You work for Motor Trend, a magazine about the automobile industry. Looking at a data set of a collection of cars, they are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:
The project consists of 3 different areas to get to the answer of the question as follows: - Data Introduction and Exploratory Analysis - Hypothesis Testing / Analysis - Results / Concluding an answer of question
library(datasets)
data(mtcars)
dim(mtcars)
## [1] 32 11
str(mtcars)
## 'data.frame': 32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6 6 4 6 8 6 8 4 4 6 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0 0 1 1 0 1 0 1 1 1 ...
## $ am : num 1 1 1 0 0 0 0 0 0 0 ...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
head(mtcars)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
A dataset that contains 11 variables, and with the command ?mtcars we find out that it comprises of fuel consumption and 10 aspects of automobile design and performance for the 32 automobiles. The question pertains for how the variable “mpg” behaves, in regards to automatic and manual transmittions (the “am” binary variable that holds a 0 for automatic, and 1 for manual transmission)
cor(mtcars[,1], mtcars)
## mpg cyl disp hp drat wt qsec
## [1,] 1 -0.852162 -0.8475514 -0.7761684 0.6811719 -0.8676594 0.418684
## vs am gear carb
## [1,] 0.6640389 0.5998324 0.4802848 -0.5509251
# Changing the variable into factor for boxplot creation
mtcars[,9] <- as.factor(mtcars[,9])
# We can notice that there are corelations close to -1 with many of the variables, but the "am" is not one of them
boxplot(mtcars$mpg ~ mtcars$am, data = mtcars, outpch = 15, ylab="MPG",xlab="Automatic vs. Manual boxplots ",main="mpg vs transmission type", col="maroon")
The boxplot is showing that the manuals are having greater amounts of Miles per gallon than the automatic transmission type. Nevertheless, if we want to test the hypothesis, we have to perform t-test with a certain threshold to (dis)prove this. The null-hypothesis of the test would be that there is no difference in MPG usage for the different methods of transmission, and the idea is that this would be rejected
performT <- t.test(mpg~am, data=mtcars, conf.level=0.95)
performT$p.value
## [1] 0.001373638
A very small value of p close to zero means that a null hypothesis has been rejected, and thus it proves that automatic transmission has a lower MPG than manual. Next, we create a model that predicts the MPG based on all variables
myModel <- lm(data=mtcars, mpg~.)
myModelAM <- lm(data=mtcars, mpg~am)
summary(myModel)
##
## Call:
## lm(formula = mpg ~ ., data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4506 -1.6044 -0.1196 1.2193 4.6271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.30337 18.71788 0.657 0.5181
## cyl -0.11144 1.04502 -0.107 0.9161
## disp 0.01334 0.01786 0.747 0.4635
## hp -0.02148 0.02177 -0.987 0.3350
## drat 0.78711 1.63537 0.481 0.6353
## wt -3.71530 1.89441 -1.961 0.0633 .
## qsec 0.82104 0.73084 1.123 0.2739
## vs 0.31776 2.10451 0.151 0.8814
## am1 2.52023 2.05665 1.225 0.2340
## gear 0.65541 1.49326 0.439 0.6652
## carb -0.19942 0.82875 -0.241 0.8122
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared: 0.869, Adjusted R-squared: 0.8066
## F-statistic: 13.93 on 10 and 21 DF, p-value: 3.793e-07
summary(myModelAM)
##
## Call:
## lm(formula = mpg ~ am, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.3923 -3.0923 -0.2974 3.2439 9.5077
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 17.147 1.125 15.247 1.13e-15 ***
## am1 7.245 1.764 4.106 0.000285 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.902 on 30 degrees of freedom
## Multiple R-squared: 0.3598, Adjusted R-squared: 0.3385
## F-statistic: 16.86 on 1 and 30 DF, p-value: 0.000285
In general, the smallest p-value we get in the model including all variables is from the “wt” variable, with qsec being the second smallest p-value. The overall adjusted R-squared explaining 85% of the variance, or 81% in its adjusted version The model only containing the transmission variable explains only 36% of the variance, which is pretty bad. Another thing one can try is to do a stepwise algorithm that will determine which variables are needed
myModelStep <- step(lm(data=mtcars, mpg~.), trace=0, steps=5000)
summary(myModelStep)
##
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.4811 -1.5555 -0.7257 1.4110 4.6610
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.6178 6.9596 1.382 0.177915
## wt -3.9165 0.7112 -5.507 6.95e-06 ***
## qsec 1.2259 0.2887 4.247 0.000216 ***
## am1 2.9358 1.4109 2.081 0.046716 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
From this model we can see that only wt, qsec and am are selected, ant they explain 85% (R squared) or 83% (adjusted R squared) of the variances. From the variables chosen we can conclude the following: - A weight increase by 1kg, the MPG experiences a decrease of -3.9165 for AM. This means manual transmissions are a better choice - The acceleration (qsec) increasing increases the mpg by 1.22