senti <-
"UMCSENT" %>%
tq_get(get = "economic.data", from = "2015-01-01") %>%
rename(count = price)
senti %>%
ggplot(aes(x = date, y = count)) +
geom_line(color = "firebrick2",size=.8) +
labs(
x = "",
y = "",
title = "Consumer Sentiment Index per University of Michigan",
subtitle = str_glue("Monthly from {min(senti$date)} through {max(senti$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
retail <-
"MRTSSM44X72USS" %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
rename(total = price)
retail %>%
ggplot(aes(x = date, y = total)) +
geom_line(color = "goldenrod4",size=.8) +
labs(
y = "Millions of Dollars",
x = "Monthly", caption = "",
title = "Retail Sales: Retail and Food Services, Total (MRTSSM44X72USS)",
subtitle = str_glue("Monthly from {min(retail$date)} through {max(retail$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
cpi <-
"CPIAUCSL" %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
rename(count = price)
cpi %>%
ggplot(aes(x = date, y = count)) +
geom_line(color = "goldenrod4",size=.8) +
labs(
x = "",
y = "", caption = "Index 1982-1984=100,Seasonally Adjusted",
title = "Consumer Price Index: All Items in U.S. City Average (CPIAUCSL)",
subtitle = str_glue("Monthly from {min(cpi$date)} through {max(cpi$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
food <-
"CUSR0000SAF11" %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
rename(count = price)
food %>%
ggplot(aes(x = date, y = count)) +
geom_line(color = "goldenrod4",size=.8) +
labs(
x = "",
y = "", caption = "Index 1982-1984=100,Seasonally Adjusted",
title = "CPI: Food at Home in U.S. City Average (CUSR0000SAF11)",
subtitle = str_glue("Monthly from {min(food$date)} through {max(food$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
drink <-
"CUSR0000SEFW" %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
rename(count = price)
drink %>%
ggplot(aes(x = date, y = count)) +
geom_line(color = "goldenrod4",size=.8) +
labs(
x = "",
y = "", caption = "Index 1982-1984=100,Seasonally Adjusted",
title = "CPI: Alcoholic Beverages at Home (CUSR0000SEFW)",
subtitle = str_glue("Monthly from {min(drink$date)} through {max(drink$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
mpfe <-
"CUSR0000SAF112" %>%
tq_get(get = "economic.data", from = "2019-01-01")
mpfe %>%
ggplot(aes(x = date, y = price)) +
geom_line(color = "gold4",size=.8) +
labs(
x = "",
y = "", caption = "Index 1982-1984=100,Seasonally Adjusted",
title = "CPI : Meats, Poultry, Fish, and Eggs (CUSR0000SAF112)",
subtitle = str_glue("From {min(mpfe$date)} through {max(mpfe$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
beef <-
"APU0000703112" %>%
tq_get(get = "economic.data", from = "2019-01-01")
beef %>%
ggplot(aes(x = date, y = price)) +
geom_line(color = "gold4",size=.8) +
labs(
x = "",
y = "",
title = "Ground Beef _ Average Retail Price",
subtitle = str_glue("From {min(beef$date)} through {max(beef$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
pork <-
"APU0000FD3101" %>%
tq_get(get = "economic.data", from = "2019-01-01")
pork %>%
ggplot(aes(x = date, y = price)) +
geom_line(color = "firebrick",size=.8) +
labs(
x = "",
y = "",
title = "Pork Chop _ Average Retail Price",
subtitle = str_glue("From {min(pork$date)} through {max(pork$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
egg <-
"APU0000708111" %>%
tq_get(get = "economic.data", from = "2019-01-01")
egg %>%
ggplot(aes(x = date, y = price)) +
geom_line(color = "firebrick2",size=.8) +
labs(
x = "",
y = "",
title = "Eggs Grade A per Dozen _ Average Retail Price ",
