Datos de movilidad de personas en Sonora
Acerca de este documento
Código de flujo de trabajo de datos realizado por Juan Badouin y Brayan Fajardo para el blog del proyecto colectivo Monitor Sonora
Este es un documento que explica de manera demostrativa una forma de procesar datos abiertos de google y convertirlos en análisis y visualizaciones que puedan ser útiles para los ciudadanos ante la pandemia por COVID-19
El análisis fue realizado con el objetivo de difundir y democratizar el uso y análisis de datos en México para de esta forma crear una masa crítica que nos permita tomar mejores decisiones en lo colectivo con mejores herramientas y métodos.
El código aquí usado está escrito en el lenguaje de programación abierto R y puede ser descargado y así como también sus datos en los hipervínculos que se encuentran abajo.
Importar datos y paquetes
Descarga de datos y codigo
- Descarga de este código en R (.rmd)
- Descarga de los datos de sonora
- Descarga de los datos de México
Datos utilizados
- Los datos aquí utilizados provienen del proyecto "COVID-19 Community Mobility Reports: https://www.google.com/covid19/mobility/
De esta base de datos globales fueron extraídos los correspondientes para México y Sonora
- Tabla de datos para Sonora:
- Tabla de datos para México:
Creación de data frame
FechaMR = seq(from = as.Date("2019-02-15"), to = as.Date("2019-07-15"), by = 'day')
###
Retail_Recreation_Percentage <- DatosMobilityReport$retail_and_recreation_percent_change_from_baseline
###
Grocery_Pharmacy_Percentage <- DatosMobilityReport$grocery_and_pharmacy_percent_change_from_baseline
###
Parks_Percentage <- DatosMobilityReport$parks_percent_change_from_baseline
###
TransitStations_Percentage <- DatosMobilityReport$transit_stations_percent_change_from_baseline
###
Workplaces_Percentage <- DatosMobilityReport$workplaces_percent_change_from_baseline
###
Residential_Percentage <- DatosMobilityReport$residential_percent_change_from_baseline
##### GRAFICA 2
###
Porcentaje_VR <- DatosMobilityReport$retail_and_recreation_percent_change_from_baseline
###
Porcentaje_F <- DatosMobilityReport$grocery_and_pharmacy_percent_change_from_baseline
###
Porcentaje_P <- DatosMobilityReport$parks_percent_change_from_baseline
###
Porcentaje_ET <- DatosMobilityReport$transit_stations_percent_change_from_baseline
###
Porcentaje_AT <- DatosMobilityReport$workplaces_percent_change_from_baseline
###
Porcentaje_H <- DatosMobilityReport$residential_percent_change_from_baseline
#Generacion de un data frame
datosMRRR <- data.frame(Retail_Recreation_Percentage,Grocery_Pharmacy_Percentage,
Parks_Percentage,TransitStations_Percentage,Residential_Percentage)
# Create data MR
dataMR <- data.frame(x=FechaMR,y=Retail_Recreation_Percentage)Gráfica para Sonora
gMR1 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_VR), size=1, colour="orange") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("a) Comercio y recreación (-45%)")
gMR2 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_F), size=1, colour="darkgreen") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("b) Farmacias y abarrotes (-11%)")
gMR3 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_P), size=1, colour="purple") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("c) Parques (-37%)")
gMR4 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_ET), size=1, colour="brown") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("d) Estaciones de tránsito (-43%)")
gMR5 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_AT), size=1, colour="red") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("e) Espacios de trabajo (-37%)")
gMR6 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_H), size=1, colour="blue") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("f) Hogares (+18%)")
p_load(gridExtra)
grid.arrange(gMR1,gMR2,gMR3,gMR4,gMR5,gMR6)Gráfica para México
DatosMobilityReport <- DatosMexico
###
Retail_Recreation_Percentage <- DatosMobilityReport$retail_and_recreation_percent_change_from_baseline
###
Grocery_Pharmacy_Percentage <- DatosMobilityReport$grocery_and_pharmacy_percent_change_from_baseline
###
Parks_Percentage <- DatosMobilityReport$parks_percent_change_from_baseline
###
TransitStations_Percentage <- DatosMobilityReport$transit_stations_percent_change_from_baseline
###
Workplaces_Percentage <- DatosMobilityReport$workplaces_percent_change_from_baseline
###
Residential_Percentage <- DatosMobilityReport$residential_percent_change_from_baseline
##### GRAFICA 2
###
Porcentaje_VR <- DatosMobilityReport$retail_and_recreation_percent_change_from_baseline
###
Porcentaje_F <- DatosMobilityReport$grocery_and_pharmacy_percent_change_from_baseline
###
Porcentaje_P <- DatosMobilityReport$parks_percent_change_from_baseline
###
Porcentaje_ET <- DatosMobilityReport$transit_stations_percent_change_from_baseline
###
Porcentaje_AT <- DatosMobilityReport$workplaces_percent_change_from_baseline
###
Porcentaje_H <- DatosMobilityReport$residential_percent_change_from_baseline
#Generacion de un data frame
datosMRRR <- data.frame(Retail_Recreation_Percentage,Grocery_Pharmacy_Percentage,
Parks_Percentage,TransitStations_Percentage,Residential_Percentage)
# Create data MR
dataMR <- data.frame(x=FechaMR,y=Retail_Recreation_Percentage)- Gráfica
gMR1 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_VR), size=1, colour="orange") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("a) Ventas al por menor y recreación")
gMR2 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_F), size=1, colour="darkgreen") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("b) Farmacias")
gMR3 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_P), size=1, colour="purple") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("c) Parques")
gMR4 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_ET), size=1, colour="brown") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("d) Estaciones de tránsito")
gMR5 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_AT), size=1, colour="red") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("e) Espacios de trabajo")
gMR6 <- ggplot(data=dataMR) +
geom_line(aes(x=FechaMR, y=Porcentaje_H), size=1, colour="blue") +
geom_hline(yintercept = 0) +
theme_light() +
xlab("Fecha") +
ylab("Porcentaje") +
ggtitle("f) Hogares")
p_load(gridExtra)
grid.arrange(gMR1,gMR2,gMR3,gMR4,gMR5,gMR6)