Incident IPV and Blood Pressure Regression Models with Smoking as a Covariate (Updated 3/6/15)

Systolic Blood Pressure

modelsBP = lmer(adjSBP~Age * IncidIPV * Sex  * Race + BMIcat + PovStat + SmokeEver + (Age|HNDid) + (1|subclass),IncidIPVbp)
(st = step(modelsBP)) 

Final Model by backwards elimination

modelsBP = lmer(adjSBP ~ Age + IncidIPV + Sex + BMIcat + (Age | HNDid) + (1|subclass) + Age:IncidIPV + Age:Sex + IncidIPV:Sex + Age:IncidIPV:Sex,IncidIPVbp)
summary(modelsBP)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjSBP ~ Age + IncidIPV + Sex + BMIcat + (Age | HNDid) + (1 |      subclass) + Age:IncidIPV + Age:Sex + IncidIPV:Sex + Age:IncidIPV:Sex 
##    Data: IncidIPVbp 
## 
## REML criterion at convergence: 1122 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 1.62e+02 12.7345      
##           Age         5.16e-03  0.0718  1.00
##  subclass (Intercept) 1.63e+01  4.0418      
##  Residual             1.29e+02 11.3540      
## Number of obs: 138, groups: HNDid, 71; subclass, 46
## 
## Fixed effects:
##                      Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)           125.227      4.853  35.000   25.81  < 2e-16
## Age                     1.614      0.443  92.600    3.64  0.00044
## IncidIPV1              -0.915      7.962  41.500   -0.11  0.90908
## SexMen                -13.028      6.125  38.000   -2.13  0.03997
## BMIcatObese             8.952      3.560 109.100    2.51  0.01337
## Age:IncidIPV1          -0.780      0.807  97.700   -0.97  0.33640
## Age:SexMen             -1.513      0.616 105.400   -2.46  0.01560
## IncidIPV1:SexMen       21.123     11.342  39.300    1.86  0.07005
## Age:IncidIPV1:SexMen    2.420      1.119 106.100    2.16  0.03284
## 
## Correlation of Fixed Effects:
##             (Intr) Age    InIPV1 SexMen BMIctO Ag:IIPV1 Ag:SxM IIPV1:
## Age          0.549                                                   
## IncidIPV1   -0.386 -0.348                                            
## SexMen      -0.560 -0.443  0.397                                     
## BMIcatObese -0.459  0.055 -0.174 -0.104                              
## Ag:IncdIPV1 -0.248 -0.537  0.760  0.262 -0.121                       
## Age:SexMen  -0.361 -0.698  0.266  0.696 -0.080  0.405                
## IncdIPV1:SM  0.241  0.248 -0.729 -0.567  0.198 -0.552   -0.397       
## Ag:IIPV1:SM  0.156  0.389 -0.567 -0.406  0.138 -0.741   -0.574  0.720
confint(modelsBP,level = 0.95)
##                         2.5 %   97.5 %
## .sig01                     NA       NA
## .sig02                     NA       NA
## .sig03                     NA   1.4473
## .sig04                     NA       NA
## .sigma                 9.1886  13.8228
## (Intercept)          115.3870 134.3579
## Age                    0.7454   2.4774
## IncidIPV1            -15.9458  14.8299
## SexMen               -24.5774  -0.8278
## BMIcatObese            2.1380  16.3370
## Age:IncidIPV1         -2.3454   0.8343
## Age:SexMen            -2.7327  -0.2825
## IncidIPV1:SexMen      -1.7689  42.6970
## Age:IncidIPV1:SexMen   0.1286   4.6738

Age * IncidIPV * Sex Interaction Plot (sBP)

plot of chunk unnamed-chunk-4

Diastolic Blood Pressure

modeldBP = lmer(adjDBP~Age * IncidIPV * Sex * Race + PovStat + BMIcat + SmokeEver + (Age|HNDid) + (1|subclass),IncidIPVbp)
(st = step(modeldBP))

