#rm(list=ls())
This notebook contains the code samples found in Chapter 3, Section 6 of Deep Learning with R. Note that the original text features far more content, in particular further explanations and figures: in this notebook, you will only find source code and related comments. ***
In our two previous examples, we were considering classification problems, where the goal was to predict a single discrete label of an input data point. Another common type of machine learning problem is “regression”, which consists of predicting a continuous value instead of a discrete label. For instance, predicting the temperature tomorrow, given meteorological data, or predicting the time that a software project will take to complete, given its specifications.
Do not mix up “regression” with the algorithm “logistic regression”: confusingly, “logistic regression” is not a regression algorithm, it is a classification algorithm.
The Boston Housing Price dataset
We will be attempting to predict the median price of homes in a given Boston suburb in the mid-1970s, given a few data points about the suburb at the time, such as the crime rate, the local property tax rate, etc.
The dataset we will be using has another interesting difference from our two previous examples: it has very few data points, only 506 in total, split between 404 training samples and 102 test samples, and each “feature” in the input data (e.g. the crime rate is a feature) has a different scale. For instance some values are proportions, which take a values between 0 and 1, others take values between 1 and 12, others between 0 and 100…
Let’s take a look at the data:
library(keras)
dataset <- dataset_boston_housing() # default test_split = 0.2
summary(dataset)
Length Class Mode
train 2 -none- list
test 2 -none- list
# Length Class Mode
#train 2 -none- list
#test 2 -none- list
c(c(train_data, train_targets), c(test_data, test_targets)) %<-% dataset
head(train_data)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 1.23247 0.0 8.14 0 0.538 6.142 91.7 3.9769 4 307 21.0 396.90 18.72
[2,] 0.02177 82.5 2.03 0 0.415 7.610 15.7 6.2700 2 348 14.7 395.38 3.11
[3,] 4.89822 0.0 18.10 0 0.631 4.970 100.0 1.3325 24 666 20.2 375.52 3.26
[4,] 0.03961 0.0 5.19 0 0.515 6.037 34.5 5.9853 5 224 20.2 396.90 8.01
[5,] 3.69311 0.0 18.10 0 0.713 6.376 88.4 2.5671 24 666 20.2 391.43 14.65
[6,] 0.28392 0.0 7.38 0 0.493 5.708 74.3 4.7211 5 287 19.6 391.13 11.74
head(train_targets)
[1] 15.2 42.3 50.0 21.1 17.7 18.5
nrow(train_data) #404
[1] 404
nrow(test_data) #102
[1] 102
str(train_data)
num [1:404, 1:13] 1.2325 0.0218 4.8982 0.0396 3.6931 ...
str(test_data)
num [1:102, 1:13] 18.0846 0.1233 0.055 1.2735 0.0715 ...
As you can see, we have 404 training samples and 102 test samples. The data comprises 13 features. The 13 features in the input data are as follow:
- Per capita crime rate.
- Proportion of residential land zoned for lots over 25,000 square feet.
- Proportion of non-retail business acres per town.
- Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
- Nitric oxides concentration (parts per 10 million).
- Average number of rooms per dwelling.
- Proportion of owner-occupied units built prior to 1940.
- Weighted distances to five Boston employment centres.
- Index of accessibility to radial highways.
- Full-value property-tax rate per $10,000.
- Pupil-teacher ratio by town.
- 1000 * (Bk - 0.63) ** 2 where Bk is the proportion of Black people by town.
- % lower status of the population.
1.人均犯罪率。 2.佔地超過 25,000 平方英尺的住宅用地比例。 3.每個鎮非零售業務用地的比例。 4.查爾斯河 dummy variable(如果靠近河流(?),則為 1;否則為 0)。 5.一氧化氮濃度(百萬分之幾)。 6.每個住宅的平均房間數。 7. 1940 年之前建造的自有住房的比例。 8.到五個波士頓就業中心的加權距離。 9.徑向公路的可達性指數。 10.每 $10,000 美元的全值財產稅率。 11.各鎮的師生比例。 12. 1000 *(Bk-0.63)** 2 其中,Bk是按城鎮劃分的黑人比例。 13. 人口狀況下降比率
summary(train_data)
V1 V2 V3 V4 V5 V6
Min. : 0.00632 Min. : 0.00 Min. : 0.46 Min. :0.00000 Min. :0.3850 Min. :3.561
1st Qu.: 0.08144 1st Qu.: 0.00 1st Qu.: 5.13 1st Qu.:0.00000 1st Qu.:0.4530 1st Qu.:5.875
Median : 0.26888 Median : 0.00 Median : 9.69 Median :0.00000 Median :0.5380 Median :6.199
Mean : 3.74511 Mean : 11.48 Mean :11.10 Mean :0.06188 Mean :0.5574 Mean :6.267
3rd Qu.: 3.67481 3rd Qu.: 12.50 3rd Qu.:18.10 3rd Qu.:0.00000 3rd Qu.:0.6310 3rd Qu.:6.609
Max. :88.97620 Max. :100.00 Max. :27.74 Max. :1.00000 Max. :0.8710 Max. :8.725
V7 V8 V9 V10 V11 V12
Min. : 2.90 Min. : 1.130 Min. : 1.000 Min. :188.0 Min. :12.60 Min. : 0.32
1st Qu.: 45.48 1st Qu.: 2.077 1st Qu.: 4.000 1st Qu.:279.0 1st Qu.:17.23 1st Qu.:374.67
Median : 78.50 Median : 3.142 Median : 5.000 Median :330.0 Median :19.10 Median :391.25
Mean : 69.01 Mean : 3.740 Mean : 9.441 Mean :405.9 Mean :18.48 Mean :354.78
3rd Qu.: 94.10 3rd Qu.: 5.118 3rd Qu.:24.000 3rd Qu.:666.0 3rd Qu.:20.20 3rd Qu.:396.16
Max. :100.00 Max. :10.710 Max. :24.000 Max. :711.0 Max. :22.00 Max. :396.90
V13
Min. : 1.73
1st Qu.: 6.89
Median :11.39
Mean :12.74
3rd Qu.:17.09
Max. :37.97
The targets are the median values of owner-occupied homes, in thousands of dollars:
str(train_targets)
num [1:404(1d)] 15.2 42.3 50 21.1 17.7 18.5 11.3 15.6 15.6 14.4 ...
The prices are typically between $10,000 and $50,000. If that sounds cheap, remember this was the mid-1970s, and these prices are not inflation-adjusted.
