10.243857
## 49      Wisconsin                               39.93038         10.666441
## 50        Wyoming                               25.00000         11.207749
##    server_avgHourly personalTrainer_avgHourly houseCleaner_avgHourly
## 1         13.990994                  28.75000               13.42554
## 2         10.987647                        NA               11.60000
## 3         16.322000                  29.85276               17.37814
## 4         13.488212                  22.19231               13.70769
## 5         19.445960                  39.39381               18.69299
## 6         20.814905                  30.14974               17.96613
## 7         17.351899                  37.18105               16.19385
## 8         12.399330                  24.90396               16.61838
## 9         17.404000                  30.38818               15.78207
## 10        13.279194                  34.83333               16.68736
## 11        16.284185                        NA               14.04464
## 12        15.044471                  21.77273               14.67520
## 13        15.747214                  38.88729               17.92347
## 14        16.770101                  31.99152               15.44667
## 15        15.134004                  28.36643               12.33929
## 16        21.249622                  25.86991               14.67222
## 17        14.323175                  25.48592               14.43299
## 18        11.312668                  16.15278               11.44651
## 19        15.793427                        NA               15.24571
## 20        17.255112                  42.65290               19.77336
## 21        17.421018                  44.27632               19.09260
## 22        17.004703                  32.87598               18.08217
## 23        14.362483                  37.14745               15.76053
## 24         9.684686                  22.36364               11.28125
## 25        17.069118                  29.39725               14.79777
## 26         9.828182                  14.83333               14.38372
## 27        17.699597                  29.36047               11.44767
## 28        14.385888                  46.61491               16.06134
## 29        11.901366                  29.08055               16.07684
## 30        17.292300                  66.67663               19.25594
## 31        11.654255                  19.33333               13.76316
## 32        15.235802                  38.48107               20.47738
## 33        14.856414                  24.83696               13.78360
## 34        12.551843                        NA               12.91870
## 35        22.554993                  29.09448               14.73960
## 36        14.152847                  19.25167               13.71818
## 37        15.395655                  31.98737               17.36639
## 38        22.485882                  33.59144               17.34431
## 39        24.040196                  23.62184               17.97159
## 40        14.320584                  22.98152               14.76847
## 41        10.489792                  17.50000               12.66250
## 42        12.610983                  21.10867               13.35958
## 43        18.299941                  38.53442               16.84239
## 44        15.514232                  33.48415               15.67937
## 45        14.062937                  17.50000               13.14907
## 46        15.068812                  27.81146               17.37826
## 47        17.431643                  48.11507               18.27212
## 48        14.062003                  14.38235               12.48901
## 49        14.818564                  28.11467               14.33393
## 50        10.820833                        NA               16.91981
##    warehouse_avgHourly security_avgHourly nanny_avgHourly clerical_avgHourly
## 1             14.08249           13.78507        12.92857           15.97883
## 2             17.14537           14.66219        12.84211           21.37213
## 3             16.80536           15.10947        17.19844           25.52500
## 4             14.12171           11.85788        13.20671           14.27429
## 5             20.62442           21.97268        28.51175           24.96487
## 6             17.16114           27.63020        18.06910           20.05388
## 7             18.78133           16.30922        25.31951           21.07763
## 8             15.40842           13.72024        17.34296           23.65357
## 9             14.97247           15.27830        20.48065           18.75921
## 10            15.01146           11.42012        16.28667           18.53031
## 11            20.06820           15.19191        12.65957           23.75316
## 12            14.84408           13.99492        19.48077           15.72739
## 13            17.54641           13.63495        19.76979           18.01069
## 14            16.96693           13.47141        16.97674           17.22410
## 15            17.03305           13.52374        14.60345           17.01667
## 16            15.97440           16.05736        13.96121           17.45651
## 17            15.99680           13.72588        14.66250           15.91102
## 18            13.78825           12.27244        12.67857           14.79759
## 19            15.67335           17.91541        13.40000           20.11771
## 20            17.99155           16.02662        19.77470           25.48343
## 21            18.05924           16.30610        22.49727           22.15602
## 22            19.72642           15.06476        15.17262           18.20009
## 23            17.13105           16.47802        20.59311           20.34583
## 24            12.92926           11.07125        11.27027           15.13019
## 25            16.79016           14.69378        15.01861           18.12241
## 26            14.68759           14.05627        15.05000           18.15018
## 27            15.99555           15.05145        16.66000           17.72224
## 28            15.89081           14.70506        17.15244           18.35033
## 29            16.08449           15.87402        16.26959           18.85770
## 30            16.28137           14.73738        23.10307           20.86736
## 31            14.27079           12.97166        14.11364           17.01222
## 32            20.38226           18.26734        22.22749           20.12165
## 33            15.98633           30.80427        18.34737           17.95219
## 34            16.91738           15.07269        11.00000           20.22525
## 35            16.79581           13.66740        16.12500           17.75507
## 36            14.58560           19.36975        13.15094           18.30229
## 37            19.69189           17.78129        19.62245           20.58175
## 38            18.03867           16.81041        15.83333           19.50662
## 39            17.19100           18.50442        18.73316           23.91706
## 40            14.82864           13.28226        14.89513           16.00459
## 41            16.42423           16.72596        12.30000           17.21602
## 42            14.51629           13.07925        15.37025           16.39509
## 43            15.84938           16.77097        18.14839           17.97607
## 44            16.10654           20.18886        14.04762           19.86436
## 45            16.46977           16.11677        15.30000           18.72005
## 46            18.75071           15.12061        18.22902           18.12114
## 47            18.19436           22.09121        28.72558           22.86590
## 48            14.21068           12.58686        12.30556           24.50983
## 49            16.46395           15.22090        18.25586           18.16828
## 50            15.06765           13.71693        17.77273           16.96878
##    tutor_avgHourly teacher_avgHourly dataScientist_avgHourly
## 1         19.27743          23.62276                38.74144
## 2         21.16229          29.03638                42.14665
## 3         29.90196          21.44051                41.64651
## 4         12.68807          24.35722                33.74081
## 5         40.34867          29.48567                75.32078
## 6         23.37166          26.77858                39.69223
## 7         38.07595          33.16796                38.42097
## 8         22.51820          28.49842                34.73975
## 9         25.71538          23.69203                37.08241
## 10        19.85204          25.43320                52.80749
## 11        21.00000          22.38526                49.74555
## 12        18.52459          24.54064                33.65385
## 13        25.42266          25.11259                34.32223
## 14        18.18917          24.30296                38.14867
## 15        23.54058          19.16443                33.65385
## 16        18.01988          24.44520                40.07053
## 17        19.79532          21.99335                32.76947
## 18        23.07674          24.81727                36.61299
## 19        22.87475          24.64157                38.05736
## 20        36.20997          33.01847                54.91881
## 21        42.11406          20.69420                58.89998
## 22        21.16890          22.13037                33.65385
## 23        28.78467          28.25028                33.65385
## 24        19.25167          24.36818                34.36885
## 25        22.28859          21.44619                38.52938
## 26        30.00000          24.75109                33.65385
## 27        25.70270          25.50001                33.57744
## 28        19.56348          26.78194                33.65385
## 29        21.56189          23.48265                45.21448
## 30        48.41035          28.29462                72.89220
## 31        20.69742          27.82348                45.95748
## 32        46.49569          26.94398                63.65385
## 33        22.09026          21.43598                43.28068
## 34        18.00000          26.59282                33.65385
## 35        19.49193          21.14921                37.73014
## 36        27.48538          18.48044                33.65385
## 37        24.03842          27.32085                33.65385
## 38        24.44101          17.98488                38.22672
## 39        24.50106          22.01886                48.51202
## 40        23.74685          21.53165                33.59257
## 41              NA          28.71833                33.65385
## 42        18.03253          23.19477                35.53512
## 43        22.38843          25.82280                59.63494
## 44        19.52730          22.35048                40.48294
## 45        18.57339          21.58420                33.65385
## 46        26.06260          22.33419                46.84460
## 47        34.10938          31.98828                64.05636
## 48        19.20899          23.45591                33.65385
## 49        25.18877          22.89298                43.14762
## 50        13.97484          27.14263                53.65778
avgPay <- round(mean(payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed,na.rm=TRUE),2)
mPay <- min(payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed,na.rm=TRUE)
MPay <- max(payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed,na.rm=TRUE)

ggplot(data = numberOfJobs, aes(y=payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed, x=payRates$state)) +
  geom_bar(stat='identity', position=position_dodge(), na.rm=TRUE)+
  scale_y_continuous(breaks=c(mPay,avgPay,MPay),labels=c(mPay,avgPay,MPay))+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=mean(payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed, na.rm=TRUE), linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('LMT Average Hourly Pay in the US Top 3 Cities of each State')+
  ylab(NULL)+
  xlab(NULL)

Lets see what states are paying their massage therapists more than the US average. Visually, above we can see Georgia does, and that GA is also in the list of the states with less than the average number of LMT job listings in the US per state. This logically indicates there is a demand for massage therapists in these states, and that the businesses offering massage therapy need LMTs and are willing to offer them more pay.

morePayThanAvgLMT <- subset(payRates, payRates$LMT_HourlyAvgPayRangeAdvertised_Indeed > avgPay)
morePayThanAvgLMT$state
##  [1] Alaska         Arizona        California     Colorado       Florida       
##  [6] Georgia        Illinois       Kentucky       Louisiana      Maine         
## [11] Maryland       Massachusetts  Michigan       Nevada         New Jersey    
## [16] New York       North Carolina Ohio           Oklahoma       Rhode Island  
## [21] Utah           Virginia       Washington     Wisconsin     
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

Lets see which states offer more than the national LMT average hourly pay and are also in the list of states with less than the national average number of LMT job listings.

fewListings <- lessThanAvgLMT$state
morePayAdvertised <- morePayThanAvgLMT$state

demandStatesLMT <- fewListings %in% morePayAdvertised
demanded <- fewListings[demandStatesLMT]
demanded
## [1] Alaska    Georgia   Louisiana Maine     Oklahoma  Wisconsin
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

The above states have a demand for massage therapists because they have fewer listings advertised on Indeed, but are willing to pay more than the national average for massage therapists. Those states are Georgia, Indiana, Mississippi, and Wyoming.

Using this same logic, it is fair to say those states that have a higher than average demand for massage therapists and also more pay than average for massage therapists must also be states where the cost of living is higher than normal. Lets look at those states and compare their home values for a two bedroom Zillow listed price from our larger data table called slr.

moreListings <- moreThanAvgLMT$state

highCostStates <- moreListings %in% morePayAdvertised
highLivingCost <- moreListings[highCostStates]
highLivingCost
##  [1] Arizona        California     Colorado       Florida        Illinois      
##  [6] Kentucky       Maryland       Massachusetts  Michigan       Nevada        
## [11] New Jersey     New York       North Carolina Ohio           Rhode Island  
## [16] Utah           Virginia       Washington    
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

There are 20 states that are listed as possible high cost of living states because we are making the assumption that those states with higher than average pay for LMTs and higher than average job listings for LMT are in high cost of living states. We can verify this by looking at the two bedroom homes for sale in all states and get the average to compare to these 20 states.

avgHomePrice <- round(mean(slr$Zillow_2BR_10cityAverageHomeValue,na.rm=T),2)
mHomePrice <- round(min(slr$Zillow_2BR_3cityAverageHomeValue),2)
## Warning in min(slr$Zillow_2BR_3cityAverageHomeValue): no non-missing arguments
## to min; returning Inf
MHomePrice <- round(max(slr$Zillow_2BR_3cityAverageHomeValue),2)
## Warning in max(slr$Zillow_2BR_3cityAverageHomeValue): no non-missing arguments
## to max; returning -Inf
ggplot(data = slr$Zillow_2BR_3cityAverageHomeValue,
       aes(y=slr$Zillow_2BR_3cityAverageHomeValue, x=slr$state)) +
  geom_col(aes(y=slr$Zillow_2BR_10cityAverageHomeValue,x=slr$state)) +
  scale_y_continuous(breaks=c(mHomePrice,avgHomePrice,MHomePrice),
                     labels=c(mHomePrice,avgHomePrice,MHomePrice))+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=avgHomePrice, linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('Zillow 2 Bedroom Home Value in the US Top 3 Cities of each State')+
  ylab(NULL)+
  xlab(NULL)

Lets see exactly which states have higher priced homes than the national average.

expensiveHomes <- subset(slr,slr$Zillow_2BR_10cityAverageHomeValue > avgHomePrice)
e <- expensiveHomes$state
e
##  [1] Alaska        Arizona       California    Colorado      Hawaii       
##  [6] Idaho         Maine         Massachusetts Minnesota     Montana      
## [11] Nevada        New Jersey    New York      Oregon        Rhode Island 
## [16] Utah          Virginia      Washington    Wyoming      
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

Lets see if those states are also in the list of states with high living costs.

expensive <- expensiveHomes$state %in% highLivingCost
expensiveHomes <- e[expensive]
expensiveHomes
##  [1] Arizona       California    Colorado      Massachusetts Nevada       
##  [6] New Jersey    New York      Rhode Island  Utah          Virginia     
## [11] Washington   
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

There are 10 states with expensive homes compared to the national average home price, and that also have higher pay advertised for LMTs and more advertised job listings for LMTs in the three most populated cities in each state according to the first five web pages of Indeed.