Final Model by backwards elimination

modeldBP = lmer(adjDBP ~ Age + IncidIPV + Sex + BMIcat + (1 | HNDid) + (1|subclass) + Age:IncidIPV + Age:Sex + IncidIPV:Sex + Age:IncidIPV:Sex,data = IncidIPVbp)
summary(modeldBP)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjDBP ~ Age + IncidIPV + Sex + BMIcat + (1 | HNDid) + (1 | subclass) +      Age:IncidIPV + Age:Sex + IncidIPV:Sex + Age:IncidIPV:Sex 
##    Data: IncidIPVbp 
## 
## REML criterion at convergence: 981.7 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  HNDid    (Intercept) 42.33    6.51    
##  subclass (Intercept)  4.17    2.04    
##  Residual             48.54    6.97    
## Number of obs: 138, groups: HNDid, 71; subclass, 46
## 
## Fixed effects:
##                      Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)            73.692      2.655  77.600   27.76   <2e-16
## Age                     0.632      0.250 102.000    2.53   0.0129
## IncidIPV1              -3.567      4.409  86.100   -0.81   0.4208
## SexMen                 -3.999      3.380  83.800   -1.18   0.2401
## BMIcatObese             4.682      2.041 106.000    2.29   0.0238
## Age:IncidIPV1          -0.779      0.460 109.000   -1.69   0.0930
## Age:SexMen             -0.559      0.351 108.200   -1.59   0.1139
## IncidIPV1:SexMen       16.389      6.246  85.600    2.62   0.0103
## Age:IncidIPV1:SexMen    1.994      0.635 109.400    3.14   0.0022
## 
## Correlation of Fixed Effects:
##             (Intr) Age    InIPV1 SexMen BMIctO Ag:IIPV1 Ag:SxM IIPV1:
## Age          0.520                                                   
## IncidIPV1   -0.370 -0.338                                            
## SexMen      -0.545 -0.431  0.387                                     
## BMIcatObese -0.469  0.075 -0.184 -0.113                              
## Ag:IncdIPV1 -0.232 -0.536  0.756  0.250 -0.129                       
## Age:SexMen  -0.340 -0.697  0.254  0.689 -0.091  0.396                
## IncdIPV1:SM  0.229  0.246 -0.732 -0.567  0.209 -0.551   -0.393       
## Ag:IIPV1:SM  0.145  0.392 -0.564 -0.401  0.144 -0.740   -0.572  0.712
confint(modeldBP,level = 0.95)
##                         2.5 %  97.5 %
## .sig01                 3.7642  7.9765
## .sig02                     NA  4.4378
## .sigma                 5.6831  8.5298
## (Intercept)           68.5251 78.6692
## Age                    0.1532  1.0999
## IncidIPV1            -11.8294  4.8221
## SexMen               -10.3181  2.5275
## BMIcatObese            0.8294  8.8371
## Age:IncidIPV1         -1.6414  0.1135
## Age:SexMen            -1.2180  0.1370
## IncidIPV1:SexMen       4.4775 28.0798
## Age:IncidIPV1:SexMen   0.7482  3.1864

Age * IncidIPV * Sex Interaction Plot (dBP)

plot of chunk unnamed-chunk-8

Lifetime IPV and Hypertension Regression Models with Smoking as a Covariate

Systolic Blood Pressure

m1sBP = lmer(adjSBP~Age * LifeIPV * Sex  * Race + BMIcat + PovStat + SmokeEver + (Age|HNDid) + (1|subclass),LifeIPVbp)
(st = step(m1sBP))