Preparing the data
It would be problematic to feed into a neural network values that all take wildly different ranges. The network might be able to automatically adapt to such heterogeneous data, but it would definitely make learning more difficult. A widespread best practice to deal with such data is to do feature-wise normalization: for each feature in the input data (a column in the input data matrix), you subtract the mean of the feature and divide by the standard deviation, so that the feature is centered around 0 and has a unit standard deviation. This is easily done in R using the scale() function.
mean <- apply(train_data, 2, mean) # '2': by columns -> 13 values
std <- apply(train_data, 2, sd)
train_data <- scale(train_data, center = mean, scale = std)
test_data <- scale(test_data, center = mean, scale = std)
summary(train_data)
V1 V2 V3 V4 V5
Min. :-0.404599 Min. :-0.48302 Min. :-1.5628 Min. :-0.2565 Min. :-1.4694
1st Qu.:-0.396470 1st Qu.:-0.48302 1st Qu.:-0.8771 1st Qu.:-0.2565 1st Qu.:-0.8897
Median :-0.376186 Median :-0.48302 Median :-0.2077 Median :-0.2565 Median :-0.1650
Mean : 0.000000 Mean : 0.00000 Mean : 0.0000 Mean : 0.0000 Mean : 0.0000
3rd Qu.:-0.007608 3rd Qu.: 0.04291 3rd Qu.: 1.0271 3rd Qu.:-0.2565 3rd Qu.: 0.6279
Max. : 9.223411 Max. : 3.72437 Max. : 2.4423 Max. : 3.8888 Max. : 2.6740
V6 V7 V8 V9 V10
Min. :-3.81252 Min. :-2.3661 Min. :-1.2859 Min. :-0.9704 Min. :-1.3097
1st Qu.:-0.55275 1st Qu.:-0.8423 1st Qu.:-0.8192 1st Qu.:-0.6255 1st Qu.:-0.7627
Median :-0.09662 Median : 0.3396 Median :-0.2945 Median :-0.5105 Median :-0.4562
Mean : 0.00000 Mean : 0.0000 Mean : 0.0000 Mean : 0.0000 Mean : 0.0000
3rd Qu.: 0.48172 3rd Qu.: 0.8980 3rd Qu.: 0.6786 3rd Qu.: 1.6738 3rd Qu.: 1.5633
Max. : 3.46289 Max. : 1.1091 Max. : 3.4331 Max. : 1.6738 Max. : 1.8338
V11 V12 V13
Min. :-2.6704 Min. :-3.7664 Min. :-1.5178
1st Qu.:-0.5685 1st Qu.: 0.2113 1st Qu.:-0.8065
Median : 0.2836 Median : 0.3875 Median :-0.1855
Mean : 0.0000 Mean : 0.0000 Mean : 0.0000
3rd Qu.: 0.7835 3rd Qu.: 0.4396 3rd Qu.: 0.5999
Max. : 1.6015 Max. : 0.4475 Max. : 3.4777
Note that the quantities that we use for normalizing the test data have been computed using the training data. We should never use in our workflow any quantity computed on the test data, even for something as simple as data normalization.
Building our network
Because so few samples are available, we will be using a very small network with two hidden layers, each with 64 units. In general, the less training data you have, the worse overfitting will be, and using a small network is one way to mitigate overfitting.
# Because we will need to instantiate the same model multiple times,
# we use a function to construct it.
build_model <- function() {
model <- keras_model_sequential() %>%
layer_dense(units = 64, activation = "relu",
input_shape = dim(train_data)[[2]]) %>% #13
layer_dense(units = 64, activation = "relu") %>%
layer_dense(units = 1)
model %>% compile(
optimizer = "rmsprop",
loss = "mse",
metrics = c("mae")
)
}
Our network ends with a single unit, and no activation (i.e. it will be linear layer). This is a typical setup for scalar regression (i.e. regression where we are trying to predict a single continuous value). Applying an activation function would constrain the range that the output can take; for instance if we applied a sigmoid activation function to our last layer, the network could only learn to predict values between 0 and 1. Here, because the last layer is purely linear, the network is free to learn to predict values in any range.
Note that we are compiling the network with the mse loss function – Mean Squared Error, the square of the difference between the predictions and the targets, a widely used loss function for regression problems.
We are also monitoring a new metric during training: mae. This stands for Mean Absolute Error. It is simply the absolute value of the difference between the predictions and the targets. For instance, a MAE of 0.5 on this problem would mean that our predictions are off by $500 on average.
Validating our approach using K-fold validation
To evaluate our network while we keep adjusting its parameters (such as the number of epochs used for training), we could simply split the data into a training set and a validation set, as we were doing in our previous examples. However, because we have so few data points, the validation set would end up being very small (e.g. about 100 examples). A consequence is that our validation scores may change a lot depending on which data points we choose to use for validation and which we choose for training, i.e. the validation scores may have a high variance with regard to the validation split. This would prevent us from reliably evaluating our model.
The best practice in such situations is to use K-fold cross-validation. It consists of splitting the available data into K partitions (typically K=4 or 5), then instantiating K identical models, and training each one on K-1 partitions while evaluating on the remaining partition. The validation score for the model used would then be the average of the K validation scores obtained.
In terms of code, this is straightforward:
k <- 4
indices <- sample(1:nrow(train_data))
folds <- cut(1:length(indices), breaks = k, labels = FALSE) #依序平均編號 404 個值,從 1 1 1 ... 4 4 4:
#[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#[48] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#[95] 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#[142] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
#[189] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#[236] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
#[283] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#[330] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
#[377] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
num_epochs <- 100
all_scores <- c()
for (i in 1:k) {
cat("processing fold #", i, "\n")
# Prepare the validation data: data from partition # k
val_indices <- which(folds == i, arr.ind = TRUE) # 抓出編號為 i 的位置為 index
val_data <- train_data[val_indices,]
val_targets <- train_targets[val_indices]
# Prepare the training data: data from all other partitions
partial_train_data <- train_data[-val_indices,]
partial_train_targets <- train_targets[-val_indices]
# Build the Keras model (already compiled)
model <- build_model()
# Train the model (in silent mode, verbose=0)
model %>% fit(partial_train_data, partial_train_targets,
epochs = num_epochs, batch_size = 1, verbose = 0)
# Evaluate the model on the validation data
results <- model %>% evaluate(val_data, val_targets, verbose = 0)
all_scores <- c(all_scores, results$mean_absolute_error) #記錄每一次的 mae
}
all_scores
[1] 2.012232 2.698308 2.492190 2.619073
mean(all_scores)
[1] 2.455451
As you can notice, the different runs do indeed show rather different validation scores, from 2.1 to 2.6. Their average (2.37) is a much more reliable metric than any single of these scores – that’s the entire point of K-fold cross-validation. In this case, we are off by $2,375 on average, which is still significant considering that the prices range from $10,000 to $50,000.
Let’s try training the network for a bit longer: 500 epochs. To keep a record of how well the model did at each epoch, we will modify our training loop to save the per-epoch validation score log:
# Some memory clean-up
k_clear_session()
num_epochs <- 500
all_mae_histories <- NULL
for (i in 1:k) {
cat("processing fold #", i, "\n")
# Prepare the validation data: data from partition # k
val_indices <- which(folds == i, arr.ind = TRUE)
val_data <- train_data[val_indices,]
val_targets <- train_targets[val_indices]
# Prepare the training data: data from all other partitions
partial_train_data <- train_data[-val_indices,]
partial_train_targets <- train_targets[-val_indices]
# Build the Keras model (already compiled)
model <- build_model()
# Train the model (in silent mode, verbose=0)
history <- model %>% fit(
partial_train_data, partial_train_targets,
validation_data = list(val_data, val_targets),
epochs = num_epochs, batch_size = 1, verbose = 0
)
mae_history <- history$metrics$val_mean_absolute_error
all_mae_histories <- rbind(all_mae_histories, mae_history)
}
We can then compute the average of the per-epoch MAE scores for all folds:
average_mae_history <- data.frame(
epoch = seq(1:ncol(all_mae_histories)),
validation_mae = apply(all_mae_histories, 2, mean)
)
Let’s plot this:
library(ggplot2)
ggplot(average_mae_history, aes(x = epoch, y = validation_mae)) + geom_line()

It may be a bit hard to see the plot due to scaling issues and relatively high variance. Let’s use geom_smooth() to try to get a clearer picture:
ggplot(average_mae_history, aes(x = epoch, y = validation_mae)) + geom_smooth()

According to this plot, it seems that validation MAE stops improving significantly after 70 epochs. Past that point, we start overfitting.