Lets see which states have lower priced homes than the national average but also have higher pay advertised for LMTs and more job listings advertised for LMTs.

inexpensiveHomes <- subset(slr,slr$Zillow_2BR_10cityAverageHomeValue < avgHomePrice)
inexpensive <- inexpensiveHomes$state 

notExpensive <- inexpensive %in% highLivingCost
affordable <- inexpensive[notExpensive]
affordable
## [1] Florida        Illinois       Kentucky       Maryland       Michigan      
## [6] North Carolina Ohio          
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

We have a couple lists we generated, one for the higher priced states that also pay more for LMTs and have more jobs available called ‘expensiveHomes’, and another list that is the list of states that aren’t as expensive but also pay more for LMTs and have more jobs available for LMTs called ‘affordable’ that we can compare other factors in our large dataset called slr. We also have a third list called ‘demanded’ that lists those states that don’t have as many jobs available as the national average for LMTs but pays more than the national average. Lets see if those states are in our list of states with a higher than national average home according to Zillow’s two bedroom home values that was named ‘e’ for expensive homes by state.

demanded
## [1] Alaska    Georgia   Louisiana Maine     Oklahoma  Wisconsin
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming
demanded %in% e
## [1]  TRUE FALSE FALSE  TRUE FALSE FALSE

So, we actually have four lists: e is the list of states with expensive homes, demanded is our list of states with demand has influenced LMT pay to higher for LMTs than the national average, expensiveHomes is our list of states with high cost of living based on higher home values and that also pay more and have more jobs available for LMTs, and our 4th list is the affordable list of lower cost of living by home price less than national average but also that has higher pay and more jobs available for LMTs than the national average.

Lets look at the demographics of the states that are in our affordable list and compare to the demographics or our expensiveHomes list to get an idea of the diversity.

demographics <- subset(slr, slr$state %in% affordable)
demographics2 <- demographics[,c(1,37:44)]
demographics2
##             state total_state_population percent_black percent_white
## 9         Florida               21299325          16.0          74.6
## 13       Illinois               12741080          14.1          71.7
## 17       Kentucky                4468402           7.9          86.7
## 20       Maryland                6042718          30.0          54.7
## 22       Michigan                9995915          13.8          78.3
## 33 North Carolina               10383620          21.4          68.4
## 35           Ohio               11689442          12.4          81.0
##    percent_two_or_more percent_Native_American percent_Asian
## 9                  2.9                     0.3           2.8
## 13                 2.7                     0.3           5.6
## 17                 2.4                     0.2           1.5
## 20                 3.7                     0.2           6.3
## 22                 2.9                     0.5           3.3
## 33                 2.9                     1.2           3.0
## 35                 3.1                     0.2           2.3
##    percent_Pacific_Islander percent_Latino
## 9                       0.1           26.1
## 13                      0.0           17.3
## 17                      0.1            3.6
## 20                      0.1           10.4
## 22                      0.0            5.2
## 33                      0.1            9.6
## 35                      0.0            3.9

Lets look at this above chart of affordable states for LMTs compared to the demographics of CA.

CA_demog <- subset(slr, slr$state=='California')
CA_demog2 <- CA_demog[,c(1,37:44)]
CA_demog2
##        state total_state_population percent_black percent_white
## 5 California               39557045           5.8          59.5
##   percent_two_or_more percent_Native_American percent_Asian
## 5                 5.1                     0.8          14.7
##   percent_Pacific_Islander percent_Latino
## 5                      0.4           39.3

When comparing demographics of percent race to population, it could be similar in fashion to looking for an alternate planet similar to Earth in a vast universe. But we can see the state with a closer distribution of the population by Asian, Latino, Black, and two or more races to compare as elements of a planet in analogy to that similar comparison.

altjobs_aff <- demographics[,c(1,32,45,48,51,54,57,60,63,66,69,72,75)]
CA_altjobs <- CA_demog[,c(1,32,45,48,51,54,57,60,63,66,69,72,75)]
altjobs_aff
##             state LMT_AvgJobsListed_IndeedFirst5pages cashier_jobsListed
## 9         Florida                                 649                713
## 13       Illinois                                 512                718
## 17       Kentucky                                 481                715
## 20       Maryland                                 781                714
## 22       Michigan                                 689                763
## 33 North Carolina                                 627                712
## 35           Ohio                                 575                715
##    server_jobsListed personalTrainer_jobsListed houseCleaner_jobsListed
## 9                750                        588                     608
## 13               718                        462                     490
## 17               726                        288                     371
## 20               758                        690                     685
## 22               792                        563                     645
## 33               760                        521                     677
## 35               716                        491                     558
##    warehouse_jobsListed security_jobsListed nanny_jobsListed
## 9                   740                 629              491
## 13                  785                 651              398
## 17                  784                 600              300
## 20                  778                 600              668
## 22                  772                 621              420
## 33                  761                 737              475
## 35                  779                 776              280
##    clerical_jobsListed tutor_jobsListed teacher_jobsListed
## 9                  768              722                820
## 13                 771              736                788
## 17                 767              615                694
## 20                 782              745                808
## 22                 776              658                773
## 33                 766              662                799
## 35                 779              688                791
##    dataScientist_jobsListed
## 9                       468
## 13                      509
## 17                      285
## 20                      782
## 22                      551
## 33                      588
## 35                      399
CA_altjobs
##        state LMT_AvgJobsListed_IndeedFirst5pages cashier_jobsListed
## 5 California                                 647                735
##   server_jobsListed personalTrainer_jobsListed houseCleaner_jobsListed
## 5               724                        598                     581
##   warehouse_jobsListed security_jobsListed nanny_jobsListed clerical_jobsListed
## 5                  797                 656              553                 795
##   tutor_jobsListed teacher_jobsListed dataScientist_jobsListed
## 5              715                779                      616

Now, lets compare CA to our list of expensive states for demographics and alternate jobs available. CA is in our list of expensive states, so we don’t have to do separate table chart comparisons.

expensiveDemog <- subset(slr, slr$state %in% expensiveHomes)
expensiveDemog2 <- expensiveDemog[,c(1,37:44)]
expensiveDemog2
##            state total_state_population percent_black percent_white
## 3        Arizona                7171646           4.7          78.0
## 5     California               39557045           5.8          59.5
## 6       Colorado                5695564           4.2          84.1
## 21 Massachusetts                6902149           7.8          77.3
## 28        Nevada                3034392           9.2          63.4
## 30    New Jersey                8908520          13.6          66.9
## 32      New York               19542209          15.7          63.3
## 39  Rhode Island                1057315           6.7          80.7
## 44          Utah                3161105           1.3          85.7
## 46      Virginia                8517685          19.2          67.4
## 47    Washington                7535591           3.9          74.8
##    percent_two_or_more percent_Native_American percent_Asian
## 3                  4.0                     4.6           3.3
## 5                  5.1                     0.8          14.7
## 6                  4.0                     1.0           3.2
## 21                 3.4                     0.2           6.8
## 28                 5.1                     1.5           8.2
## 30                 2.8                     0.2           9.7
## 32                 3.3                     0.4           8.5
## 39                 3.1                     0.4           3.4
## 44                 3.2                     1.1           2.4
## 46                 4.1                     0.3           6.5
## 47                 6.0                     1.3           8.8
##    percent_Pacific_Islander percent_Latino
## 3                       0.2           31.6
## 5                       0.4           39.3
## 6                       0.1           21.7
## 21                      0.0           12.3
## 28                      0.6           29.0
## 30                      0.0           20.6
## 32                      0.0           19.2
## 39                      0.1           15.9
## 44                      0.9           14.2
## 46                      0.1            9.5
## 47                      0.7           12.9

From the above data, the closest state in comparison to diversity to CA is NV or Nevada. The next state would be Colorado or Washington.

Now, we will compare the alternate jobs available in our list of expensive states that includes CA.

altJobs_expStates <- expensiveDemog[,c(1,32,45,48,51,54,57,60,63,66,69,72,75)]
altJobs_expStates
##            state LMT_AvgJobsListed_IndeedFirst5pages cashier_jobsListed
## 3        Arizona                                 751                748
## 5     California                                 647                735
## 6       Colorado                                 708                717
## 21 Massachusetts                                 768                725
## 28        Nevada                                 713                749
## 30    New Jersey                                 783                735
## 32      New York                                 595                713
## 39  Rhode Island                                 626                719
## 44          Utah                                 617                748
## 46      Virginia                                 609                653
## 47    Washington                                 715                723
##    server_jobsListed personalTrainer_jobsListed houseCleaner_jobsListed
## 3                750                        652                     677
## 5                724                        598                     581
## 6                748                        576                     679
## 21               766                        684                     652
## 28               721                        570                     644
## 30               789                        753                     715
## 32               773                        468                     641
## 39               765                        673                     616
## 44               729                        481                     538
## 46               703                        602                     614
## 47               715                        554                     678
##    warehouse_jobsListed security_jobsListed nanny_jobsListed
## 3                   779                 660              577
## 5                   797                 656              553
## 6                   797                 640              521
## 21                  825                 635              550
## 28                  767                 667              410
## 30                  812                 650              684
## 32                  796                 733              422
## 39                  839                 735              564
## 44                  786                 761              315
## 46                  686                 682              456
## 47                  797                 773              471
##    clerical_jobsListed tutor_jobsListed teacher_jobsListed
## 3                  788              714                822
## 5                  795              715                779
## 6                  800              697                794
## 21                 786              743                808
## 28                 767              701                731
## 30                 800              739                795
## 32                 776              702                783
## 39                 784              707                785
## 44                 782              636                730
## 46                 689              615                705
## 47                 788              675                765
##    dataScientist_jobsListed
## 3                       702
## 5                       616
## 6                       604
## 21                      703
## 28                      177
## 30                      704
## 32                      525
## 39                      571
## 44                      598
## 46                      607
## 47                      611

Lets now plot the number of available jobs by category in CA compared to New Jersey and New York.

NY_altJobs <- subset(altJobs_expStates, altJobs_expStates$state=='New York')
CA_altJobs <- subset(altJobs_expStates, altJobs_expStates$state=='California')
NJ_altJobs <- subset(altJobs_expStates, altJobs_expStates$state=='New Jersey')

NY_tidyJobs <- gather(NY_altJobs,key="jobTitle", value="jobsListed",2:13, na.rm=TRUE)
NY_tidyJobs$jobTitle <- gsub('_.*$','',NY_tidyJobs$jobTitle, perl=TRUE)

CA_tidyJobs <- gather(CA_altJobs,key="jobTitle", value="jobsListed",2:13, na.rm=TRUE)
CA_tidyJobs$jobTitle <- gsub('_.*$','',CA_tidyJobs$jobTitle, perl=TRUE)

NJ_tidyJobs <- gather(NJ_altJobs,key="jobTitle", value="jobsListed",2:13, na.rm=TRUE)
NJ_tidyJobs$jobTitle <- gsub('_.*$','',NJ_tidyJobs$jobTitle, perl=TRUE)
ggplot(data = CA_tidyJobs, aes(y=CA_tidyJobs$jobsListed, x=CA_tidyJobs$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA Alternate and LMT Jobs Advertised')+
  ylab(NULL)+
  xlab(NULL)

There are more warehouse and security jobs available on Indeed than the other listed jobs in CA. In comparison to other job categories available in CA, there are less tutor and nanny jobs available than other comparative jobs.

ggplot(data = NY_tidyJobs, aes(y=NY_tidyJobs$jobsListed, x=NY_tidyJobs$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('NY Alternate and LMT Jobs Advertised')+
  ylab(NULL)+
  xlab(NULL)

New York has more clerical, teaching, and warehouse jobs available than other jobs in NY, but has far less personal training and nanny jobs available than CA did.

ggplot(data = NJ_tidyJobs, aes(y=NJ_tidyJobs$jobsListed, x=NJ_tidyJobs$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('NJ Alternate and LMT Jobs Advertised')+
  ylab(NULL)+
  xlab(NULL)

Now, lets compare the pay to each of these states of CA, NY, and AZ. To see how LMTs get paid compared to these alternative jobs in those states.