subtitle = str_glue("From {min(egg$date)} through {max(egg$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
chicken <-
"APU0000706111" %>%
tq_get(get = "economic.data", from = "2019-01-01")
chicken %>%
ggplot(aes(x = date, y = price)) +
geom_line(color = "firebrick4",size=.8) +
labs(
x = "",
y = "",
title = "Chicken _ Retail Price Per Lb. (Fresh and Whole) ",
subtitle = str_glue("From {min(chicken$date)} through {max(chicken$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
milk <-
"APU0000709112" %>%
tq_get(get = "economic.data", from = "2019-01-01")
chicken %>%
ggplot(aes(x = date, y = price)) +
geom_line(color = "firebrick1",size=.8) +
labs(
x = "",
y = "",
title = "Milk _ Retail Price Per Gallon",
subtitle = str_glue("From {min(milk$date)} through {max(milk$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
bread <-
"APU0000702111" %>%
tq_get(get = "economic.data", from = "2019-01-01")
bread %>%
ggplot(aes(x = date, y = price)) +
geom_line(color = "firebrick2",size=.8) +
labs(
x = "",
y = "",
title = "Bread per Lb _ Average Retail Price",
subtitle = str_glue("From {min(bread$date)} through {max(bread$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
potatoes <-
"APU0000712112" %>%
tq_get(get = "economic.data", from = "2019-01-01")
potatoes %>%
ggplot(aes(x = date, y = price)) +
geom_line(color = "firebrick2",size=.8) +
labs(
x = "",
y = "",
title = "Potatoes per Lb _ Average Retail Price", caption = "No data for March & April ",
subtitle = str_glue("From {min(potatoes$date)} through {max(potatoes$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
oranges <-
"APU0000711311" %>%
tq_get(get = "economic.data", from = "2019-01-01")
oranges %>%
ggplot(aes(x = date, y = price)) +
geom_line(color = "firebrick3",size=.8) +
labs(
x = "",
y = "",
title = "Oranges per Lb _ Average Retail Price", caption = "No data for April ",
subtitle = str_glue("From {min(oranges$date)} through {max(oranges$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
food <-
"DFXARC1M027SBEA" %>%
tq_get(get = "economic.data", from = "2019-01-01")
food %>%
ggplot(aes(x = date, y = price)) +
geom_line(color = "firebrick3",size=.8) +
labs(
x = "Monthly",
y = "Billions of Dollars",
title = "Food_Personal Expenditure", caption = "",
subtitle = str_glue("From {min(food$date)} through {max(food$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
labor <-
"PAYEMS" %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
rename(count = price)
labor %>%
ggplot(aes(x = date, y = count)) +
geom_line(color = "firebrick4",size=.8) +
labs(
x = "",
y = "",
title = "Labor Force", caption = " ",
subtitle = str_glue("From {min(labor$date)} through {max(labor$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
u6 <-
"U6RATE" %>%
tq_get(get = "economic.data", from = "2019-01-01") %>%
rename(count = price)
u6 %>%
ggplot(aes(x = date, y = count)) +
geom_line(color = "orange",size=.8) +
labs(
x = "",
y = "",
title = "Total Unemployed", caption = " ",
subtitle = str_glue("From {min(u6$date)} through {max(u6$date)}")
) +
theme(plot.title = element_text(color="blue", size=14, face="bold"))
library(blscrapeR)
## Warning: package 'blscrapeR' was built under R version 3.6.3
library(tidyverse)
tbl <- bls_api(c("LNS14000000", "LNS13327708", "LNS13327709")) %>%
spread(seriesID, value) %>%
dateCast() %>%
rename(u3_unemployment = LNS14000000, u5_unemployment = LNS13327708, u6_unemployment = LNS13327709)
## REQUEST_SUCCEEDED
egg <- bls_api("APU0000708111",startyear = 2019) %>%
spread(seriesID, value) %>% dateCast() %>%
rename(egg=APU0000708111)