Final Model by backwards elimination

m1sBP = lmer(adjSBP ~Age + LifeIPV + Sex + Race + BMIcat + PovStat + Age:LifeIPV + Age:Sex + LifeIPV:Sex + Age:LifeIPV:Sex + (Age|HNDid) + (1|subclass),data = LifeIPVbp)
summary(m1sBP)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjSBP ~ Age + LifeIPV + Sex + Race + BMIcat + PovStat + Age:LifeIPV +      Age:Sex + LifeIPV:Sex + Age:LifeIPV:Sex + (Age | HNDid) +      (1 | subclass) 
##    Data: LifeIPVbp 
## 
## REML criterion at convergence: 5526 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr
##  HNDid    (Intercept) 1.63e+02 1.28e+01     
##           Age         2.93e-02 1.71e-01 1.00
##  subclass (Intercept) 1.34e-08 1.16e-04     
##  Residual             1.33e+02 1.15e+01     
## Number of obs: 666, groups: HNDid, 334; subclass, 222
## 
## Fixed effects:
##                     Estimate Std. Error      df t value Pr(>|t|)
## (Intercept)          112.100      2.341 378.000   47.88  < 2e-16
## Age                    0.830      0.149 472.000    5.57  4.4e-08
## LifeIPV1              -1.244      2.213 280.000   -0.56   0.5745
## SexMen                -2.119      2.087 277.000   -1.01   0.3110
## RaceAfrAm              4.493      1.785 313.000    2.52   0.0123
## BMIcatObese            9.046      1.659 602.000    5.45  7.2e-08
## PovStatBelow           3.633      1.717 317.000    2.12   0.0352
## Age:LifeIPV1          -0.248      0.224 473.000   -1.11   0.2685
## Age:SexMen            -0.432      0.220 485.000   -1.96   0.0501
## LifeIPV1:SexMen       14.555      4.806 287.000    3.03   0.0027
## Age:LifeIPV1:SexMen    1.365      0.511 500.000    2.67   0.0078
## 
## Correlation of Fixed Effects:
##             (Intr) Age    LfIPV1 SexMen RcAfrA BMIctO PvSttB Ag:LIPV1
## Age          0.161                                                   
## LifeIPV1    -0.458 -0.217                                            
## SexMen      -0.451 -0.208  0.444                                     
## RaceAfrAm   -0.496 -0.012  0.195 -0.052                              
## BMIcatObese -0.498  0.017 -0.072  0.049 -0.089                       
## PovStatBelw -0.260  0.113 -0.085  0.065 -0.017  0.017                
## Age:LifIPV1 -0.094 -0.667  0.291  0.135  0.033 -0.058 -0.083         
## Age:SexMen  -0.084 -0.679  0.141  0.275 -0.032 -0.009 -0.096  0.453  
## LfIPV1:SxMn  0.174  0.088 -0.439 -0.431 -0.009  0.070 -0.066 -0.125  
## Ag:LIPV1:SM  0.000  0.288 -0.115 -0.120  0.044  0.060  0.001 -0.436  
##             Ag:SxM LIPV1:
## Age                      
## LifeIPV1                 
## SexMen                   
## RaceAfrAm                
## BMIcatObese              
## PovStatBelw              
## Age:LifIPV1              
## Age:SexMen               
## LfIPV1:SxMn -0.116       
## Ag:LIPV1:SM -0.428  0.410
confint(m1sBP,level = 0.95)
##                          2.5 %     97.5 %
## .sig01               11.095208  1.407e+01
## .sig02                      NA         NA
## .sig03                0.003107  4.447e-01
## .sig04                      NA         NA
## .sigma               11.487317  1.172e+01
## (Intercept)         107.520234  1.167e+02
## Age                   0.538663  1.119e+00
## LifeIPV1             -5.562934  3.046e+00
## SexMen               -6.173995  1.931e+00
## RaceAfrAm             0.977252  7.994e+00
## BMIcatObese           5.841359  1.232e+01
## PovStatBelow          0.303346  6.957e+00
## Age:LifeIPV1         -0.682404  1.921e-01
## Age:SexMen           -0.858397 -1.486e-04
## LifeIPV1:SexMen       5.227454  2.391e+01
## Age:LifeIPV1:SexMen   0.356442  2.354e+00

Age * LifeIPV * Sex Interaction Plot (sBP)

plot of chunk unnamed-chunk-12

Diastolic Blood Pressure

m1dBP = lmer(adjDBP~Age * LifeIPV * Sex * Race + PovStat + BMIcat + SmokeEver + (Age|HNDid) + (1|subclass),LifeIPVbp)
(st = step(m1dBP))