NY_pay <- subset(slr, slr$state=='New York')
NY_pay2 <- NY_pay[,c(1,34,47,50,53,56,59,62,65,68,71,74,77)]
CA_pay <- subset(slr, slr$state=='California')
CA_pay2 <- CA_pay[,c(1,34,47,50,53,56,59,62,65,68,71,74,77)]
AZ_pay <- subset(slr, slr$state=='Arizona')
AZ_pay2 <- AZ_pay[,c(1,34,47,50,53,56,59,62,65,68,71,74,77)]

NY_PAY <- gather(NY_pay2,key='jobTitle',value='AnnualPay',2:13)
NY_PAY$jobTitle <- gsub('_.*$','',NY_PAY$jobTitle)
CA_PAY <- gather(CA_pay2,key='jobTitle',value='AnnualPay',2:13)
CA_PAY$jobTitle <- gsub('_.*$','',CA_PAY$jobTitle)
AZ_PAY <- gather(AZ_pay2, key='jobTitle',value='AnnualPay',2:13)
AZ_PAY$jobTitle <- gsub('_.*$','',AZ_PAY$jobTitle)
ggplot(data = CA_PAY, aes(y=CA_PAY$AnnualPay, x=CA_PAY$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=mean(CA_pay$median2018IncomeByState), linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA Alternate and LMT Jobs Advertised Annual Pay with Median CA pay')+
  ylab(NULL)+
  xlab(NULL)

ggplot(data = NY_PAY, aes(y=NY_PAY$AnnualPay, x=NY_PAY$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=mean(NY_pay$median2018IncomeByState), linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('NY Alternate and LMT Jobs Advertised Annual Pay')+
  ylab(NULL)+
  xlab(NULL)

ggplot(data = AZ_PAY, aes(y=AZ_PAY$AnnualPay, x=AZ_PAY$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  geom_hline(yintercept=mean(AZ_pay$median2018IncomeByState), linetype="dashed", color = "red")+
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('AZ Alternate and LMT Jobs Advertised Annual Pay')+
  ylab(NULL)+
  xlab(NULL)


Lets look at some other salaries from other professions, that reflect the state of our economy. I have ran the function to pull the wage information and number of jobs listed for nurses, medical doctors, chiropractors, physical therapists, estheticians, medical spa technicians, and personal assistants. Lets see what our data tells us in a state by state comparison.

nurses <- read.csv('./Indeed 10/jobListings_nurse.csv', sep=',',
                    header=TRUE, na.strings=c('',' ','NA'))
personalAssistants <- read.csv('./Indeed 10/jobListings_personal assistant.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
chiropractor <- read.csv('./Indeed 10/jobListings_chiropractor.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
physicalTherapist <- read.csv('./Indeed 10/jobListings_physical therapist.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
esthetician <- read.csv('./Indeed 10/jobListings_esthetician.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
medicalSpaEsthetician <- read.csv('./Indeed 10/jobListings_medical spa technician.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
medicalDoctor <- read.csv('./Indeed 10/jobListings_medical doctor.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
yogaInstructor <- read.csv('./Indeed 10/jobListings_yoga Instructor.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
pilatesInstructor <- read.csv('./Indeed 10/jobListings_pilates Instructor.csv', sep=',',
                   header=TRUE, na.strings=c('',' ','NA'))
nurses$stateName <- states
nurses <- nurses[,c(1,10,2:9)]
head(nurses)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        782       nurse        28.00418        80.62660
## 2    al    Alabama        795       nurse        15.47170        37.76063
## 3    ar   Arkansas        812       nurse        16.99766        44.64234
## 4    az    Arizona        839       nurse        20.21097        67.32777
## 5    ca California        828       nurse        22.78140        94.43040
## 6    co   Colorado        814       nurse        19.61038        68.28624
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        42989.23        143585.1  54.31539       93287.17
## 2        39088.99        115196.9  26.61616       77142.93
## 3        44212.96        144098.8  30.82000       94155.88
## 4        39921.61        153687.3  43.76937       96804.47
## 5        59726.21        159600.2  58.60590      109663.21
## 6        43899.75        117721.0  43.94831       80810.39
personalAssistants$stateName <- states
personalAssistants <- personalAssistants[,c(1,10,2:9)]
head(personalAssistants)
##   state  stateName jobsListed        jobSearched MinHourlySalary
## 1    ak     Alaska        235 personal assistant       13.895455
## 2    al    Alabama        408 personal assistant        8.821038
## 3    ar   Arkansas        341 personal assistant        9.719207
## 4    az    Arizona        647 personal assistant       11.319552
## 5    ca California        660 personal assistant       12.021672
## 6    co   Colorado        630 personal assistant       12.229365
##   MaxHourlySalary MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        25.31818        50988.21        92591.33  19.60682       71789.77
## 2        11.24044        24594.28        49782.62  10.03074       37188.45
## 3        16.58811        40268.37        76244.49  13.15366       58256.43
## 4        24.82224        33170.77        93157.51  18.07090       63164.14
## 5        40.08511        39847.50       123385.42  26.05339       81616.46
## 6        23.41879        32429.64       161689.09  17.82408       97059.37
chiropractor$stateName <- states
chiropractor <- chiropractor[,c(1,10,2:9)]
head(chiropractor)
##   state  stateName jobsListed  jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        106 chiropractor              NA              NA
## 2    al    Alabama        116 chiropractor        11.32967        38.90110
## 3    ar   Arkansas        100 chiropractor        12.00000        14.00000
## 4    az    Arizona        656 chiropractor        12.00000        35.08580
## 5    ca California        540 chiropractor        15.96571        47.60571
## 6    co   Colorado        607 chiropractor        12.36683        72.96482
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        50000.00        119670.3        NA       84835.16
## 2        50000.00         80000.0  25.11538       65000.00
## 3        50000.00         80000.0  13.00000       65000.00
## 4        37899.39        206455.8  23.54290      122177.59
## 5        44685.19        138213.0  31.78571       91449.07
## 6        46029.65        132405.3  42.66583       89217.46
physicalTherapist$stateName <- states
physicalTherapist <- physicalTherapist[,c(1,10,2:9)]
head(physicalTherapist)
##   state  stateName jobsListed        jobSearched MinHourlySalary
## 1    ak     Alaska        276 physical therapist              NA
## 2    al    Alabama        667 physical therapist        33.59812
## 3    ar   Arkansas        579 physical therapist        41.62376
## 4    az    Arizona        805 physical therapist        11.86087
## 5    ca California        755 physical therapist        36.85481
## 6    co   Colorado        768 physical therapist        36.29688
##   MaxHourlySalary MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA        64818.87       109833.95        NA       87326.41
## 2        47.84601        80369.93        96596.46  40.72207       88483.19
## 3        59.42574        85000.00        95000.00  50.52475       90000.00
## 4        57.82595        44304.35        99521.74  34.84341       71913.04
## 5        78.20861        60112.34       127241.54  57.53171       93676.94
## 6        85.47917        51764.35       103165.95  60.88802       77465.15
esthetician$stateName <- states
esthetician <- esthetician[,c(1,10,2:9)]
head(esthetician)
##   state  stateName jobsListed jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        125 esthetician        20.00000        25.00000
## 2    al    Alabama        218 esthetician        13.13955        54.68500
## 3    ar   Arkansas        165 esthetician        15.00000        15.00000
## 4    az    Arizona        737 esthetician        11.37042        43.76526
## 5    ca California        604 esthetician        12.39389        86.90153
## 6    co   Colorado        572 esthetician        11.52910        58.79365
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA  22.50000             NA
## 2        30045.45        35852.27  33.91227       32948.86
## 3        30000.00        45000.00  15.00000       37500.00
## 4        17800.59        71480.94  27.56784       44640.76
## 5        21180.36        98126.25  49.64771       59653.31
## 6        33137.80        65148.98  35.16138       49143.39
medicalSpaEsthetician$stateName <- states
medicalSpaEsthetician <- medicalSpaEsthetician[,c(1,10,2:9)]
head(medicalSpaEsthetician)
##   state  stateName jobsListed            jobSearched MinHourlySalary
## 1    ak     Alaska         72 medical spa technician        20.95056
## 2    al    Alabama         81 medical spa technician        20.06173
## 3    ar   Arkansas        167 medical spa technician        21.54216
## 4    az    Arizona        641 medical spa technician        13.65055
## 5    ca California        275 medical spa technician        15.32407
## 6    co   Colorado        529 medical spa technician        14.89130
##   MaxHourlySalary MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        40.22222        48368.00        84702.00  30.58639       66535.00
## 2        35.16049        32000.00        70000.00  27.61111       51000.00
## 3        38.00000        41959.15        66214.47  29.77108       54086.81
## 4        38.00000              NA              NA  25.82527             NA
## 5        39.71111              NA              NA  27.51759             NA
## 6        38.00000        56292.88        66818.81  26.44565       61555.85
medicalDoctor$stateName <- states
medicalDoctor <- medicalDoctor[,c(1,10,2:9)]
head(medicalDoctor)
##   state  stateName jobsListed    jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska        672 medical doctor        31.90565        57.32262
## 2    al    Alabama        731 medical doctor         9.00000        41.59644
## 3    ar   Arkansas        710 medical doctor        13.59789       200.00000
## 4    az    Arizona        780 medical doctor        11.78974        36.13462
## 5    ca California        774 medical doctor        13.07752       119.10935
## 6    co   Colorado        751 medical doctor        12.09987        50.58822
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        57739.89        392700.9  44.61414       225220.4
## 2        59639.09        396086.2  25.29822       227862.6
## 3        47885.27        303014.1 106.79894       175449.7
## 4        29640.94        173205.1  23.96218       101423.0
## 5        42211.18        246867.5  66.09344       144539.3
## 6        43577.77        172516.6  31.34404       108047.2
yogaInstructor$stateName <- states
yogaInstructor <- yogaInstructor[,c(1,10,2:9)]
yogaInstructor$avgAnualSalary <- yogaInstructor$avgHourly*40*52
head(yogaInstructor)
##   state  stateName jobsListed     jobSearched MinHourlySalary MaxHourlySalary
## 1    ak     Alaska         24 yoga instructor              NA              NA
## 2    al    Alabama         83 yoga instructor        25.00000        72.00000
## 3    ar   Arkansas         98 yoga instructor        10.00000        84.06250
## 4    az    Arizona        602 yoga instructor        17.80239       100.00000
## 5    ca California        484 yoga instructor        16.43966        99.19181
## 6    co   Colorado        534 yoga instructor        14.13424       115.25292
##   MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1              NA              NA        NA             NA
## 2              NA              NA  48.50000       100880.0
## 3              NA              NA  47.03125        97825.0
## 4              NA              NA  58.90119       122514.5
## 5        38260.87        99898.26  57.81573       120256.7
## 6              NA              NA  64.69358       134562.6
pilatesInstructor$stateName <- states[2:50]
pilatesInstructor <- pilatesInstructor[,c(1,10,2:9)]
head(pilatesInstructor)
##   state   stateName jobsListed        jobSearched MinHourlySalary
## 1    al     Alabama         95 pilates instructor        25.00000
## 2    ar    Arkansas         45 pilates instructor        25.00000
## 3    az     Arizona        569 pilates instructor        13.72695
## 4    ca  California        508 pilates instructor        15.62156
## 5    co    Colorado        513 pilates instructor        19.62661
## 6    ct Connecticut        284 pilates instructor        19.78261
##   MaxHourlySalary MinAnnualSalary MaxAnnualSalary avgHourly avgAnualSalary
## 1        100.0000              NA              NA  62.50000             NA
## 2        100.0000              NA              NA  62.50000             NA
## 3        100.0000              NA              NA  56.86348             NA
## 4        100.0000           40500           92500  57.81078          66500
## 5        113.4503              NA              NA  66.53845             NA
## 6        100.0000              NA              NA  59.89130             NA

Lets combine these jobs to the slr dataset.

nurses2 <- nurses[,c(2,3,9,10)]
personalAssistants2 <- personalAssistants[,c(2,3,9,10)]
chiropractor2 <- chiropractor[,c(2,3,9,10)]
physicalTherapist2 <- physicalTherapist[,c(2,3,9,10)]
esthetician2 <- esthetician[,c(2,3,9,10)]
medicalSpaEsthetician2 <- medicalSpaEsthetician[,c(2,3,9,10)]
medicalDoctor2 <- medicalDoctor[,c(2,3,9,10)]
yogaInstructor2 <- yogaInstructor[,c(2,3,9,10)]
pilatesInstructor2 <- pilatesInstructor[,c(2,3,9,10)]
nurses2$avgAnualSalary <- ifelse(nurses2$avgAnualSalary,nurses2$avgAnualSalary,
                                 nurses2$avgHourly*40*52)
colnames(nurses2)[2:4] <- paste('nurses',colnames(nurses2)[2:4])

personalAssistants2$avgAnualSalary <- ifelse(personalAssistants2$avgAnualSalary,
                                             personalAssistants2$avgAnualSalary,
                                             personalAssistants2$avgHourly*40*52)
colnames(personalAssistants2)[2:4] <- paste('personalAssistant',colnames(personalAssistants2)[2:4])

chiropractor2$avgAnualSalary <- chiropractor2$avgHourly*40*52
colnames(chiropractor2)[2:4] <- paste('chiropractor',colnames(chiropractor2)[2:4])

physicalTherapist2$avgAnualSalary <- physicalTherapist2$avgHourly*40*52
colnames(physicalTherapist2)[2:4] <- paste('physicalTherapist',colnames(physicalTherapist2)[2:4])

esthetician2$avgAnualSalary <- esthetician2$avgHourly*40*52
colnames(esthetician2)[2:4] <- paste('esthetician',colnames(esthetician2)[2:4])

medicalSpaEsthetician2$avgAnualSalary <- medicalSpaEsthetician2$avgHourly*40*52
colnames(medicalSpaEsthetician2)[2:4] <- paste('medicalSpaEsthetician',colnames(medicalSpaEsthetician2)[2:4])

medicalDoctor2$avgAnualSalary <- ifelse(medicalDoctor2$avgAnualSalary,
                                        medicalDoctor2$avgAnualSalary,
                                        medicalDoctor2$avgHourly*40*52)
colnames(medicalDoctor2)[2:4] <- paste('medicalDoctor',colnames(medicalDoctor2)[2:4])
colnames(yogaInstructor2)[2:4] <- paste('yogaInstructor',colnames(yogaInstructor2)[2:4])
pilatesInstructor2$avgAnualSalary <- pilatesInstructor2$avgHourly*40*52
colnames(pilatesInstructor2)[2:4] <- paste('pilatesInstructor',colnames(pilatesInstructor2)[2:4])