## The API requires both a start and end year.
## The endyear argument has automatically been set to 2020.
## REQUEST_SUCCEEDED
ggplot(data = tbl, aes(x = date)) +
geom_line(aes(y = u3_unemployment, color = "U-3 Unemployment"),size=.8) +
geom_line(aes(y = u5_unemployment, color = "U-5 Unemployment"),size=.8) +
geom_line(aes(y = u6_unemployment, color = "U-6 Unemployment"),size=.8) +
labs(title = "Monthly Unemployment Rates", y="Percent", x="Period") +
theme(legend.position="top", plot.title = element_text(hjust = 0.5))
ggplot(egg,aes(x=date))+ geom_line(aes(y=egg,color="blue"))
CPI Average Price Data, U.S. city average (AP) (Select from list below) Bacon, sliced, per lb. - APU0000704111 Bananas, per lb. - APU0000711211 Bread, white, pan, per lb. - APU0000702111 Chicken, fresh, whole, per lb. - APU0000706111 Coffee, 100%, ground roast, all sizes, per lb. - APU0000717311 Eggs, grade A, large, per doz. - APU0000708111 Flour, white, all purpose, per lb. - APU0000701111 Milk, fresh, whole, fortified, per gal. - APU0000709112 Oranges, navel, per lb. - APU0000711311 Rice, white, long grain, uncooked, per lb. - APU0000701312 Tomatoes, field grown, per lb. - APU0000712311 Electricity per KWH - APU000072610 Fuel oil #2 per gallon - APU000072511 Gasoline, all types, per gallon - APU00007471A Gasoline, unleaded regular, per gallon - APU000074714
library(blscrapeR)
library(tidyverse)
df <- bls_api(c("APU0000704111", "APU0000706111","APU0000708111","APU0000709112"), startyear = 2019, endyear = 2020) %>%
spread(seriesID, value) %>% dateCast() %>%
rename(chicken=APU0000706111,egg=APU0000708111,beacon=APU0000704111,milk=APU0000709112)
## REQUEST_SUCCEEDED
ggplot(data = df, aes(x = date)) +
geom_line(aes(y = chicken, color = "chicken"),size=.8) +
geom_line(aes(y = egg, color = "egg"),size=.8) +
geom_line(aes(y = beacon, color = "beacon"),size=.8) +
geom_line(aes(y = milk, color = "milk"),size=.8) +
labs(title = "Food Prices During COVID19 Pandemic", y="Price", x="Date") +
theme(legend.position="top", plot.title = element_text(hjust = 0.5))
BLS_Products <- read.csv(paste0("https://raw.githubusercontent.com/jzuniga123/SPS/master/",
"DATA%20607/BLS_Products.csv"), stringsAsFactors = F)
BLS_Products <- BLS_Products %>% filter(NAICS_SIC == "N" & HISTORIC !=1)
BLS_Products %>% select(SERIES) %>% arrange (SERIES)
## SERIES
## 1 All Urban Consumers
## 2 American Time Use Survey
## 3 Average Price Data
## 4 Benefits (2010 forward)
## 5 Business Employment Dynamics
## 6 Census of Fatal Occupational Injuries (2011 forward)
## 7 Chained CPI-All Urban Consumers
## 8 Commodity Data - Current Series
## 9 Consumer Expenditure Survey
## 10 Employment and Wages
## 11 Geographic Profile
## 12 Import/Export Price Indexes
## 13 Industry Data - Current Series
## 14 Industry Productivity
## 15 Job Openings and Labor Turnover Survey
## 16 Labor Force Statistics
## 17 Local Area Unemployment Statistics
## 18 Major Sector Multifactor Productivity
## 19 Major Sector Productivity and Costs
## 20 Marital and Family Labor Force Statistics
## 21 Modeled Wage Estimates
## 22 National Compensation Survey
## 23 National Employment, Hours, and Earnings
## 24 Nonfatal cases involving days away from work (2011 forward)
## 25 Occupational Injuries and Illnesses - Industry Data (2014 forward)
## 26 Occupational Requirements Survey
## 27 State and Area Employment, Hours, and Earnings
## 28 State and County Employment and Wages
## 29 Union Affiliation Data
## 30 Urban Wage Earners and Clerical Workers
## 31 Work Stoppage Data