Final Model by backwards elimination

m1dBP = lmer(adjDBP~Age + LifeIPV + Sex + Race + PovStat + BMIcat + Age:LifeIPV + Age:Sex + LifeIPV:Sex + Age:LifeIPV:Sex + (Age|HNDid) + (1|subclass), LifeIPVbp)
summary(m1dBP)
## Linear mixed model fit by REML ['merModLmerTest']
## Formula: adjDBP ~ Age + LifeIPV + Sex + Race + PovStat + BMIcat + Age:LifeIPV +      Age:Sex + LifeIPV:Sex + Age:LifeIPV:Sex + (Age | HNDid) +      (1 | subclass) 
##    Data: LifeIPVbp 
## 
## REML criterion at convergence: 4887 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev. Corr 
##  HNDid    (Intercept) 3.38e+01 5.8133        
##           Age         7.28e-04 0.0270   -1.00
##  subclass (Intercept) 5.72e-04 0.0239        
##  Residual             6.38e+01 7.9866        
## Number of obs: 666, groups: HNDid, 334; subclass, 222
## 
## Fixed effects:
##                     Estimate Std. Error       df t value Pr(>|t|)
## (Intercept)          64.0079     1.2794 359.0000   50.03  < 2e-16
## Age                  -0.0262     0.0835 416.0000   -0.31   0.7535
## LifeIPV1              1.1155     1.1695 306.0000    0.95   0.3409
## SexMen                2.3086     1.1020 304.0000    2.09   0.0370
## RaceAfrAm             3.2575     0.9821 321.0000    3.32   0.0010
## PovStatBelow          2.8070     0.9415 320.0000    2.98   0.0031
## BMIcatObese           5.3263     0.9808 536.0000    5.43  8.5e-08
## Age:LifeIPV1         -0.0370     0.1254 413.0000   -0.30   0.7680
## Age:SexMen            0.1214     0.1235 421.0000    0.98   0.3261
## LifeIPV1:SexMen       4.4797     2.5417 302.0000    1.76   0.0790
## Age:LifeIPV1:SexMen   0.6703     0.2987 428.0000    2.24   0.0253
## 
## Correlation of Fixed Effects:
##             (Intr) Age    LfIPV1 SexMen RcAfrA PvSttB BMIctO Ag:LIPV1
## Age          0.036                                                   
## LifeIPV1    -0.435 -0.094                                            
## SexMen      -0.438 -0.081  0.439                                     
## RaceAfrAm   -0.476 -0.001  0.204 -0.057                              
## PovStatBelw -0.251  0.100 -0.092  0.068 -0.042                       
## BMIcatObese -0.531  0.025 -0.083  0.055 -0.109  0.022                
## Age:LifIPV1 -0.009 -0.667  0.108  0.050  0.024 -0.070 -0.062         
## Age:SexMen  -0.011 -0.679  0.062  0.097 -0.016 -0.089 -0.014  0.452  
## LfIPV1:SxMn  0.158  0.033 -0.435 -0.430 -0.001 -0.070  0.074 -0.043  
## Ag:LIPV1:SM -0.036  0.277 -0.032 -0.043  0.053 -0.009  0.052 -0.418  
##             Ag:SxM LIPV1:
## Age                      
## LifeIPV1                 
## SexMen                   
## RaceAfrAm                
## PovStatBelw              
## BMIcatObese              
## Age:LifIPV1              
## Age:SexMen               
## LfIPV1:SxMn -0.039       
## Ag:LIPV1:SM -0.411  0.282
confint(m1dBP,level = 0.95)
##                       2.5 %  97.5 %
## .sig01               4.6108  6.6108
## .sig02                   NA      NA
## .sig03                   NA  0.2439
## .sig04                   NA      NA
## .sigma               7.3808  8.6231
## (Intercept)         61.5163 66.4912
## Age                 -0.1914  0.1385
## LifeIPV1            -1.1564  3.3839
## SexMen               0.1737  4.4449
## RaceAfrAm            1.3523  5.1595
## PovStatBelow         0.9848  4.6284
## BMIcatObese          3.4306  7.2472
## Age:LifeIPV1        -0.2804  0.2120
## Age:SexMen          -0.1180  0.3641
## LifeIPV1:SexMen     -0.4531  9.4176
## Age:LifeIPV1:SexMen  0.0774  1.2481

Age * LifeIPV * Sex Interaction Plot (dBP)

plot of chunk unnamed-chunk-16