Combine these other jobs into a table with the slr data table.

slr2 <- merge(slr, nurses2, by.x='state',by.y='stateName')
slr2 <- merge(slr2,personalAssistants2, by.x='state',by.y='stateName')
slr2 <- merge(slr2, chiropractor2, by.x='state',by.y='stateName')
slr2 <- merge(slr2, physicalTherapist2, by.x='state', by.y='stateName')
slr2 <- merge(slr2, esthetician2, by.x='state', by.y='stateName')
slr2 <- merge(slr2, medicalSpaEsthetician2, by.x='state', by.y='stateName')
slr2 <- merge(slr2, medicalDoctor2, by.x='state',by.y='stateName')
slr2 <- merge(slr2, yogaInstructor2, by.x='state',by.y='stateName')
slr2 <- merge(slr2, pilatesInstructor2, by.x='state', by.y='stateName',all.x=TRUE)
write.csv(slr2,'stateLicensingDemographicsAddedAndUpdated.csv', row.names=FALSE)

Number of jobs listed and average annual salary in each category by state’s top three populated cities:

jbl <- grep('jobsListed',colnames(slr2))
listedJobsAll <- slr2[,c(1,32,jbl)]

ansy <- grep('avgAn',colnames(slr2))
avgSalaryAll <- slr2[,c(1,34,ansy)]
colnames(listedJobsAll) <- gsub('_.*$','',colnames(listedJobsAll),perl=TRUE)
colnames(listedJobsAll) <- gsub(' jobsListed','',colnames(listedJobsAll))
listedJobsAll
##             state LMT cashier server personalTrainer houseCleaner warehouse
## 1         Alabama 110     677    719             295          250       734
## 2          Alaska  85     307    110             120           25       628
## 3         Arizona 751     748    750             652          677       779
## 4        Arkansas 195     594    663             275          135       693
## 5      California 647     735    724             598          581       797
## 6        Colorado 708     717    748             576          679       797
## 7     Connecticut 737     701    711             649          561       798
## 8        Delaware 530     684    709             478          699       763
## 9         Florida 649     713    750             588          608       740
## 10        Georgia 354     631    660             418          460       685
## 11         Hawaii 280     587    626             165          112       767
## 12          Idaho 368     663    686             185          391       760
## 13       Illinois 512     718    718             462          490       785
## 14        Indiana 394     719    740             413          390       768
## 15           Iowa 357     708    708             287          378       773
## 16         Kansas 433     707    730             467          450       759
## 17       Kentucky 481     715    726             288          371       784
## 18      Louisiana 160     697    713             235          225       732
## 19          Maine 225     682    639             135          486       773
## 20       Maryland 781     714    758             690          685       778
## 21  Massachusetts 768     725    766             684          652       825
## 22       Michigan 689     763    792             563          645       772
## 23      Minnesota 604     751    745             539          613       802
## 24    Mississippi 123     616    647             230          216       706
## 25       Missouri 591     719    753             482          526       770
## 26        Montana  40     515    450              85           48       564
## 27       Nebraska 160     498    521             237          186       731
## 28         Nevada 713     749    721             570          644       767
## 29  New Hampshire 458     696    704             399          538       780
## 30     New Jersey 783     735    789             753          715       812
## 31     New Mexico 150     589    600             135          100       517
## 32       New York 595     713    773             468          641       796
## 33 North Carolina 627     712    760             521          677       761
## 34   North Dakota  60     485    483              75          323       584
## 35           Ohio 575     715    716             491          558       779
## 36       Oklahoma 348     616    666             339          275       687
## 37         Oregon 468     705    702             396          421       763
## 38   Pennsylvania 554     729    726             519          501       787
## 39   Rhode Island 626     719    765             673          616       839
## 40 South Carolina 496     687    719             514          636       766
## 41   South Dakota  35     257    295              75          136       500
## 42      Tennessee 383     657    729             436          527       775
## 43          Texas 555     720    747             586          506       763
## 44           Utah 617     748    729             481          538       786
## 45        Vermont 160     583    463              30          217       703
## 46       Virginia 609     653    703             602          614       686
## 47     Washington 715     723    715             554          678       797
## 48  West Virginia 120     648    687             120          185       700
## 49      Wisconsin 400     701    738             509          295       787
## 50        Wyoming  55     417    245              25           53       327
##    security nanny clerical tutor teacher dataScientist nurses personalAssistant
## 1       613   150      750   536     680           350    795               408
## 2       447    95      700   479     652           113    782               235
## 3       660   577      788   714     822           702    839               647
## 4       555   288      736   367     710           231    812               341
## 5       656   553      795   715     779           616    828               660
## 6       640   521      800   697     794           604    814               630
## 7       640   446      781   711     794           718    803               700
## 8       630   398      757   685     802           518    812               511
## 9       629   491      768   722     820           468    820               558
## 10      557   375      668   528     662           374    729               397
## 11      627   235      792   661     722           433    797               621
## 12      518   195      752   530     694           189    809               449
## 13      651   398      771   736     788           509    832               516
## 14      647   344      777   648     766           428    815               463
## 15      592   145      768   653     710           280    805               256
## 16      584   232      762   611     766           428    803               455
## 17      600   300      767   615     694           285    812               467
## 18      624    70      767   552     722           125    827               339
## 19      623   125      780   590     755           161    822               255
## 20      600   668      782   745     808           782    849               732
## 21      635   550      786   743     808           703    827               722
## 22      621   420      776   658     773           551    826               598
## 23      630   537      783   757     788           559    833               563
## 24      560   185      722   535     676            98    814               279
## 25      607   403      764   646     762           547    806               546
## 26      402    50      718   408     596            71    787               124
## 27      448   125      747   573     619           122    813               183
## 28      667   410      767   701     731           177    826               576
## 29      639   217      782   617     755           413    828               411
## 30      650   684      800   739     795           704    823               736
## 31      493   110      713   533     647           302    783               271
## 32      733   422      776   702     783           525    815               706
## 33      737   475      766   662     799           588    807               544
## 34      562    45      687   505     584            86    811                83
## 35      776   280      779   688     791           399    817               510
## 36      714   275      737   564     673           236    828               458
## 37      747   245      786   529     694           295    817               485
## 38      771   408      786   534     766           389    834               606
## 39      735   564      784   707     785           571    820               554
## 40      713   267      763   675     756           274    830               535
## 41      319    25      660   383     512            95    799                95
## 42      729   321      753   614     767           282    808               491
## 43      739   470      756   670     740           547    816               569
## 44      761   315      782   636     730           598    789               613
## 45      701   100      743   424     717           119    808               186
## 46      682   456      689   615     705           607    742               597
## 47      773   471      788   675     765           611    828               668
## 48      666    90      761   490     626           172    825               196
## 49      725   256      777   626     762           451    806               448
## 50      466    60      662   381     487           145    744                46
##    chiropractor physicalTherapist esthetician medicalSpaEsthetician
## 1           116               667         218                    81
## 2           106               276         125                    72
## 3           656               805         737                   641
## 4           100               579         165                   167
## 5           540               755         604                   275
## 6           607               768         572                   529
## 7           355               775         635                   122
## 8           311               723         476                   106
## 9           540               714         622                   360
## 10          337               613         376                   289
## 11          123               646         285                    96
## 12          215               533         225                   116
## 13          521               635         487                   297
## 14          362               602         398                   216
## 15          186               437         135                    91
## 16          192               656         436                   286
## 17          260               651         298                   123
## 18           85               517         351                    60
## 19          186               529         217                    73
## 20          713               774         696                   566
## 21          385               778         660                   307
## 22          570               711         581                   372
## 23          608               670         607                   443
## 24           71               593         318                   137
## 25          384               714         579                   381
## 26          101               302          30                    88
## 27           80               303          65                    80
## 28          409               662         641                   376
## 29          109               688         374                   154
## 30          671               792         770                   451
## 31          107               418          90                   122
## 32          328               751         559                   284
## 33          387               713         587                   191
## 34           49               250          70                    60
## 35          355               693         492                   175
## 36          251               621         275                   184
## 37          456               604         347                   281
## 38          386               652         400                   176
## 39          186               770         610                   170
## 40          233               701         541                   219
## 41           46               218          20                    84
## 42          222               639         470                   244
## 43          498               682         565                   433
## 44          417               568         598                   231
## 45          104               463          65                    72
## 46          325               617         568                   412
## 47          613               652         689                   407
## 48           67               451          90                    85
## 49          300               603         251                    90
## 50           49               249          45                    82
##    medicalDoctor yogaInstructor pilatesInstructor
## 1            731             83                95
## 2            672             24                NA
## 3            780            602               569
## 4            710             98                45
## 5            774            484               508
## 6            751            534               513
## 7            772            376               284
## 8            750            186               135
## 9            772            431               341
## 10           680            308               305
## 11           735            186               111
## 12           671            190               120
## 13           744            454               435
## 14           778            341               330
## 15           732            133                93
## 16           685            364               262
## 17           747            130               229
## 18           716            119                45
## 19           720             71                85
## 20           768            605               554
## 21           788            448               493
## 22           761            455               365
## 23           773            519               485
## 24           701            120                53
## 25           740            369               245
## 26           655             45                32
## 27           589            144                70
## 28           758            153                63
## 29           722            115               194
## 30           787            586               568
## 31           707            164               103
## 32           770            321               302
## 33           749            345               321
## 34           591             34                15
## 35           699            261               289
## 36           715            341               301
## 37           748            322               264
## 38           793            264               264
## 39           763            524               261
## 40           763            335               210
## 41           526             15                 5
## 42           752            154                44
## 43           680            480               445
## 44           754            240               126
## 45           714            119                46
## 46           673            294               330
## 47           810            493               480
## 48           680            109                67
## 49           756            134               130
## 50           479             10                10
colnames(avgSalaryAll) <- gsub('_.*$','',colnames(avgSalaryAll))