Once we are done tuning other parameters of our model (besides the number of epochs, we could also adjust the size of the hidden layers), we can train a final “production” model on all of the training data, with the best parameters, then look at its performance on the test data:
result
$loss
[1] 15.43776
$mean_absolute_error
[1] 2.604118
We are still off by about $2,680.
Wrapping up
Here’s what you should take away from this example:
- Regression is done using different loss functions from classification; Mean Squared Error (MSE) is a commonly used loss function for regression.
- Similarly, evaluation metrics to be used for regression differ from those used for classification; naturally the concept of “accuracy” does not apply for regression. A common regression metric is Mean Absolute Error (MAE).
- When features in the input data have values in different ranges, each feature should be scaled independently as a preprocessing step.
- When there is little data available, using K-Fold validation is a great way to reliably evaluate a model.
- When little training data is available, it is preferable to use a small network with very few hidden layers (typically only one or two), in order to avoid severe overfitting.
LS0tCnRpdGxlOiAiUHJlZGljdGluZyBob3VzZSBwcmljZXM6IGEgcmVncmVzc2lvbiBleGFtcGxlIgpvdXRwdXQ6IAogIGh0bWxfbm90ZWJvb2s6IAogICAgdGhlbWU6IGNlcnVsZWFuCiAgICBoaWdobGlnaHQ6IHRleHRtYXRlCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldCh3YXJuaW5nID0gRkFMU0UsIG1lc3NhZ2UgPSBGQUxTRSkKYGBgCgpgYGB7cn0KI3JtKGxpc3Q9bHMoKSkKYGBgCgoqKioKVGhpcyBub3RlYm9vayBjb250YWlucyB0aGUgY29kZSBzYW1wbGVzIGZvdW5kIGluIENoYXB0ZXIgMywgU2VjdGlvbiA2IG9mIFtEZWVwIExlYXJuaW5nIHdpdGggUl0oaHR0cHM6Ly93d3cubWFubmluZy5jb20vYm9va3MvZGVlcC1sZWFybmluZy13aXRoLXIpLiBOb3RlIHRoYXQgdGhlIG9yaWdpbmFsIHRleHQgZmVhdHVyZXMgZmFyIG1vcmUgY29udGVudCwgaW4gcGFydGljdWxhciBmdXJ0aGVyIGV4cGxhbmF0aW9ucyBhbmQgZmlndXJlczogaW4gdGhpcyBub3RlYm9vaywgeW91IHdpbGwgb25seSBmaW5kIHNvdXJjZSBjb2RlIGFuZCByZWxhdGVkIGNvbW1lbnRzLgoqKioKCkluIG91ciB0d28gcHJldmlvdXMgZXhhbXBsZXMsIHdlIHdlcmUgY29uc2lkZXJpbmcgY2xhc3NpZmljYXRpb24gcHJvYmxlbXMsIHdoZXJlIHRoZSBnb2FsIHdhcyB0byBwcmVkaWN0IGEgc2luZ2xlIGRpc2NyZXRlIGxhYmVsIG9mIGFuIGlucHV0IGRhdGEgcG9pbnQuIEFub3RoZXIgY29tbW9uIHR5cGUgb2YgbWFjaGluZSBsZWFybmluZyBwcm9ibGVtIGlzICJyZWdyZXNzaW9uIiwgd2hpY2ggY29uc2lzdHMgb2YgcHJlZGljdGluZyBhIGNvbnRpbnVvdXMgdmFsdWUgaW5zdGVhZCBvZiBhIGRpc2NyZXRlIGxhYmVsLiBGb3IgaW5zdGFuY2UsIHByZWRpY3RpbmcgdGhlIHRlbXBlcmF0dXJlIHRvbW9ycm93LCBnaXZlbiBtZXRlb3JvbG9naWNhbCBkYXRhLCBvciBwcmVkaWN0aW5nIHRoZSB0aW1lIHRoYXQgYSBzb2Z0d2FyZSBwcm9qZWN0IHdpbGwgdGFrZSB0byBjb21wbGV0ZSwgZ2l2ZW4gaXRzIHNwZWNpZmljYXRpb25zLgoKRG8gbm90IG1peCB1cCAicmVncmVzc2lvbiIgd2l0aCB0aGUgYWxnb3JpdGhtICJsb2dpc3RpYyByZWdyZXNzaW9uIjogY29uZnVzaW5nbHksICJsb2dpc3RpYyByZWdyZXNzaW9uIiBpcyBub3QgYSByZWdyZXNzaW9uIGFsZ29yaXRobSwgaXQgaXMgYSBjbGFzc2lmaWNhdGlvbiBhbGdvcml0aG0uCgojIyBUaGUgQm9zdG9uIEhvdXNpbmcgUHJpY2UgZGF0YXNldAoKCldlIHdpbGwgYmUgYXR0ZW1wdGluZyB0byBwcmVkaWN0IHRoZSBtZWRpYW4gcHJpY2Ugb2YgaG9tZXMgaW4gYSBnaXZlbiBCb3N0b24gc3VidXJiIGluIHRoZSBtaWQtMTk3MHMsIGdpdmVuIGEgZmV3IGRhdGEgcG9pbnRzIGFib3V0IHRoZSBzdWJ1cmIgYXQgdGhlIHRpbWUsIHN1Y2ggYXMgdGhlIGNyaW1lIHJhdGUsIHRoZSBsb2NhbCBwcm9wZXJ0eSB0YXggcmF0ZSwgZXRjLgoKVGhlIGRhdGFzZXQgd2Ugd2lsbCBiZSB1c2luZyBoYXMgYW5vdGhlciBpbnRlcmVzdGluZyBkaWZmZXJlbmNlIGZyb20gb3VyIHR3byBwcmV2aW91cyBleGFtcGxlczogaXQgaGFzIHZlcnkgZmV3IGRhdGEgcG9pbnRzLCBvbmx5IDUwNiBpbiB0b3RhbCwgc3BsaXQgYmV0d2VlbiA0MDQgdHJhaW5pbmcgc2FtcGxlcyBhbmQgMTAyIHRlc3Qgc2FtcGxlcywgYW5kIGVhY2ggImZlYXR1cmUiIGluIHRoZSBpbnB1dCBkYXRhIChlLmcuIHRoZSBjcmltZSByYXRlIGlzIGEgZmVhdHVyZSkgaGFzIGEgZGlmZmVyZW50IHNjYWxlLiBGb3IgaW5zdGFuY2Ugc29tZSB2YWx1ZXMgYXJlIHByb3BvcnRpb25zLCB3aGljaCB0YWtlIGEgdmFsdWVzIGJldHdlZW4gMCBhbmQgMSwgb3RoZXJzIHRha2UgdmFsdWVzIGJldHdlZW4gMSBhbmQgMTIsIG90aGVycyBiZXR3ZWVuIDAgYW5kIDEwMC4uLgoKTGV0J3MgdGFrZSBhIGxvb2sgYXQgdGhlIGRhdGE6CgpgYGB7cn0KbGlicmFyeShrZXJhcykKZGF0YXNldCA8LSBkYXRhc2V0X2Jvc3Rvbl9ob3VzaW5nKCkgIyBkZWZhdWx0IHRlc3Rfc3BsaXQgPSAwLjIKc3VtbWFyeShkYXRhc2V0KQojICAgICAgTGVuZ3RoIENsYXNzICBNb2RlCiN0cmFpbiAyICAgICAgLW5vbmUtIGxpc3QKI3Rlc3QgIDIgICAgICAtbm9uZS0gbGlzdApjKGModHJhaW5fZGF0YSwgdHJhaW5fdGFyZ2V0cyksIGModGVzdF9kYXRhLCB0ZXN0X3RhcmdldHMpKSAlPC0lIGRhdGFzZXQKCmhlYWQodHJhaW5fZGF0YSkKaGVhZCh0cmFpbl90YXJnZXRzKQoKbnJvdyh0cmFpbl9kYXRhKSAjNDA0Cm5yb3codGVzdF9kYXRhKSAjMTAyCmBgYAoKYGBge3J9CnN0cih0cmFpbl9kYXRhKQpgYGAKCmBgYHtyfQpzdHIodGVzdF9kYXRhKQpgYGAKCkFzIHlvdSBjYW4gc2VlLCB3ZSBoYXZlIDQwNCB0cmFpbmluZyBzYW1wbGVzIGFuZCAxMDIgdGVzdCBzYW1wbGVzLiBUaGUgZGF0YSBjb21wcmlzZXMgMTMgZmVhdHVyZXMuIFRoZSAxMyBmZWF0dXJlcyBpbiB0aGUgaW5wdXQgZGF0YSBhcmUgYXMgCmZvbGxvdzoKCjEuIFBlciBjYXBpdGEgY3JpbWUgcmF0ZS4KMi4gUHJvcG9ydGlvbiBvZiByZXNpZGVudGlhbCBsYW5kIHpvbmVkIGZvciBsb3RzIG92ZXIgMjUsMDAwIHNxdWFyZSBmZWV0LgozLiBQcm9wb3J0aW9uIG9mIG5vbi1yZXRhaWwgYnVzaW5lc3MgYWNyZXMgcGVyIHRvd24uCjQuIENoYXJsZXMgUml2ZXIgZHVtbXkgdmFyaWFibGUgKD0gMSBpZiB0cmFjdCBib3VuZHMgcml2ZXI7IDAgb3RoZXJ3aXNlKS4KNS4gTml0cmljIG94aWRlcyBjb25jZW50cmF0aW9uIChwYXJ0cyBwZXIgMTAgbWlsbGlvbikuCjYuIEF2ZXJhZ2UgbnVtYmVyIG9mIHJvb21zIHBlciBkd2VsbGluZy4KNy4gUHJvcG9ydGlvbiBvZiBvd25lci1vY2N1cGllZCB1bml0cyBidWlsdCBwcmlvciB0byAxOTQwLgo4LiBXZWlnaHRlZCBkaXN0YW5jZXMgdG8gZml2ZSBCb3N0b24gZW1wbG95bWVudCBjZW50cmVzLgo5LiBJbmRleCBvZiBhY2Nlc3NpYmlsaXR5IHRvIHJhZGlhbCBoaWdod2F5cy4KMTAuIEZ1bGwtdmFsdWUgcHJvcGVydHktdGF4IHJhdGUgcGVyICQxMCwwMDAuCjExLiBQdXBpbC10ZWFjaGVyIHJhdGlvIGJ5IHRvd24uCjEyLiAxMDAwICogKEJrIC0gMC42MykgKiogMiB3aGVyZSBCayBpcyB0aGUgcHJvcG9ydGlvbiBvZiBCbGFjayBwZW9wbGUgYnkgdG93bi4KMTMuICUgbG93ZXIgc3RhdHVzIG9mIHRoZSBwb3B1bGF0aW9uLgoKMS7kurrlnYfniq/nvarnjofjgIIKMi7kvZTlnLDotoXpgY4gMjUsMDAwIOW5s+aWueiLseWwuueahOS9j+WuheeUqOWcsOavlOS+i+OAggozLuavj+WAi+mOrumdnumbtuWUrualreWLmeeUqOWcsOeahOavlOS+i+OAggo0LuafpeeIvuaWr+aysyBkdW1teSB2YXJpYWJsZe+8iOWmguaenOmdoOi/keays+a1ge+8iO+8n++8ie+8jOWJh+eCuiAx77yb5ZCm5YmH54K6IDDvvInjgIIKNS7kuIDmsKfljJbmsK7mv4PluqbvvIjnmb7okKzliIbkuYvlub7vvInjgIIKNi7mr4/lgIvkvY/lroXnmoTlubPlnYfmiL/plpPmlbjjgIIKNy4gMTk0MCDlubTkuYvliY3lu7rpgKDnmoToh6rmnInkvY/miL/nmoTmr5TkvovjgIIKOC7liLDkupTlgIvms6Llo6vpoJPlsLHmpa3kuK3lv4PnmoTliqDmrIrot53pm6LjgIIKOS7lvpHlkJHlhazot6/nmoTlj6/pgZTmgKfmjIfmlbjjgIIKMTAu5q+PICQxMCwwMDAg576O5YWD55qE5YWo5YC86LKh55Si56iF546H44CCCjExLuWQhOmOrueahOW4q+eUn+avlOS+i+OAggoxMi4gMTAwMCAq77yIQmstMC42M++8iSoqIDIg5YW25Lit77yMQmvmmK/mjInln47pjq7lioPliIbnmoTpu5Hkurrmr5TkvovjgIIKMTMuIOS6uuWPo+eLgOazgeS4i+mZjeavlOeOhwoKYGBge3J9CnN1bW1hcnkodHJhaW5fZGF0YSkKYGBgCgpUaGUgdGFyZ2V0cyBhcmUgdGhlIG1lZGlhbiB2YWx1ZXMgb2Ygb3duZXItb2NjdXBpZWQgaG9tZXMsIGluIHRob3VzYW5kcyBvZiBkb2xsYXJzOgoKYGBge3J9CnN0cih0cmFpbl90YXJnZXRzKQpgYGAKClRoZSBwcmljZXMgYXJlIHR5cGljYWxseSBiZXR3ZWVuIFwkMTAsMDAwIGFuZCBcJDUwLDAwMC4gSWYgdGhhdCBzb3VuZHMgY2hlYXAsIHJlbWVtYmVyIHRoaXMgd2FzIHRoZSBtaWQtMTk3MHMsIGFuZCB0aGVzZSBwcmljZXMgYXJlIG5vdCBpbmZsYXRpb24tYWRqdXN0ZWQuCgojIyBQcmVwYXJpbmcgdGhlIGRhdGEKCgpJdCB3b3VsZCBiZSBwcm9ibGVtYXRpYyB0byBmZWVkIGludG8gYSBuZXVyYWwgbmV0d29yayB2YWx1ZXMgdGhhdCBhbGwgdGFrZSB3aWxkbHkgZGlmZmVyZW50IHJhbmdlcy4gVGhlIG5ldHdvcmsgbWlnaHQgYmUgYWJsZSB0byBhdXRvbWF0aWNhbGx5IGFkYXB0IHRvIHN1Y2ggaGV0ZXJvZ2VuZW91cyBkYXRhLCBidXQgaXQgd291bGQgZGVmaW5pdGVseSBtYWtlIGxlYXJuaW5nIG1vcmUgZGlmZmljdWx0LiBBIHdpZGVzcHJlYWQgYmVzdCBwcmFjdGljZSB0byBkZWFsIHdpdGggc3VjaCBkYXRhIGlzIHRvIGRvIGZlYXR1cmUtd2lzZSBub3JtYWxpemF0aW9uOiBmb3IgZWFjaCBmZWF0dXJlIGluIHRoZSBpbnB1dCBkYXRhIChhIGNvbHVtbiBpbiB0aGUgaW5wdXQgZGF0YSBtYXRyaXgpLCB5b3Ugc3VidHJhY3QgdGhlIG1lYW4gb2YgdGhlIGZlYXR1cmUgYW5kIGRpdmlkZSBieSB0aGUgc3RhbmRhcmQgZGV2aWF0aW9uLCBzbyB0aGF0IHRoZSBmZWF0dXJlIGlzIGNlbnRlcmVkIGFyb3VuZCAwIGFuZCBoYXMgYSB1bml0IHN0YW5kYXJkIGRldmlhdGlvbi4gVGhpcyBpcyBlYXNpbHkgZG9uZSBpbiBSIHVzaW5nIHRoZSBgc2NhbGUoKWAgZnVuY3Rpb24uCgpgYGB7cn0KbWVhbiA8LSBhcHBseSh0cmFpbl9kYXRhLCAyLCBtZWFuKSAjICcyJzogYnkgY29sdW1ucyAtPiAxMyB2YWx1ZXMKc3RkIDwtIGFwcGx5KHRyYWluX2RhdGEsIDIsIHNkKQp0cmFpbl9kYXRhIDwtIHNjYWxlKHRyYWluX2RhdGEsIGNlbnRlciA9IG1lYW4sIHNjYWxlID0gc3RkKQp0ZXN0X2RhdGEgPC0gc2NhbGUodGVzdF9kYXRhLCBjZW50ZXIgPSBtZWFuLCBzY2FsZSA9IHN0ZCkKCnN1bW1hcnkodHJhaW5fZGF0YSkKYGBgCgpOb3RlIHRoYXQgdGhlIHF1YW50aXRpZXMgdGhhdCB3ZSB1c2UgZm9yIG5vcm1hbGl6aW5nIHRoZSB0ZXN0IGRhdGEgaGF2ZSBiZWVuIGNvbXB1dGVkIHVzaW5nIHRoZSB0cmFpbmluZyBkYXRhLiBXZSBzaG91bGQgbmV2ZXIgdXNlIGluIG91ciB3b3JrZmxvdyBhbnkgcXVhbnRpdHkgY29tcHV0ZWQgb24gdGhlIHRlc3QgZGF0YSwgZXZlbiBmb3Igc29tZXRoaW5nIGFzIHNpbXBsZSBhcyBkYXRhIG5vcm1hbGl6YXRpb24uCgojIyBCdWlsZGluZyBvdXIgbmV0d29yawoKQmVjYXVzZSBzbyBmZXcgc2FtcGxlcyBhcmUgYXZhaWxhYmxlLCB3ZSB3aWxsIGJlIHVzaW5nIGEgdmVyeSBzbWFsbCBuZXR3b3JrIHdpdGggdHdvIGhpZGRlbiBsYXllcnMsIGVhY2ggd2l0aCA2NCB1bml0cy4gSW4gZ2VuZXJhbCwgdGhlIGxlc3MgdHJhaW5pbmcgZGF0YSB5b3UgaGF2ZSwgdGhlIHdvcnNlIG92ZXJmaXR0aW5nIHdpbGwgYmUsIGFuZCB1c2luZyBhIHNtYWxsIG5ldHdvcmsgaXMgb25lIHdheSB0byBtaXRpZ2F0ZSBvdmVyZml0dGluZy4KCmBgYHtyfQojIEJlY2F1c2Ugd2Ugd2lsbCBuZWVkIHRvIGluc3RhbnRpYXRlIHRoZSBzYW1lIG1vZGVsIG11bHRpcGxlIHRpbWVzLAojIHdlIHVzZSBhIGZ1bmN0aW9uIHRvIGNvbnN0cnVjdCBpdC4KYnVpbGRfbW9kZWwgPC0gZnVuY3Rpb24oKSB7CiAgbW9kZWwgPC0ga2VyYXNfbW9kZWxfc2VxdWVudGlhbCgpICU+JSAKICAgIGxheWVyX2RlbnNlKHVuaXRzID0gNjQsIGFjdGl2YXRpb24gPSAicmVsdSIsIAogICAgICAgICAgICAgICAgaW5wdXRfc2hhcGUgPSBkaW0odHJhaW5fZGF0YSlbWzJdXSkgJT4lICMxMwogICAgbGF5ZXJfZGVuc2UodW5pdHMgPSA2NCwgYWN0aXZhdGlvbiA9ICJyZWx1IikgJT4lIAogICAgbGF5ZXJfZGVuc2UodW5pdHMgPSAxKSAKICAgIAogIG1vZGVsICU+JSBjb21waWxlKAogICAgb3B0aW1pemVyID0gInJtc3Byb3AiLCAKICAgIGxvc3MgPSAibXNlIiwgCiAgICBtZXRyaWNzID0gYygibWFlIikKICApCn0KYGBgCgpPdXIgbmV0d29yayBlbmRzIHdpdGggYSBzaW5nbGUgdW5pdCwgYW5kIG5vIGFjdGl2YXRpb24gKGkuZS4gaXQgd2lsbCBiZSBsaW5lYXIgbGF5ZXIpLiBUaGlzIGlzIGEgdHlwaWNhbCBzZXR1cCBmb3Igc2NhbGFyIHJlZ3Jlc3Npb24gKGkuZS4gcmVncmVzc2lvbiB3aGVyZSB3ZSBhcmUgdHJ5aW5nIHRvIHByZWRpY3QgYSBzaW5nbGUgY29udGludW91cyB2YWx1ZSkuIEFwcGx5aW5nIGFuIGFjdGl2YXRpb24gZnVuY3Rpb24gd291bGQgY29uc3RyYWluIHRoZSByYW5nZSB0aGF0IHRoZSBvdXRwdXQgY2FuIHRha2U7IGZvciBpbnN0YW5jZSBpZiB3ZSBhcHBsaWVkIGEgYHNpZ21vaWRgIGFjdGl2YXRpb24gZnVuY3Rpb24gdG8gb3VyIGxhc3QgbGF5ZXIsIHRoZSBuZXR3b3JrIGNvdWxkIG9ubHkgbGVhcm4gdG8gcHJlZGljdCB2YWx1ZXMgYmV0d2VlbiAwIGFuZCAxLiBIZXJlLCBiZWNhdXNlIHRoZSBsYXN0