colnames(avgSalaryAll) <- gsub(' .*$','',colnames(avgSalaryAll))
avgSalaryAll
##             state      LMT  cashier   server personalTrainer houseCleaner
## 1         Alabama 39517.67 21864.19 29101.27        59800.00     27925.13
## 2          Alaska 97500.00 24657.26 22854.31              NA     24128.00
## 3         Arizona 74146.16 26241.93 33949.76        62093.74     36146.53
## 4        Arkansas 42285.14 22265.45 28055.48        46160.00     28512.00
## 5      California 78109.19 30945.79 40447.60        81939.13     38881.41
## 6        Colorado 43002.34 30097.27 43295.00        62711.45     37369.54
## 7     Connecticut 51306.29 26616.43 36091.95        77336.58     33683.21
## 8        Delaware 48523.81 24505.76 25790.61        51800.24     34566.24
## 9         Florida 57879.11 23442.30 36200.32        63207.41     32826.71
## 10        Georgia 40157.23 31209.06 27620.72        72453.33     34709.71
## 11         Hawaii 97500.00 26680.78 33871.11              NA     29212.86
## 12          Idaho 30000.00 20910.98 31292.50        45287.27     30524.41
## 13       Illinois 51341.99 24978.11 32754.21        80885.56     37280.82
## 14        Indiana 70337.14 22370.49 34881.81        66542.36     32129.07
## 15           Iowa 43706.71 22275.93 31478.73        59002.17     25665.71
## 16         Kansas 54344.35 23527.98 44199.21        53809.42     30518.22
## 17       Kentucky 79538.04 22627.64 29792.20        53010.70     30020.62
## 18      Louisiana 76900.00 20626.92 23530.35        33597.78     23808.74
## 19          Maine       NA 27508.15 32850.33              NA     31711.07
## 20       Maryland 65785.08 28917.54 35890.63        88718.03     41128.58
## 21  Massachusetts 50915.04 32829.57 36235.72        92094.74     39712.61
## 22       Michigan 54245.44 26746.74 35369.78        68382.05     37610.91
## 23      Minnesota 76209.60 27399.06 29873.97        77266.69     32781.90
## 24    Mississippi 48508.52 21329.71 20144.15        46516.36     23465.00
## 25       Missouri 42328.58 25750.15 35503.76        61146.27     30779.35
## 26        Montana       NA 25087.58 20442.62        30853.33     29918.14
## 27       Nebraska 45500.00 22459.72 36815.16        61069.77     23811.16
## 28         Nevada 85635.34 29275.17 29922.65        96959.02     33407.58
## 29  New Hampshire 51085.01 24014.51 24754.84        60487.54     33439.84
## 30     New Jersey 61327.10 27429.12 35967.98       138687.38     40052.36
## 31     New Mexico 45685.43 24737.71 24240.85        40213.33     28627.37
## 32       New York 66536.08 29695.87 31690.47        80040.63     42592.95
## 33 North Carolina 78046.45 23027.31 30901.34        51660.87     28669.90
## 34   North Dakota 45569.00 24333.01 26107.83              NA     26870.89
## 35           Ohio 44948.78 23876.65 46914.39        60516.52     30658.37
## 36       Oklahoma 45000.00 20251.30 29437.92        40043.48     28533.82
## 37         Oregon 68436.14 29699.73 32022.96        66533.74     36122.09
## 38   Pennsylvania 43905.93 24061.09 46770.63        69870.19     36076.17
## 39   Rhode Island 44566.61 28153.05 50003.61        49133.43     37380.91
## 40 South Carolina 81450.00 24561.48 29786.82        47801.56     30718.43
## 41   South Dakota       NA 22328.37 21818.77        36400.00     26338.00
## 42      Tennessee 56340.78 24458.20 26230.84        43906.03     27787.93
## 43          Texas 59757.33 24675.39 38063.88        80151.60     35032.17
## 44           Utah 42672.96 26236.36 32269.60        69647.03     32613.09
## 45        Vermont 40000.00 25604.17 29250.91        36400.00     27350.06
## 46       Virginia 73639.82 24109.13 31343.13        57847.84     36146.78
## 47     Washington 75429.56 29958.11 36257.82       100079.35     38006.02
## 48  West Virginia 46428.57 21307.22 29248.97        29915.29     25977.14
## 49      Wisconsin 44366.42 22186.20 30822.61        58478.51     29814.57
## 50        Wyoming       NA 23312.12 22507.33              NA     35193.21
##    warehouse security    nanny clerical     tutor  teacher dataScientist
## 1   29291.57 28672.95 26891.43 33235.97  40097.05 49135.34      80582.19
## 2   35662.38 30497.36 26711.58 44454.03  44017.56 60395.66      87665.04
## 3   34955.15 31427.70 35772.76 53092.00  62196.08 44596.27      86624.74
## 4   29373.16 24664.40 27469.96 29690.52  26391.19 50663.02      70180.88
## 5   42898.79 45703.16 59304.45 51926.93  83925.24 61330.20     156667.22
## 6   35695.16 57470.81 37583.72 41712.06  48613.06 55699.46      82559.83
## 7   39065.16 33923.18 52664.57 43841.47  79197.97 68989.36      79915.62
## 8   32049.52 28538.10 36073.37 49199.42  46837.87 59276.72      72258.69
## 9   31142.73 31778.86 42599.76 39019.16  53487.99 49279.43      77131.41
## 10  31223.84 23753.85 33876.27 38543.05  41292.23 52901.06     109839.57
## 11  41741.86 31599.16 26331.91 49406.57  43680.00 46561.34     103470.75
## 12  30875.68 29109.43 40520.00 32712.98  38531.15 51044.53      70000.00
## 13  36496.53 28360.69 41121.16 37462.24  52879.12 52234.19      71390.24
## 14  35291.22 28020.53 35311.63 35826.13  37833.48 50550.15      79349.23
## 15  35428.75 28129.39 30375.17 35394.67  48964.41 39862.01      70000.00
## 16  33226.75 33399.32 29039.31 36309.54  37481.34 50846.02      83346.71
## 17  33273.35 28549.82 30498.00 33094.92  41174.27 45746.17      68160.50
## 18  28679.56 25526.67 26371.43 30778.98  47999.63 51619.92      76155.02
## 19  32600.57 37264.05 27872.00 41844.84  47579.47 51254.46      79159.32
## 20  37422.42 33335.38 41131.38 53005.54  75316.73 68678.42     114231.13
## 21  37563.21 33916.69 46794.33 46084.52  87597.25 43043.94     122511.95
## 22  41030.96 31334.70 31559.05 37856.19  44031.31 46031.16      70000.00
## 23  35632.59 34274.27 42833.67 42319.33  59872.11 58760.58      70000.00
## 24  26892.87 23028.20 23442.16 31470.80  40043.48 50685.82      71487.20
## 25  34923.54 30563.06 31238.71 37694.61  46360.27 44608.07      80141.11
## 26  30550.18 29237.04 31304.00 37752.38  62400.00 51482.28      70000.00
## 27  33270.75 31307.02 34652.80 36862.25  53461.62 53040.02      69841.07
## 28  33052.88 30586.52 35677.07 38168.68  40692.04 55706.44      70000.00
## 29  33455.73 33017.97 33840.74 39224.01  44848.72 48843.91      94046.13
## 30  33865.26 30653.76 48054.39 43404.10 100693.53 58852.81     151615.77
## 31  29683.25 26981.05 29356.36 35385.42  43050.63 57872.84      95591.55
## 32  42395.09 37996.07 46233.18 41853.03  96711.04 56043.48     132400.00
## 33  33251.57 64072.89 38162.53 37340.55  45947.73 44586.85      90023.81
## 34  35188.15 31351.19 22880.00 42068.53  37440.00 55313.07      70000.00
## 35  34935.28 28428.19 33540.00 36930.55  40543.22 43990.36      78478.70
## 36  30338.06 40289.08 27353.96 38068.76  57169.60 38439.32      70000.00
## 37  40959.13 36985.09 40814.69 42810.04  49999.91 56827.36      70000.00
## 38  37520.44 34965.65 32933.33 40573.77  50837.30 37408.55      79511.57
## 39  35757.28 38489.20 38964.96 49747.48  50962.21 45799.24     100904.99
## 40  30843.56 27627.10 30981.87 33289.54  49393.44 44785.83      69872.55
## 41  34162.40 34789.99 25584.00 35809.33        NA 59734.12      70000.00
## 42  30193.88 27204.84 31970.13 34101.78  37507.67 48245.12      73913.04
## 43  32966.72 34883.63 37748.65 37390.23  46567.94 53711.43     124040.68
## 44  33501.60 41992.84 29219.05 41317.87  40616.79 46489.00      84204.51
## 45  34257.13 33522.88 31824.00 38937.71  38632.66 44895.14      70000.00
## 46  39001.49 31450.87 37916.37 37691.97  54210.21 46455.11      97436.77
## 47  37844.27 45949.72 59749.21 47561.07  70947.51 66535.61     133237.22
## 48  29558.21 26180.67 25595.56 50980.44  39954.71 48788.30      70000.00
## 49  34245.01 31659.46 37972.19 37790.01  52392.63 47617.39      89747.04
## 50  31340.70 28531.22 36967.27 35295.05  29067.66 56456.66     111608.19
##       nurses personalAssistant chiropractor physicalTherapist esthetician
## 1   77142.93          37188.45     52240.00          84701.90    70537.53
## 2   93287.17          71789.77           NA                NA    46800.00
## 3   96804.47          63164.14     48969.24          72474.29    57341.11
## 4   94155.88          58256.43     27040.00         105091.49    31200.00
## 5  109663.21          81616.46     66114.29         119665.95   103267.23
## 6   80810.39          97059.37     88744.92         126647.08    73135.66
## 7   93541.25          72387.16    110800.00          94746.09    56806.93
## 8  140125.12          81009.05     77448.23         108218.35    59921.24
## 9   70882.47          63021.28     43714.67         121895.57   108863.92
## 10  86414.61          74680.26     73235.27          83653.12   130011.69
## 11 104022.25          80288.89     67600.00          93395.02    73329.12
## 12  87226.04          64921.25     57303.48          61957.53    39288.89
## 13  77275.47          60879.48     48276.06          81405.82    66162.15
## 14  67591.01          65131.82     54500.61          97900.98    70491.09
## 15  86950.27          57223.65     33410.78                NA    38763.64
## 16  80862.74          58658.78     35079.55          64148.98    42120.00
## 17  88171.80          71674.06     50667.34         102032.10    53391.68
## 18 101493.18          90495.41     32362.35          88661.31    36045.25
## 19  75599.48          75691.75     83228.11          79945.24          NA
## 20 102442.33          79972.02     55433.60          79068.23    73366.32
## 21 104496.51          69084.84     41066.36         124717.12    76594.42
## 22  83130.99          71654.30     95584.95          74306.54    67984.31
## 23 102836.31          82245.04     58628.06         111030.33   170101.84
## 24  98049.88          82156.66     57200.00                NA    35728.05
## 25 111130.44          62226.22    177267.19          79730.62    51708.12
## 26  87594.57          56010.64     46549.87          78815.73    18720.00
## 27  95854.09          53356.10     30550.00          91520.00    37440.00
## 28 106707.34          87334.98     91520.00         114400.00    82831.70
## 29  85161.59          72534.98     29120.00         100300.00    45965.35
## 30  89810.71         100145.46     72074.63         106217.88   176516.36
## 31  89638.92          78231.28           NA          94182.67    29120.00
## 32  94254.47          72670.69     88272.45          91762.34   142602.70
## 33  79943.38          63021.67     52370.85          73840.00    74554.00
## 34  98751.08          68103.53    130000.00          92330.54    38480.00
## 35  85240.61          59661.44     47801.72          83470.16    42333.61
## 36  74226.67          49121.13     40890.30          93487.00    91410.53
## 37  91822.88          49555.59     66786.27          98156.58   186735.66
## 38  83994.74          63545.17     58175.00         107360.58    82195.70
## 39  53302.31          84187.05     67032.73          90396.08    47226.23
## 40  82484.32          57387.44     67148.86          48561.73    64068.88
## 41 100370.21          83883.14           NA          92154.15          NA
## 42  77264.29          67789.67     39864.87         228800.00    39093.98
## 43  85120.18          62276.59     64992.46          92017.92    65039.00
## 44  91325.86          72161.99     52779.35                NA    54721.15
## 45  77217.10          97500.00     31200.00          89264.12    36400.00
## 46 100890.53          94765.28     60870.19         129903.61    75984.08
## 47  99337.10          85679.29    102289.85          94191.33    93151.70
## 48  69089.81          62952.33     68037.89          76854.29    41600.00
## 49  90267.31          61284.74     80015.22          93171.76    53854.13
## 50  98225.75          90506.65     98800.00          88390.28    31200.00
##    medicalSpaEsthetician medicalDoctor yogaInstructor pilatesInstructor
## 1               57431.11     227862.64      100880.00         130000.00
## 2               63619.69     225220.39             NA                NA
## 3               53716.57     101423.03      122514.48         118276.03
## 4               61923.84     175449.68       97825.00         130000.00
## 5               57236.59     144539.33      120256.72         120246.43
## 6               55006.96     108047.21      134562.65         138399.98
## 7               62195.41     135894.56       92761.91         124573.91
## 8               65520.00     186740.39      123857.31         128483.33
## 9               56701.67     144164.21      126579.42         121131.89
## 10              52272.60     178224.71      109324.41         116480.00
## 11              64935.00     216923.66      156000.00         156000.00
## 12              61823.78     200629.66      112293.73         121648.80
## 13              58897.12     111769.71       63254.65          45717.44
## 14              56208.15     156892.45      111308.28         123528.89
## 15              63577.14     161998.54      130000.00         125276.39
## 16              65520.00     111750.87      127120.74         130000.00
## 17              50886.37     195264.95      128800.00         120438.71
## 18              65520.00     221589.00      120640.00         130000.00
## 19              61758.90     274041.15      130000.00         130000.00
## 20              55889.89     122230.39      117420.41         114400.00
## 21              55448.60      97209.15      123490.37         125074.84
## 22              56327.19     175202.94      123003.18         111522.19
## 23              54482.62      77902.44      117880.16         119685.77
## 24              65520.00     169494.48       34862.61          47794.78
## 25              61945.88     112166.46      114846.57         127810.53
## 26              55953.88     173506.72      130000.00         130000.00
## 27              58622.20     149644.66      125467.89         130000.00
## 28              57753.19     168100.69      130000.00         130000.00
## 29              63772.60     142127.59      130000.00         130000.00
## 30              55782.24      95376.98      114444.49         110008.89
## 31              56739.67     157393.48      130000.00         130000.00
## 32              54139.64     132144.39      109810.91         116349.01
## 33              54199.08     116568.70      122103.70         122165.10
## 34              58500.00     186231.29      102544.00         130000.00
## 35              62601.29     169884.22       99703.93          77024.53
## 36              57397.83     139626.90      124093.10         110247.15
## 37              55216.23     204506.51      130000.00         130000.00
## 38              53329.55     171114.50       93704.52          84395.59
## 39              53712.94     116587.46      127012.98         125110.76
## 40              54673.61     200707.62      114016.84         130000.00
## 41              60320.00     204111.70      130000.00         130000.00
## 42              55925.02     196623.18       64979.84         130000.00
## 43              72470.95     174545.23      101293.81          99373.21
## 44              57308.24     168789.26      124518.92         122641.51
## 45              65520.00     211482.38      125484.21         130000.00
## 46              56788.54     171530.47      113862.27         119395.47
## 47              56480.69     135183.56      112315.78         117007.58
## 48              60160.94     203682.13       50831.46          58417.02
## 49              57581.33     164547.33      125054.90         125196.19
## 50              56984.39     217525.76      130000.00         130000.00

Lets take a look at the health and wellness number of jobs available by using the listedJobsAll columns for LMT, personalTrainer, chiropractor, physicalTherapist, esthetician, and medicalSpaEsthetician.

wellnessJobs <- listedJobsAll[,c(1,2,5,16,17,21,22)]
wellnessSalary <- avgSalaryAll[,c(1,2,5,16,17,21,22)]
wellnessJobs
##             state LMT personalTrainer chiropractor physicalTherapist
## 1         Alabama 110             295          116               667
## 2          Alaska  85             120          106               276
## 3         Arizona 751             652          656               805
## 4        Arkansas 195             275          100               579
## 5      California 647             598          540               755
## 6        Colorado 708             576          607               768
## 7     Connecticut 737             649          355               775
## 8        Delaware 530             478          311               723
## 9         Florida 649             588          540               714
## 10        Georgia 354             418          337               613
## 11         Hawaii 280             165          123               646
## 12          Idaho 368             185          215               533
## 13       Illinois 512             462          521               635
## 14        Indiana 394             413          362               602
## 15           Iowa 357             287          186               437
## 16         Kansas 433             467          192               656
## 17       Kentucky 481             288          260               651
## 18      Louisiana 160             235           85               517
## 19          Maine 225             135          186               529
## 20       Maryland 781             690          713               774
## 21  Massachusetts 768             684          385               778
## 22       Michigan 689             563          570               711
## 23      Minnesota 604             539          608               670
## 24    Mississippi 123             230           71               593
## 25       Missouri 591             482          384               714
## 26        Montana  40              85          101               302
## 27       Nebraska 160             237           80               303
## 28         Nevada 713             570          409               662
## 29  New Hampshire 458             399          109               688
## 30     New Jersey 783             753          671               792
## 31     New Mexico 150             135          107               418
## 32       New York 595             468          328               751
## 33 North Carolina 627             521          387               713
## 34   North Dakota  60              75           49               250
## 35           Ohio 575             491          355               693
## 36       Oklahoma 348             339          251               621
## 37         Oregon 468             396          456               604
## 38   Pennsylvania 554             519          386               652
## 39   Rhode Island 626             673          186               770
## 40 South Carolina 496             514          233               701
## 41   South Dakota  35              75           46               218
## 42      Tennessee 383             436          222               639
## 43          Texas 555             586          498               682
## 44           Utah 617             481          417               568
## 45        Vermont 160              30          104               463
## 46       Virginia 609             602          325               617
## 47     Washington 715             554          613               652
## 48  West Virginia 120             120           67               451
## 49      Wisconsin 400             509          300               603
## 50        Wyoming  55              25           49               249
##    yogaInstructor pilatesInstructor
## 1              83                95
## 2              24                NA
## 3             602               569
## 4              98                45
## 5             484               508
## 6             534               513
## 7             376               284
## 8             186               135
## 9             431               341
## 10            308               305
## 11            186               111
## 12            190               120
## 13            454               435
## 14            341               330
## 15            133                93
## 16            364               262
## 17            130               229
## 18            119                45
## 19             71                85
## 20            605               554
## 21            448               493
## 22            455               365
## 23            519               485
## 24            120                53
## 25            369               245
## 26             45                32
## 27            144                70
## 28            153                63
## 29            115               194
## 30            586               568
## 31            164               103
## 32            321               302
## 33            345               321
## 34             34                15
## 35            261               289
## 36            341               301
## 37            322               264
## 38            264               264
## 39            524               261
## 40            335               210
## 41             15                 5
## 42            154                44
## 43            480               445
## 44            240               126
## 45            119                46
## 46            294               330
## 47            493               480
## 48            109                67
## 49            134               130
## 50             10                10

Now look at the LMT with esthetician and medical spa esthetician jobs available.Nurses are needed in medical spas that are also estheticians, so we will add that class of jobs listed to our spaJobs data table.

spaJobs <- listedJobsAll[,c(1,2,14,18,19)]
spaSalary <- avgSalaryAll[,c(1,2,14,18,19)]
spaJobs
##             state LMT nurses esthetician medicalSpaEsthetician
## 1         Alabama 110    795         218                    81
## 2          Alaska  85    782         125                    72
## 3         Arizona 751    839         737                   641
## 4        Arkansas 195    812         165                   167
## 5      California 647    828         604                   275
## 6        Colorado 708    814         572                   529
## 7     Connecticut 737    803         635                   122
## 8        Delaware 530    812         476                   106
## 9         Florida 649    820         622                   360
## 10        Georgia 354    729         376                   289
## 11         Hawaii 280    797         285                    96
## 12          Idaho 368    809         225                   116
## 13       Illinois 512    832         487                   297
## 14        Indiana 394    815         398                   216
## 15           Iowa 357    805         135                    91
## 16         Kansas 433    803         436                   286
## 17       Kentucky 481    812         298                   123
## 18      Louisiana 160    827         351                    60
## 19          Maine 225    822         217                    73
## 20       Maryland 781    849         696                   566
## 21  Massachusetts 768    827         660                   307
## 22       Michigan 689    826         581                   372
## 23      Minnesota 604    833         607                   443
## 24    Mississippi 123    814         318                   137
## 25       Missouri 591    806         579                   381
## 26        Montana  40    787          30                    88
## 27       Nebraska 160    813          65                    80
## 28         Nevada 713    826         641                   376
## 29  New Hampshire 458    828         374                   154
## 30     New Jersey 783    823         770                   451
## 31     New Mexico 150    783          90                   122
## 32       New York 595    815         559                   284
## 33 North Carolina 627    807         587                   191
## 34   North Dakota  60    811          70                    60
## 35           Ohio 575    817         492                   175
## 36       Oklahoma 348    828         275                   184
## 37         Oregon 468    817         347                   281
## 38   Pennsylvania 554    834         400                   176
## 39   Rhode Island 626    820         610                   170
## 40 South Carolina 496    830         541                   219
## 41   South Dakota  35    799          20                    84
## 42      Tennessee 383    808         470                   244
## 43          Texas 555    816         565                   433
## 44           Utah 617    789         598                   231
## 45        Vermont 160    808          65                    72
## 46       Virginia 609    742         568                   412
## 47     Washington 715    828         689                   407
## 48  West Virginia 120    825          90                    85
## 49      Wisconsin 400    806         251                    90
## 50        Wyoming  55    744          45                    82

Lets used our list of demanded LMT states where there weren’t as many jobs available for LMT, but the pay was higher for LMT than the national LMT average pay.

demanded
## [1] Alaska    Georgia   Louisiana Maine     Oklahoma  Wisconsin
## 50 Levels: Alabama Alaska Arizona Arkansas California Colorado ... Wyoming

Lets look at Georgia and see how the jobs available in the wellness and the spa industries compare by plotting the wellness jobs available in GA, then the salary of those jobs in GA against the median income for GA and the median two bedroom home value.

GA <- subset(slr2, slr2=='Georgia')
GA_2BR <- GA$Zillow_2BR_3cityAverageHomeValue
GA_medIncome <- GA$median2018IncomeByState

GA_wellness <- subset(wellnessJobs, wellnessJobs$state=='Georgia')
GA_wellnessSalary <- subset(wellnessSalary,wellnessSalary$state=='Georgia')

GA_wellness2 <- gather(GA_wellness, key='jobTitle',value='jobsListed',2:7)
GA_wellnessSalary2 <- gather(GA_wellnessSalary, key='jobTitle', value='annualSalary',2:7)
ggplot(data = GA_wellness2, aes(y=GA_wellness2$jobsListed, x=GA_wellness2$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('GA Wellness Jobs Available')+
  ylab(NULL)+
  xlab(NULL)

ggplot(data = GA_wellnessSalary2, aes(y=GA_wellnessSalary2$annualSalary, x=GA_wellnessSalary2$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge(),na.rm=TRUE)+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  geom_hline(yintercept=GA_medIncome, linetype="dashed", color = "red")+
  geom_hline(yintercept=GA_2BR, linetype='dashed',color='blue')+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('GA Wellness Jobs Annual Salary')+
  ylab(NULL)+
  xlab(NULL)

The blue line is the May 2020 Zillow average home value for the top 3 populated cities in GA for a two bedroom home, and the red line is the 2018 median income in GA, according to the data.census.gov data. There wasn’t any salary data for physical therapists in GA, so it doesn’t have a bar for salary information. But chiropractors’ annual salary is above the GA 2018 median income and the average 2020 two bedroom home value. Also, personal trainers make more than LMTs and have slightly less personal training jobs available than LMTs, but both have pay below the median income of GA. The available jobs for chiropractors, LMTs, and personal trainers is roughly the same in GA, while the demand for physical therapists is high with more than twice as many jobs available for physical therapists as any one other wellness category jobs available.Pilates and Yoga Instuctors get paid more annually than chiropractors, LMTs, or personal trainers. But their salary was approximated as full time at the average hourly rate. Many yoga and Pilates intructors might only work 20-32 hours a week. But then again, a great yoga or pilates instructor brings in clients who pay an average of $20 per class three times a week, with bargains on Groupon. Many physical therapists prescribe or recommend yoga and pilates to athletes or trauma patients with tendon injuries who need structural re-alignment.

Now, lets look at the chart of the medical spas jobs available and annual salary in GA with the same home value and median income values for GA used in the wellness jobs above.

GA_spa <- subset(spaJobs, spaJobs$state=='Georgia')
GA_spaSalary <- subset(spaSalary,spaSalary$state=='Georgia')

GA_spa2 <- gather(GA_spa, key='jobTitle',value='jobsListed',2:5)
GA_spaSalary2 <- gather(GA_spaSalary, key='jobTitle', value='annualSalary',2:5)
ggplot(data = GA_spa2, aes(y=GA_spa2$jobsListed, x=GA_spa2$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('GA Spa and Medical Spa Jobs Available')+
  ylab(NULL)+
  xlab(NULL)

ggplot(data = GA_spaSalary2, aes(y=GA_spaSalary2$annualSalary, 
                                 x=GA_spaSalary2$jobTitle)) +
  geom_bar(stat='identity', position=position_dodge())+
  scale_fill_brewer(palette='Paired') +
  theme_classic()+
  geom_hline(yintercept=GA_medIncome, linetype="dashed", color = "red")+
  geom_hline(yintercept=GA_2BR, linetype='dashed',color='blue')+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('GA Spa and Medical Spa Jobs Annual Salary')+
  ylab(NULL)+
  xlab(NULL)

The blue line above is the same two bedroom Zillow average home value for GA and the red line is the 2018 median income for GA from data.census.gov data. The above medical spa information for GA, shows that medical spa estheticians don’t make as much annually as estheticians or nurses. And that estheticians make more than nurses in GA. A medical spa esthetician is supposed to be an esthetician and a nurse to be able to give botox injections. But there could be some differences in state to state requirements and regulations for estheticians. Estheticians call it ‘lancing’ when they can drain a white head with a needle. Logically, on the surface the above doesn’t make sense, but it is possible that estheticians do make 150,000 USD a year. It is not unlikely that nurse make close to 100,000 USD a year either. The demand of nurses in GA is more than double that of the other medical spa jobs available and nearly triple it at around 250 available nursing jobs in GA’s top three populated cities.


There is now a script that did similar to what the indeed function did but for yellowpages.com. This script takes the first five webpages of yellowpages.com for the business searched in the city and state and returns a table of the number of businesses of that type in the same three top populated cities per state used in this program. The script is called ‘yellowPages-number-of-businesses.Rmd’ and it was used to get the number of businesses in those three cities per state for coffee, massage, gym, tanning, hair salon, tanning, yoga, chiropractic, wellness, and health food businesses. Lets add these counts to our table slr2 of all features used so far.