IGxheWVyIGlzIHB1cmVseSBsaW5lYXIsIHRoZSBuZXR3b3JrIGlzIGZyZWUgdG8gbGVhcm4gdG8gcHJlZGljdCB2YWx1ZXMgaW4gYW55IHJhbmdlLgoKTm90ZSB0aGF0IHdlIGFyZSBjb21waWxpbmcgdGhlIG5ldHdvcmsgd2l0aCB0aGUgYG1zZWAgbG9zcyBmdW5jdGlvbiAtLSBNZWFuIFNxdWFyZWQgRXJyb3IsIHRoZSBzcXVhcmUgb2YgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGUgcHJlZGljdGlvbnMgYW5kIHRoZSB0YXJnZXRzLCBhIHdpZGVseSB1c2VkIGxvc3MgZnVuY3Rpb24gZm9yIHJlZ3Jlc3Npb24gcHJvYmxlbXMuCgpXZSBhcmUgYWxzbyBtb25pdG9yaW5nIGEgbmV3IG1ldHJpYyBkdXJpbmcgdHJhaW5pbmc6IGBtYWVgLiBUaGlzIHN0YW5kcyBmb3IgTWVhbiBBYnNvbHV0ZSBFcnJvci4gSXQgaXMgc2ltcGx5IHRoZSBhYnNvbHV0ZSB2YWx1ZSBvZiB0aGUgZGlmZmVyZW5jZSBiZXR3ZWVuIHRoZSBwcmVkaWN0aW9ucyBhbmQgdGhlIHRhcmdldHMuIEZvciBpbnN0YW5jZSwgYSBNQUUgb2YgMC41IG9uIHRoaXMgcHJvYmxlbSB3b3VsZCBtZWFuIHRoYXQgb3VyIHByZWRpY3Rpb25zIGFyZSBvZmYgYnkgXCQ1MDAgb24gYXZlcmFnZS4KCiMjIFZhbGlkYXRpbmcgb3VyIGFwcHJvYWNoIHVzaW5nIEstZm9sZCB2YWxpZGF0aW9uCgpUbyBldmFsdWF0ZSBvdXIgbmV0d29yayB3aGlsZSB3ZSBrZWVwIGFkanVzdGluZyBpdHMgcGFyYW1ldGVycyAoc3VjaCBhcyB0aGUgbnVtYmVyIG9mIGVwb2NocyB1c2VkIGZvciB0cmFpbmluZyksIHdlIGNvdWxkIHNpbXBseSBzcGxpdCB0aGUgZGF0YSBpbnRvIGEgdHJhaW5pbmcgc2V0IGFuZCBhIHZhbGlkYXRpb24gc2V0LCBhcyB3ZSB3ZXJlIGRvaW5nIGluIG91ciBwcmV2aW91cyBleGFtcGxlcy4gSG93ZXZlciwgYmVjYXVzZSB3ZSBoYXZlIHNvIGZldyBkYXRhIHBvaW50cywgdGhlIHZhbGlkYXRpb24gc2V0IHdvdWxkIGVuZCB1cCBiZWluZyB2ZXJ5IHNtYWxsIChlLmcuIGFib3V0IDEwMCBleGFtcGxlcykuIEEgY29uc2VxdWVuY2UgaXMgdGhhdCBvdXIgdmFsaWRhdGlvbiBzY29yZXMgbWF5IGNoYW5nZSBhIGxvdCBkZXBlbmRpbmcgb24gX3doaWNoXyBkYXRhIHBvaW50cyB3ZSBjaG9vc2UgdG8gdXNlIGZvciB2YWxpZGF0aW9uIGFuZCB3aGljaCB3ZSBjaG9vc2UgZm9yIHRyYWluaW5nLCBpLmUuIHRoZSB2YWxpZGF0aW9uIHNjb3JlcyBtYXkgaGF2ZSBhIGhpZ2ggX3ZhcmlhbmNlXyB3aXRoIHJlZ2FyZCB0byB0aGUgdmFsaWRhdGlvbiBzcGxpdC4gVGhpcyB3b3VsZCBwcmV2ZW50IHVzIGZyb20gcmVsaWFibHkgZXZhbHVhdGluZyBvdXIgbW9kZWwuCgpUaGUgYmVzdCBwcmFjdGljZSBpbiBzdWNoIHNpdHVhdGlvbnMgaXMgdG8gdXNlIEstZm9sZCBjcm9zcy12YWxpZGF0aW9uLiBJdCBjb25zaXN0cyBvZiBzcGxpdHRpbmcgdGhlIGF2YWlsYWJsZSBkYXRhIGludG8gSyBwYXJ0aXRpb25zICh0eXBpY2FsbHkgSz00IG9yIDUpLCB0aGVuIGluc3RhbnRpYXRpbmcgSyBpZGVudGljYWwgbW9kZWxzLCBhbmQgdHJhaW5pbmcgZWFjaCBvbmUgb24gSy0xIHBhcnRpdGlvbnMgd2hpbGUgZXZhbHVhdGluZyBvbiB0aGUgcmVtYWluaW5nIHBhcnRpdGlvbi4gVGhlIHZhbGlkYXRpb24gc2NvcmUgZm9yIHRoZSBtb2RlbCB1c2VkIHdvdWxkIHRoZW4gYmUgdGhlIGF2ZXJhZ2Ugb2YgdGhlIEsgdmFsaWRhdGlvbiBzY29yZXMgb2J0YWluZWQuCgpJbiB0ZXJtcyBvZiBjb2RlLCB0aGlzIGlzIHN0cmFpZ2h0Zm9yd2FyZDoKCmBgYHtyLCBlY2hvPVRSVUUsIHJlc3VsdHM9J2hpZGUnfQprIDwtIDQKaW5kaWNlcyA8LSBzYW1wbGUoMTpucm93KHRyYWluX2RhdGEpKQpmb2xkcyA8LSBjdXQoMTpsZW5ndGgoaW5kaWNlcyksIGJyZWFrcyA9IGssIGxhYmVscyA9IEZBTFNFKSAj5L6d5bqP5bmz5Z2H57eo6JmfIDQwNCDlgIvlgLzvvIzlvp4gMSAxIDEgLi4uIDQgNCA077yaCiNbMV0gMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxCiNbNDhdIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMSAxIDEgMQojWzk1XSAxIDEgMSAxIDEgMSAxIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIKI1sxNDJdIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMgojWzE4OV0gMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDIgMiAyIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzCiNbMjM2XSAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMKI1syODNdIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDMgMyAzIDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNAojWzMzMF0gNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0CiNbMzc3XSA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0IDQgNCA0CgpudW1fZXBvY2hzIDwtIDEwMAphbGxfc2NvcmVzIDwtIGMoKQpmb3IgKGkgaW4gMTprKSB7CiAgY2F0KCJwcm9jZXNzaW5nIGZvbGQgIyIsIGksICJcbiIpCiAgIyBQcmVwYXJlIHRoZSB2YWxpZGF0aW9uIGRhdGE6IGRhdGEgZnJvbSBwYXJ0aXRpb24gIyBrCiAgdmFsX2luZGljZXMgPC0gd2hpY2goZm9sZHMgPT0gaSwgYXJyLmluZCA9IFRSVUUpICMg5oqT5Ye657eo6Jmf54K6IGkg55qE5L2N572u54K6IGluZGV4CiAgdmFsX2RhdGEgPC0gdHJhaW5fZGF0YVt2YWxfaW5kaWNlcyxdCiAgdmFsX3RhcmdldHMgPC0gdHJhaW5fdGFyZ2V0c1t2YWxfaW5kaWNlc10KICAKICAjIFByZXBhcmUgdGhlIHRyYWluaW5nIGRhdGE6IGRhdGEgZnJvbSBhbGwgb3RoZXIgcGFydGl0aW9ucwogIHBhcnRpYWxfdHJhaW5fZGF0YSA8LSB0cmFpbl9kYXRhWy12YWxfaW5kaWNlcyxdCiAgcGFydGlhbF90cmFpbl90YXJnZXRzIDwtIHRyYWluX3RhcmdldHNbLXZhbF9pbmRpY2VzXQogIAogICMgQnVpbGQgdGhlIEtlcmFzIG1vZGVsIChhbHJlYWR5IGNvbXBpbGVkKQogIG1vZGVsIDwtIGJ1aWxkX21vZGVsKCkKICAKICAjIFRyYWluIHRoZSBtb2RlbCAoaW4gc2lsZW50IG1vZGUsIHZlcmJvc2U9MCkKICBtb2RlbCAlPiUgZml0KHBhcnRpYWxfdHJhaW5fZGF0YSwgcGFydGlhbF90cmFpbl90YXJnZXRzLAogICAgICAgICAgICAgICAgZXBvY2hzID0gbnVtX2Vwb2NocywgYmF0Y2hfc2l6ZSA9IDEsIHZlcmJvc2UgPSAwKQogICAgICAgICAgICAgICAgCiAgIyBFdmFsdWF0ZSB0aGUgbW9kZWwgb24gdGhlIHZhbGlkYXRpb24gZGF0YQogIHJlc3VsdHMgPC0gbW9kZWwgJT4lIGV2YWx1YXRlKHZhbF9kYXRhLCB2YWxfdGFyZ2V0cywgdmVyYm9zZSA9IDApCiAgYWxsX3Njb3JlcyA8LSBjKGFsbF9zY29yZXMsIHJlc3VsdHMkbWVhbl9hYnNvbHV0ZV9lcnJvcikgI+iomOmMhOavj+S4gOasoeeahCBtYWUKfSAgCmBgYAoKYGBge3J9CmFsbF9zY29yZXMKYGBgCgpgYGB7cn0KbWVhbihhbGxfc2NvcmVzKQpgYGAKCkFzIHlvdSBjYW4gbm90aWNlLCB0aGUgZGlmZmVyZW50IHJ1bnMgZG8gaW5kZWVkIHNob3cgcmF0aGVyIGRpZmZlcmVudCB2YWxpZGF0aW9uIHNjb3JlcywgZnJvbSAyLjEgdG8gMi42LiBUaGVpciBhdmVyYWdlICgyLjM3KSBpcyBhIG11Y2ggbW9yZSByZWxpYWJsZSBtZXRyaWMgdGhhbiBhbnkgc2luZ2xlIG9mIHRoZXNlIHNjb3JlcyAtLSB0aGF0J3MgdGhlIGVudGlyZSBwb2ludCBvZiBLLWZvbGQgY3Jvc3MtdmFsaWRhdGlvbi4gSW4gdGhpcyBjYXNlLCB3ZSBhcmUgb2ZmIGJ5IFwkMiwzNzUgb24gYXZlcmFnZSwgd2hpY2ggaXMgc3RpbGwgc2lnbmlmaWNhbnQgY29uc2lkZXJpbmcgdGhhdCB0aGUgcHJpY2VzIHJhbmdlIGZyb20gXCQxMCwwMDAgdG8gXCQ1MCwwMDAuIAoKTGV0J3MgdHJ5IHRyYWluaW5nIHRoZSBuZXR3b3JrIGZvciBhIGJpdCBsb25nZXI6IDUwMCBlcG9jaHMuIFRvIGtlZXAgYSByZWNvcmQgb2YgaG93IHdlbGwgdGhlIG1vZGVsIGRpZCBhdCBlYWNoIGVwb2NoLCB3ZSB3aWxsIG1vZGlmeSBvdXIgdHJhaW5pbmcgbG9vcCB0byBzYXZlIHRoZSBwZXItZXBvY2ggdmFsaWRhdGlvbiBzY29yZSBsb2c6CgpgYGB7cn0KIyBTb21lIG1lbW9yeSBjbGVhbi11cAprX2NsZWFyX3Nlc3Npb24oKQpgYGAKCmBgYHtyLCBlY2hvPVRSVUUsIHJlc3VsdHM9J2hpZGUnfQpudW1fZXBvY2hzIDwtIDUwMAphbGxfbWFlX2hpc3RvcmllcyA8LSBOVUxMCmZvciAoaSBpbiAxOmspIHsKICBjYXQoInByb2Nlc3NpbmcgZm9sZCAjIiwgaSwgIlxuIikKICAKICAjIFByZXBhcmUgdGhlIHZhbGlkYXRpb24gZGF0YTogZGF0YSBmcm9tIHBhcnRpdGlvbiAjIGsKICB2YWxfaW5kaWNlcyA8LSB3aGljaChmb2xkcyA9PSBpLCBhcnIuaW5kID0gVFJVRSkKICB2YWxfZGF0YSA8LSB0cmFpbl9kYXRhW3ZhbF9pbmRpY2VzLF0KICB2YWxfdGFyZ2V0cyA8LSB0cmFpbl90YXJnZXRzW3ZhbF9pbmRpY2VzXQogIAogICMgUHJlcGFyZSB0aGUgdHJhaW5pbmcgZGF0YTogZGF0YSBmcm9tIGFsbCBvdGhlciBwYXJ0aXRpb25zCiAgcGFydGlhbF90cmFpbl9kYXRhIDwtIHRyYWluX2RhdGFbLXZhbF9pbmRpY2VzLF0KICBwYXJ0aWFsX3RyYWluX3RhcmdldHMgPC0gdHJhaW5fdGFyZ2V0c1stdmFsX2luZGljZXNdCiAgCiAgIyBCdWlsZCB0aGUgS2VyYXMgbW9kZWwgKGFscmVhZHkgY29tcGlsZWQpCiAgbW9kZWwgPC0gYnVpbGRfbW9kZWwoKQogIAogICMgVHJhaW4gdGhlIG1vZGVsIChpbiBzaWxlbnQgbW9kZSwgdmVyYm9zZT0wKQogIGhpc3RvcnkgPC0gbW9kZWwgJT4lIGZpdCgKICAgIHBhcnRpYWxfdHJhaW5fZGF0YSwgcGFydGlhbF90cmFpbl90YXJnZXRzLAogICAgdmFsaWRhdGlvbl9kYXRhID0gbGlzdCh2YWxfZGF0YSwgdmFsX3RhcmdldHMpLAogICAgZXBvY2hzID0gbnVtX2Vwb2NocywgYmF0Y2hfc2l6ZSA9IDEsIHZlcmJvc2UgPSAwCiAgKQogIG1hZV9oaXN0b3J5IDwtIGhpc3RvcnkkbWV0cmljcyR2YWxfbWVhbl9hYnNvbHV0ZV9lcnJvcgogIGFsbF9tYWVfaGlzdG9yaWVzIDwtIHJiaW5kKGFsbF9tYWVfaGlzdG9yaWVzLCBtYWVfaGlzdG9yeSkKfQpgYGAKCldlIGNhbiB0aGVuIGNvbXB1dGUgdGhlIGF2ZXJhZ2Ugb2YgdGhlIHBlci1lcG9jaCBNQUUgc2NvcmVzIGZvciBhbGwgZm9sZHM6CgpgYGB7cn0KYXZlcmFnZV9tYWVfaGlzdG9yeSA8LSBkYXRhLmZyYW1lKAogIGVwb2NoID0gc2VxKDE6bmNvbChhbGxfbWFlX2hpc3RvcmllcykpLAogIHZhbGlkYXRpb25fbWFlID0gYXBwbHkoYWxsX21hZV9oaXN0b3JpZXMsIDIsIG1lYW4pICPmsYLmr4/kuIDlgIsgZXBvY2gg5Lit5q+P5YCLIGZvbGQg55qEIG1hZSDnmoTlubPlnYflgLzjgIIKKQpgYGAKCkxldCdzIHBsb3QgdGhpczoKCmBgYHtyfQpsaWJyYXJ5KGdncGxvdDIpCmdncGxvdChhdmVyYWdlX21hZV9oaXN0b3J5LCBhZXMoeCA9IGVwb2NoLCB5ID0gdmFsaWRhdGlvbl9tYWUpKSArIGdlb21fbGluZSgpCmBgYAoKSXQgbWF5IGJlIGEgYml0IGhhcmQgdG8gc2VlIHRoZSBwbG90IGR1ZSB0byBzY2FsaW5nIGlzc3VlcyBhbmQgcmVsYXRpdmVseSBoaWdoIHZhcmlhbmNlLiBMZXQncyB1c2UgYGdlb21fc21vb3RoKClgIHRvIHRyeSB0byBnZXQgYSBjbGVhcmVyIHBpY3R1cmU6CgpgYGB7cn0KZ2dwbG90KGF2ZXJhZ2VfbWFlX2hpc3RvcnksIGFlcyh4ID0gZXBvY2gsIHkgPSB2YWxpZGF0aW9uX21hZSkpICsgZ2VvbV9zbW9vdGgoKQpgYGAKCkFjY29yZGluZyB0byB0aGlzIHBsb3QsIGl0IHNlZW1zIHRoYXQgdmFsaWRhdGlvbiBNQUUgc3RvcHMgaW1wcm92aW5nIHNpZ25pZmljYW50bHkgYWZ0ZXIgNzAgZXBvY2hzLiBQYXN0IHRoYXQgcG9pbnQsIHdlIHN0YXJ0IG92ZXJmaXR0aW5nLgoKT25jZSB3ZSBhcmUgZG9uZSB0dW5pbmcgb3RoZXIgcGFyYW1ldGVycyBvZiBvdXIgbW9kZWwgKGJlc2lkZXMgdGhlIG51bWJlciBvZiBlcG9jaHMsIHdlIGNvdWxkIGFsc28gYWRqdXN0IHRoZSBzaXplIG9mIHRoZSBoaWRkZW4gbGF5ZXJzKSwgd2UgY2FuIHRyYWluIGEgZmluYWwgInByb2R1Y3Rpb24iIG1vZGVsIG9uIGFsbCBvZiB0aGUgdHJhaW5pbmcgZGF0YSwgd2l0aCB0aGUgYmVzdCBwYXJhbWV0ZXJzLCB0aGVuIGxvb2sgYXQgaXRzIHBlcmZvcm1hbmNlIG9uIHRoZSB0ZXN0IGRhdGE6CgpgYGB7ciwgZWNobz1GQUxTRSwgcmVzdWx0cz0naGlkZSd9CiMgR2V0IGEgZnJlc2gsIGNvbXBpbGVkIG1vZGVsLgptb2RlbCA8LSBidWlsZF9tb2RlbCgpCgojIFRyYWluIGl0IG9uIHRoZSBlbnRpcmV0eSBvZiB0aGUgZGF0YS4KbW9kZWwgJT4lIGZpdCh0cmFpbl9kYXRhLCB0cmFpbl90YXJnZXRzLAogICAgICAgICAgZXBvY2hzID0gODAsIGJhdGNoX3NpemUgPSAxNiwgdmVyYm9zZSA9IDApCgpyZXN1bHQgPC0gbW9kZWwgJT4lIGV2YWx1YXRlKHRlc3RfZGF0YSwgdGVzdF90YXJnZXRzKQpgYGAKCmBgYHtyfQpyZXN1bHQKYGBgCgpXZSBhcmUgc3RpbGwgb2ZmIGJ5IGFib3V0IFwkMiw2ODAuCgojIyBXcmFwcGluZyB1cAoKSGVyZSdzIHdoYXQgeW91IHNob3VsZCB0YWtlIGF3YXkgZnJvbSB0aGlzIGV4YW1wbGU6CgoqIFJlZ3Jlc3Npb24gaXMgZG9uZSB1c2luZyBkaWZmZXJlbnQgbG9zcyBmdW5jdGlvbnMgZnJvbSBjbGFzc2lmaWNhdGlvbjsgTWVhbiBTcXVhcmVkIEVycm9yIChNU0UpIGlzIGEgY29tbW9ubHkgdXNlZCBsb3NzIGZ1bmN0aW9uIGZvciByZWdyZXNzaW9uLgoqIFNpbWlsYXJseSwgZXZhbHVhdGlvbiBtZXRyaWNzIHRvIGJlIHVzZWQgZm9yIHJlZ3Jlc3Npb24gZGlmZmVyIGZyb20gdGhvc2UgdXNlZCBmb3IgY2xhc3NpZmljYXRpb247IG5hdHVyYWxseSB0aGUgY29uY2VwdCBvZiAiYWNjdXJhY3kiIGRvZXMgbm90IGFwcGx5IGZvciByZWdyZXNzaW9uLiBBIGNvbW1vbiByZWdyZXNzaW9uIG1ldHJpYyBpcyBNZWFuIEFic29sdXRlIEVycm9yIChNQUUpLgoqIFdoZW4gZmVhdHVyZXMgaW4gdGhlIGlucHV0IGRhdGEgaGF2ZSB2YWx1ZXMgaW4gZGlmZmVyZW50IHJhbmdlcywgZWFjaCBmZWF0dXJlIHNob3VsZCBiZSBzY2FsZWQgaW5kZXBlbmRlbnRseSBhcyBhIHByZXByb2Nlc3Npbmcgc3RlcC4KKiBXaGVuIHRoZXJlIGlzIGxpdHRsZSBkYXRhIGF2YWlsYWJsZSwgdXNpbmcgSy1Gb2xkIHZhbGlkYXRpb24gaXMgYSBncmVhdCB3YXkgdG8gcmVsaWFibHkgZXZhbHVhdGUgYSBtb2RlbC4KKiBXaGVuIGxpdHRsZSB0cmFpbmluZyBkYXRhIGlzIGF2YWlsYWJsZSwgaXQgaXMgcHJlZmVyYWJsZSB0byB1c2UgYSBzbWFsbCBuZXR3b3JrIHdpdGggdmVyeSBmZXcgaGlkZGVuIGxheWVycyAodHlwaWNhbGx5IG9ubHkgb25lIG9yIHR3byksIGluIG9yZGVyIHRvIGF2b2lkIHNldmVyZSBvdmVyZml0dGluZy4K