ypChiro <- read.csv('./Yellow Pages Businesses/statesRates- chiropractor .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypWellness <- read.csv('./Yellow Pages Businesses/statesRates- wellness clinic .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypMassage <- read.csv('./Yellow Pages Businesses/statesRates- massage spa .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypYoga <- read.csv('./Yellow Pages Businesses/statesRates- yoga .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypGym <- read.csv('./Yellow Pages Businesses/statesRates- gym .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypCoffee <- read.csv('./Yellow Pages Businesses/statesRates- coffee .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypHealthFood <- read.csv('./Yellow Pages Businesses/statesRates- health food .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypHairSalon <- read.csv('./Yellow Pages Businesses/statesRates- hair salon .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypTanning <- read.csv('./Yellow Pages Businesses/statesRates- tanning .csv',
                    sep=',', header=TRUE, na.strings=c('',' ','NA'))
ypChiro$states <- states
ypWellness$states <- states
ypMassage$states <- states
ypYoga$states <- states
ypGym$states <- states
ypCoffee$states <- states
ypHealthFood$states <- states
ypHairSalon$states <- states
ypTanning$states <- states
ypChiro <- ypChiro[,-1]
ypWellness <- ypWellness[,-1]
ypMassage <- ypMassage[,-1]
ypYoga <- ypYoga[,-1]
ypGym <- ypGym[,-1]
ypCoffee <- ypCoffee[,-1]
ypHealthFood <- ypHealthFood[,-1]
ypHairSalon <- ypHairSalon[,-1]
ypTanning <- ypTanning[,-1]
slr3 <- merge(slr2,ypChiro, by.x='state', by.y='states')
slr3 <- merge(slr3,ypWellness,by.x='state', by.y='states')
slr3 <- merge(slr3,ypMassage,by.x='state', by.y='states')
slr3 <- merge(slr3,ypYoga,by.x='state', by.y='states')
slr3 <- merge(slr3,ypGym,by.x='state', by.y='states')
slr3 <- merge(slr3,ypCoffee,by.x='state', by.y='states')
slr3 <- merge(slr3,ypHealthFood,by.x='state', by.y='states')
slr3 <- merge(slr3,ypHairSalon,by.x='state', by.y='states')
slr3 <- merge(slr3,ypTanning,by.x='state', by.y='states')
colnames(slr3)
##   [1] "state"                                 
##   [2] "massageBoard"                          
##   [3] "licenseByReciprocity"                  
##   [4] "proofOtherOrAllStateLicense"           
##   [5] "stateResidencyProof"                   
##   [6] "passportSizePhoto"                     
##   [7] "driversLicensePhotoCopy"               
##   [8] "nameChangeProof"                       
##   [9] "socialSecurityCopy"                    
##  [10] "Hours"                                 
##  [11] "MBLEX_or_NCBTMB"                       
##  [12] "goodHealthClearance"                   
##  [13] "BoardBackgroundCheckFee"               
##  [14] "stateApplyingBackgroundCheck"          
##  [15] "DOJ_backgroundCheck"                   
##  [16] "applicationCost"                       
##  [17] "licensingCost"                         
##  [18] "licenseRenewalFee"                     
##  [19] "CPR_certification"                     
##  [20] "licensingETA"                          
##  [21] "healthReferences"                      
##  [22] "CEU"                                   
##  [23] "timeLicenseValidYears"                 
##  [24] "liabilityInsurance"                    
##  [25] "schoolTranscripts"                     
##  [26] "MBLEX_transcript"                      
##  [27] "notes"                                 
##  [28] "notes2"                                
##  [29] "notes3"                                
##  [30] "notes4"                                
##  [31] "citiesGreaterThan300k_orTop3"          
##  [32] "LMT_AvgJobsListed_IndeedFirst5pages"   
##  [33] "LMT_HourlyAvgPayRangeAdvertised_Indeed"
##  [34] "LMT_AnualAvgPayAdvertised_Indeed"      
##  [35] "Zillow_2BR_10cityAverageHomeValue"     
##  [36] "median2018IncomeByState"               
##  [37] "total_state_population"                
##  [38] "percent_black"                         
##  [39] "percent_white"                         
##  [40] "percent_two_or_more"                   
##  [41] "percent_Native_American"               
##  [42] "percent_Asian"                         
##  [43] "percent_Pacific_Islander"              
##  [44] "percent_Latino"                        
##  [45] "cashier_jobsListed"                    
##  [46] "cashier_avgHourly"                     
##  [47] "cashier_avgAnnualSalary"               
##  [48] "server_jobsListed"                     
##  [49] "server_avgHourly"                      
##  [50] "server_avgAnnualSalary"                
##  [51] "personalTrainer_jobsListed"            
##  [52] "personalTrainer_avgHourly"             
##  [53] "personalTrainer_avgAnnualSalary"       
##  [54] "houseCleaner_jobsListed"               
##  [55] "houseCleaner_avgHourly"                
##  [56] "houseCleaner_avgAnnualSalary"          
##  [57] "warehouse_jobsListed"                  
##  [58] "warehouse_avgHourly"                   
##  [59] "warehouse_avgAnnualSalary"             
##  [60] "security_jobsListed"                   
##  [61] "security_avgHourly"                    
##  [62] "security_avgAnnualSalary"              
##  [63] "nanny_jobsListed"                      
##  [64] "nanny_avgHourly"                       
##  [65] "nanny_avgAnnualSalary"                 
##  [66] "clerical_jobsListed"                   
##  [67] "clerical_avgHourly"                    
##  [68] "clerical_avgAnnualSalary"              
##  [69] "tutor_jobsListed"                      
##  [70] "tutor_avgHourly"                       
##  [71] "tutor_avgAnnualSalary"                 
##  [72] "teacher_jobsListed"                    
##  [73] "teacher_avgHourly"                     
##  [74] "teacher_avgAnualSalary"                
##  [75] "dataScientist_jobsListed"              
##  [76] "dataScientist_avgHourly"               
##  [77] "dataScientist_avgAnualSalary"          
##  [78] "nurses jobsListed"                     
##  [79] "nurses avgHourly"                      
##  [80] "nurses avgAnualSalary"                 
##  [81] "personalAssistant jobsListed"          
##  [82] "personalAssistant avgHourly"           
##  [83] "personalAssistant avgAnualSalary"      
##  [84] "chiropractor jobsListed"               
##  [85] "chiropractor avgHourly"                
##  [86] "chiropractor avgAnualSalary"           
##  [87] "physicalTherapist jobsListed"          
##  [88] "physicalTherapist avgHourly"           
##  [89] "physicalTherapist avgAnualSalary"      
##  [90] "esthetician jobsListed"                
##  [91] "esthetician avgHourly"                 
##  [92] "esthetician avgAnualSalary"            
##  [93] "medicalSpaEsthetician jobsListed"      
##  [94] "medicalSpaEsthetician avgHourly"       
##  [95] "medicalSpaEsthetician avgAnualSalary"  
##  [96] "medicalDoctor jobsListed"              
##  [97] "medicalDoctor avgHourly"               
##  [98] "medicalDoctor avgAnualSalary"          
##  [99] "yogaInstructor jobsListed"             
## [100] "yogaInstructor avgHourly"              
## [101] "yogaInstructor avgAnualSalary"         
## [102] "pilatesInstructor jobsListed"          
## [103] "pilatesInstructor avgHourly"           
## [104] "pilatesInstructor avgAnualSalary"      
## [105] "chiropractor_businessListings"         
## [106] "wellness.clinic_businessListings"      
## [107] "massage.spa_businessListings"          
## [108] "yoga_businessListings"                 
## [109] "gym_businessListings"                  
## [110] "coffee_businessListings"               
## [111] "health.food_businessListings"          
## [112] "hair.salon_businessListings"           
## [113] "tanning_businessListings"
write.csv(slr3, 'stateLicensingDemographicsAddedAndUpdated.csv', row.names=FALSE)

We currently have the price of 2 bedroom homes using Zillow data, but now we can add in apartments.com data for rental apartments of 2-3 bedroom, 2 bathroom, dog/cat friendly pricing to our data set to compare rental prices in the three top populated cities in each state. It didn’t happen by magic either, there is a script for it very similar to the indeed and yellowpages web scraping scripts. Originally, I was going to use rent.com, but wouldn’t you know they have a web scraping blocker in place that makes sure their terms of use aren’t violated for ‘not downloading their data.’ I did download apartments.com data, but only to share the aggregate results. Each individual file is downloaded for the date pulled but not added to githu. The script is ‘aps-com-2BR-2BA.Rmd’ in github with all these other shared files.I was booted from apartments.com due to so many downloads, but used a VPN that allowed me to take the average of the average, minimum, and maximum prices of up to ten cities that are the most populated cities (rather than the top 3 cities) with prices on aparmtnents.com. It will produce this table in csv format, ‘apts_2BR2BA_prices.csv’ to add to our updated and added state licensing requirements csv table of data to compare state by state. This last file was modified to read in the listings if available of the top 10 most populated cities, as was the Zillow home value listings for 10 most populated cities, instead of for the 3 most populated as the original scripts were done.

apt2and2 <- read.csv('./Apartments 2BR/apts_2BR2BA_prices.csv',sep=',',
                     header=TRUE, na.strings=c('',' ','NA'))
head(apt2and2,10)
##    state TwoBedroomApartment_Listings Rent2BR2BA_MinPrice Rent2BR2BA_MaxPrice
## 1     AK                           66           1382.5932            1941.500
## 2     AL                          426           1022.1418            1417.039
## 3     AR                          251            941.7521            1349.355
## 4     AZ                          784           1306.9599            1931.324
## 5     CA                          750           2845.5311            4242.752
## 6     CO                          573           1702.5426            2695.661
## 7     CT                          169           2092.9752            3064.426
## 8     DE                          324           1860.7382            3155.914
## 9     FL                          773           1586.4987            2192.446
## 10    GA                          602           1431.4512            2302.219
##    Rent2BR2BA_AvgPrice
## 1             1520.576
## 2             1158.649
## 3             1073.659
## 4             1573.541
## 5             3420.428
## 6             2154.953
## 7             2410.745
## 8             2440.300
## 9             1835.624
## 10            1817.301

The above information takes the price of each listing in those 50 states’ three most populated cities, and gets the minimum, maximum, and average prices of a 2 bedroom, 2 bath dog/cat friendly apartment for rent. The average minimum is the average of all minimum price boundaries of all three cities for each state, and the average maximum is the average of all maximum boundaries of the price range in all three cities of each state, and the average is the average price of all prices listed in each state.

Now lets add these new data columns to our table of 50 states.

colnames(apt2and2)[1] <- 'stateAbbreviation'
colnames(apt2and2)[2:5] <- paste(colnames(apt2and2)[2:5],'_10cities')
apt2and2$stateName <- states
slr4 <- merge(slr3,apt2and2, by.x='state',by.y='stateName')
colnames(slr4)
##   [1] "state"                                 
##   [2] "massageBoard"                          
##   [3] "licenseByReciprocity"                  
##   [4] "proofOtherOrAllStateLicense"           
##   [5] "stateResidencyProof"                   
##   [6] "passportSizePhoto"                     
##   [7] "driversLicensePhotoCopy"               
##   [8] "nameChangeProof"                       
##   [9] "socialSecurityCopy"                    
##  [10] "Hours"                                 
##  [11] "MBLEX_or_NCBTMB"                       
##  [12] "goodHealthClearance"                   
##  [13] "BoardBackgroundCheckFee"               
##  [14] "stateApplyingBackgroundCheck"          
##  [15] "DOJ_backgroundCheck"                   
##  [16] "applicationCost"                       
##  [17] "licensingCost"                         
##  [18] "licenseRenewalFee"                     
##  [19] "CPR_certification"                     
##  [20] "licensingETA"                          
##  [21] "healthReferences"                      
##  [22] "CEU"                                   
##  [23] "timeLicenseValidYears"                 
##  [24] "liabilityInsurance"                    
##  [25] "schoolTranscripts"                     
##  [26] "MBLEX_transcript"                      
##  [27] "notes"                                 
##  [28] "notes2"                                
##  [29] "notes3"                                
##  [30] "notes4"                                
##  [31] "citiesGreaterThan300k_orTop3"          
##  [32] "LMT_AvgJobsListed_IndeedFirst5pages"   
##  [33] "LMT_HourlyAvgPayRangeAdvertised_Indeed"
##  [34] "LMT_AnualAvgPayAdvertised_Indeed"      
##  [35] "Zillow_2BR_10cityAverageHomeValue"     
##  [36] "median2018IncomeByState"               
##  [37] "total_state_population"                
##  [38] "percent_black"                         
##  [39] "percent_white"                         
##  [40] "percent_two_or_more"                   
##  [41] "percent_Native_American"               
##  [42] "percent_Asian"                         
##  [43] "percent_Pacific_Islander"              
##  [44] "percent_Latino"                        
##  [45] "cashier_jobsListed"                    
##  [46] "cashier_avgHourly"                     
##  [47] "cashier_avgAnnualSalary"               
##  [48] "server_jobsListed"                     
##  [49] "server_avgHourly"                      
##  [50] "server_avgAnnualSalary"                
##  [51] "personalTrainer_jobsListed"            
##  [52] "personalTrainer_avgHourly"             
##  [53] "personalTrainer_avgAnnualSalary"       
##  [54] "houseCleaner_jobsListed"               
##  [55] "houseCleaner_avgHourly"                
##  [56] "houseCleaner_avgAnnualSalary"          
##  [57] "warehouse_jobsListed"                  
##  [58] "warehouse_avgHourly"                   
##  [59] "warehouse_avgAnnualSalary"             
##  [60] "security_jobsListed"                   
##  [61] "security_avgHourly"                    
##  [62] "security_avgAnnualSalary"              
##  [63] "nanny_jobsListed"                      
##  [64] "nanny_avgHourly"                       
##  [65] "nanny_avgAnnualSalary"                 
##  [66] "clerical_jobsListed"                   
##  [67] "clerical_avgHourly"                    
##  [68] "clerical_avgAnnualSalary"              
##  [69] "tutor_jobsListed"                      
##  [70] "tutor_avgHourly"                       
##  [71] "tutor_avgAnnualSalary"                 
##  [72] "teacher_jobsListed"                    
##  [73] "teacher_avgHourly"                     
##  [74] "teacher_avgAnualSalary"                
##  [75] "dataScientist_jobsListed"              
##  [76] "dataScientist_avgHourly"               
##  [77] "dataScientist_avgAnualSalary"          
##  [78] "nurses jobsListed"                     
##  [79] "nurses avgHourly"                      
##  [80] "nurses avgAnualSalary"                 
##  [81] "personalAssistant jobsListed"          
##  [82] "personalAssistant avgHourly"           
##  [83] "personalAssistant avgAnualSalary"      
##  [84] "chiropractor jobsListed"               
##  [85] "chiropractor avgHourly"                
##  [86] "chiropractor avgAnualSalary"           
##  [87] "physicalTherapist jobsListed"          
##  [88] "physicalTherapist avgHourly"           
##  [89] "physicalTherapist avgAnualSalary"      
##  [90] "esthetician jobsListed"                
##  [91] "esthetician avgHourly"                 
##  [92] "esthetician avgAnualSalary"            
##  [93] "medicalSpaEsthetician jobsListed"      
##  [94] "medicalSpaEsthetician avgHourly"       
##  [95] "medicalSpaEsthetician avgAnualSalary"  
##  [96] "medicalDoctor jobsListed"              
##  [97] "medicalDoctor avgHourly"               
##  [98] "medicalDoctor avgAnualSalary"          
##  [99] "yogaInstructor jobsListed"             
## [100] "yogaInstructor avgHourly"              
## [101] "yogaInstructor avgAnualSalary"         
## [102] "pilatesInstructor jobsListed"          
## [103] "pilatesInstructor avgHourly"           
## [104] "pilatesInstructor avgAnualSalary"      
## [105] "chiropractor_businessListings"         
## [106] "wellness.clinic_businessListings"      
## [107] "massage.spa_businessListings"          
## [108] "yoga_businessListings"                 
## [109] "gym_businessListings"                  
## [110] "coffee_businessListings"               
## [111] "health.food_businessListings"          
## [112] "hair.salon_businessListings"           
## [113] "tanning_businessListings"              
## [114] "stateAbbreviation"                     
## [115] "TwoBedroomApartment_Listings _10cities"
## [116] "Rent2BR2BA_MinPrice _10cities"         
## [117] "Rent2BR2BA_MaxPrice _10cities"         
## [118] "Rent2BR2BA_AvgPrice _10cities"
slr5 <- slr4[,c(114,1:113,115:118)]
write.csv(slr5,'stateLicensingDemographicsAddedAndUpdated.csv',row.names=FALSE)

Remember to update the stateLicensingRequirements.csv file with the actual massage board licensing requirements of each state, then adding the additional updated and added features with this script, after using those helper script files to update information as needed.


Getting back to the motivation for this project, comparing TN to CA, to satisfy some gamey choices in moving from CA to TN as a massage therapist to make my youngest and greatly adored neice’s life easier and happier, Lets compare TN to CA in demographics, number of data science and massage therapist jobs, annual salary on average for those jobs, and for alternate jobs, how many health food stores, salons, spas, chiropractors, and coffee shops in each state’s top three most populated cities, what the average and average minimum price range for a two bedroom, two bathroom and pet friendly apartment is, the median income from 2018 data for each state, and see how compromisable the effects of moving from CA to TN would be.

Lets first get all the fields used for this comparison.

comparing_TN_CA <- slr5[,c(1,11,12,17,18,19,23,33,35,37:45,55,57,58,60,
                           64,66,67,69,70,72,76,78,82,84,108:118)]
colnames(comparing_TN_CA)
##  [1] "stateAbbreviation"                     
##  [2] "Hours"                                 
##  [3] "MBLEX_or_NCBTMB"                       
##  [4] "applicationCost"                       
##  [5] "licensingCost"                         
##  [6] "licenseRenewalFee"                     
##  [7] "CEU"                                   
##  [8] "LMT_AvgJobsListed_IndeedFirst5pages"   
##  [9] "LMT_AnualAvgPayAdvertised_Indeed"      
## [10] "median2018IncomeByState"               
## [11] "total_state_population"                
## [12] "percent_black"                         
## [13] "percent_white"                         
## [14] "percent_two_or_more"                   
## [15] "percent_Native_American"               
## [16] "percent_Asian"                         
## [17] "percent_Pacific_Islander"              
## [18] "percent_Latino"                        
## [19] "houseCleaner_jobsListed"               
## [20] "houseCleaner_avgAnnualSalary"          
## [21] "warehouse_jobsListed"                  
## [22] "warehouse_avgAnnualSalary"             
## [23] "nanny_jobsListed"                      
## [24] "nanny_avgAnnualSalary"                 
## [25] "clerical_jobsListed"                   
## [26] "clerical_avgAnnualSalary"              
## [27] "tutor_jobsListed"                      
## [28] "tutor_avgAnnualSalary"                 
## [29] "dataScientist_jobsListed"              
## [30] "dataScientist_avgAnualSalary"          
## [31] "personalAssistant jobsListed"          
## [32] "personalAssistant avgAnualSalary"      
## [33] "massage.spa_businessListings"          
## [34] "yoga_businessListings"                 
## [35] "gym_businessListings"                  
## [36] "coffee_businessListings"               
## [37] "health.food_businessListings"          
## [38] "hair.salon_businessListings"           
## [39] "tanning_businessListings"              
## [40] "TwoBedroomApartment_Listings _10cities"
## [41] "Rent2BR2BA_MinPrice _10cities"         
## [42] "Rent2BR2BA_MaxPrice _10cities"         
## [43] "Rent2BR2BA_AvgPrice _10cities"

Lets compare demographics of each state by the states’ three most populated cities. This is important as it skews necessary information if the cities most populated aren’t near the place planning to live. For CA, the cities were San Diego, Los Angeles, and San Jose. The distance between San Diego and Los Angeles is about 120 miles, and from San Jose to Los Angeles it is more than 400 miles. San Jose is also a popularly expensive high rent city due to silicon valley. For TN, the cities most populated are Nashville, Memphis, and knoxville. The idea is that the pricing will be similar as an average across the state’s three most populated cities.

CA <- subset(comparing_TN_CA, comparing_TN_CA$stateAbbreviation=='CA')
TN <- subset(comparing_TN_CA, comparing_TN_CA$stateAbbreviation=='TN')

Lets look at demographics from 2018 state only data using data.census.gov.

CA_demographics <- CA[,c(1,11:18)]
TN_demographics <- TN[,c(1,11:18)]
CA_demoTidy <- gather(CA_demographics, key='race', value='TotalPopulationPercent',
                      3:9)
## Warning: attributes are not identical across measure variables;
## they will be dropped
CA_demoTidy$TotalPopulationPercent <- as.numeric(CA_demoTidy$TotalPopulationPercent)
CA_pop <- CA_demographics$total_state_population

gg1 <- ggplot(data = CA_demoTidy,
              aes(y=CA_demoTidy$TotalPopulationPercent,
                  x=CA_demoTidy$race)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(0, 100))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA demographics, Percent of: ',CA_pop)+
  ylab(NULL)+
  xlab(NULL)

gg1

TN_demoTidy <- gather(TN_demographics, key='race', value='TotalPopulationPercent',
                      3:9)
## Warning: attributes are not identical across measure variables;
## they will be dropped
TN_demoTidy$TotalPopulationPercent <- as.numeric(TN_demoTidy$TotalPopulationPercent)
TN_pop <- TN_demographics$total_state_population

gg2 <- ggplot(data = TN_demoTidy,
              aes(y=TN_demoTidy$TotalPopulationPercent,
                  x=TN_demoTidy$race)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(0, 100))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('TN demographics, Percent of: ',TN_pop)+
  ylab(NULL)+
  xlab(NULL)

gg2

CA_TN_demographics <- rbind(CA_demographics,TN_demographics)
CA_TN_demographics
##    stateAbbreviation total_state_population percent_black percent_white
## 5                 CA               39557045           5.8          59.5
## 42                TN                6770010          16.8          77.3
##    percent_two_or_more percent_Native_American percent_Asian
## 5                  5.1                     0.8          14.7
## 42                 2.2                     0.3           1.8
##    percent_Pacific_Islander percent_Latino
## 5                       0.4           39.3
## 42                      0.1            5.5
grid.arrange(gg1, gg2, ncol = 2)

Now lets look at the two bedroom, two bath, pet friendly apartments for rent in CA and TN.

CA_2BR <- CA[,c(1,40:43)]
TN_2BR <- TN[,c(1,40:43)]
CA_listings <- CA_2BR$TwoBedroomApartment_Listings

CA_2BR_tidy <- gather(CA_2BR, key='range',value='price',3:5)
CA_2BR_tidy$range <- gsub('Rent2BR2BA_','',CA_2BR_tidy$range)
gg3 <- ggplot(data = CA_2BR_tidy,
              aes(y=CA_2BR_tidy$price,
                  x=CA_2BR_tidy$range)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(500, 5000))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA 2 Bedroom/2 Bath: ',CA_listings)+
  ylab(NULL)+
  xlab('San Diego, San Jose, and Los Angeles Prices Averaged')


TN_listings <- TN_2BR$TwoBedroomApartment_Listings

TN_2BR_tidy <- gather(TN_2BR, key='range', value='price', 3:5)
TN_2BR_tidy$range <- gsub('Rent2BR2BA_','',TN_2BR_tidy$range)
gg4 <- ggplot(data = TN_2BR_tidy,
              aes(y=TN_2BR_tidy$price,
                  x=TN_2BR_tidy$range)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(500, 5000))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('TN 2 Bedroom/2 Bath: ',TN_listings)+
  ylab(NULL)+
  xlab('Nashville,Memphis, and Knoxville Prices Averaged')
CA_TN_2BR <- rbind(CA_2BR,TN_2BR)
CA_TN_2BR
##    stateAbbreviation TwoBedroomApartment_Listings _10cities
## 5                 CA                                    750
## 42                TN                                    448
##    Rent2BR2BA_MinPrice _10cities Rent2BR2BA_MaxPrice _10cities
## 5                       2845.531                      4242.752
## 42                      1263.932                      1903.112
##    Rent2BR2BA_AvgPrice _10cities
## 5                       3420.428
## 42                      1501.203
grid.arrange(gg3, gg4, ncol = 2)

Lets now look at the number of massage and alternate jobs in CA and TN to compare their annual salaries against number of jobs available.

CA_jobsAvailable <- CA[,c(1,8,19,21,23,25,27,29,31)]
TN_jobsAvailable <- TN[,c(1,8,19,21,23,25,27,29,31)]

colnames(CA_jobsAvailable) <- gsub('_.*$','',colnames(CA_jobsAvailable))
colnames(TN_jobsAvailable) <- gsub('_.*$','',colnames(TN_jobsAvailable))

colnames(CA_jobsAvailable) <- gsub('jobsListed','',colnames(CA_jobsAvailable))
colnames(TN_jobsAvailable) <- gsub('jobsListed','',colnames(TN_jobsAvailable))

CA_jobsAvailable_tidy <- gather(CA_jobsAvailable, key='job',value='listings', 2:9)
TN_jobsAvailable_tidy <- gather(TN_jobsAvailable, key='job',value='listings', 2:9)
gg5 <- ggplot(data = CA_jobsAvailable_tidy,
              aes(y=CA_jobsAvailable_tidy$listings,
                  x=CA_jobsAvailable_tidy$job)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(0,800))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA Number of Advertised Jobs: ')+
  ylab(NULL)+
  xlab('San Diego, San Jose, and Los Angeles')

gg6 <- ggplot(data = TN_jobsAvailable_tidy,
              aes(y=TN_jobsAvailable_tidy$listings,
                  x=TN_jobsAvailable_tidy$job)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  coord_cartesian(ylim = c(0,800))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('TN Number of Advertised Jobs: ')+
  ylab(NULL)+
  xlab('Nashville, Memphis, and Knoxville')
CA_TN_jobsAvailable <- rbind(CA_jobsAvailable,TN_jobsAvailable)
CA_TN_jobsAvailable
##    stateAbbreviation LMT houseCleaner warehouse nanny clerical tutor
## 5                 CA 647          581       797   553      795   715
## 42                TN 383          527       775   321      753   614
##    dataScientist personalAssistant 
## 5            616                660
## 42           282                491
grid.arrange(gg5,gg6,ncol=2)

Now, lets look at the average annual salary for those jobs available in CA and TN.

CA_salary <- CA[,c(1,9,20,22,24,26,28,30,32)]
TN_salary <- TN[,c(1,9,20,22,24,26,28,30,32)]

colnames(CA_salary) <- gsub('_.*$','',colnames(CA_salary))
colnames(CA_salary) <- gsub(' avgAnualSalary', '',colnames(CA_salary))
colnames(TN_salary) <- gsub('_.*$','',colnames(TN_salary))
colnames(TN_salary) <- gsub(' avgAnualSalary', '',colnames(TN_salary))

CA_salary_tidy <- gather(CA_salary, key='job',value='salary',2:9)
TN_salary_tidy <- gather(TN_salary, key='job', value='salary',2:9)
CA_medianIncome <- CA$median2018IncomeByState
TN_medianIncome <- TN$median2018IncomeByState

gg7 <- ggplot(data = CA_salary_tidy,
              aes(y=CA_salary_tidy$salary,
                  x=CA_salary_tidy$job)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  geom_hline(yintercept=CA_medianIncome, linetype="dashed", color = "red")+
  coord_cartesian(ylim = c(10000, 120000))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('CA Advertised Salaries: ')+
  ylab(NULL)+
  xlab('San Diego, San Jose, and Los Angeles')

gg8 <- ggplot(data = TN_salary_tidy,
              aes(y=TN_salary_tidy$salary,
                  x=TN_salary_tidy$job)) +
  geom_bar(stat='identity', position=position_dodge())+
  theme_classic()+
  geom_hline(yintercept=TN_medianIncome, linetype="dashed", color = "red")+
  coord_cartesian(ylim = c(10000,120000))+
  theme(legend.position="bottom")+
  theme(axis.text = element_text(colour = "black", angle=90, size = rel(.75)))+
  ggtitle('TN Advertised Salaries: ')+
  ylab(NULL)+
  xlab('Nashville, Memphis, and Knoxville')
CA_TN_salaries <- rbind(CA_salary,TN_salary)
CA_TN_salaries
##    stateAbbreviation      LMT houseCleaner warehouse    nanny clerical    tutor
## 5                 CA 78109.19     38881.41  42898.79 59304.45 51926.93 83925.24
## 42                TN 56340.78     27787.93  30193.88 31970.13 34101.78 37507.67
##    dataScientist personalAssistant
## 5      156667.22          81616.46
## 42      73913.04          67789.67

The red dashed line across the CA and TN advertised salaries is the state’s respective 2018 median income.

grid.arrange(gg7,gg8, ncol=2)

This is surprising. Because when using only the top three cities to get the salary information and number of jobs available, the LMT pay was below median for CA. But now, the charts are saying that the LMT pay is actually at or above the median annual pay of TN and CA using 2018 values not injusted for 3% inflation each year.