LungCapData <- read.delim(file.choose(),header = T)
attach(LungCapData)
names(LungCapData)
## [1] "LungCap" "Age" "Height" "Smoke" "Gender" "Caesarean"
plot(Age, LungCap, main = "Age~LungCap")
cor(Age,LungCap)
## [1] 0.8196749
lmod <- lm(LungCap~Age)
summary(lmod)
##
## Call:
## lm(formula = LungCap ~ Age)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.7799 -1.0203 -0.0005 0.9789 4.2650
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.14686 0.18353 6.249 7.06e-10 ***
## Age 0.54485 0.01416 38.476 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.526 on 723 degrees of freedom
## Multiple R-squared: 0.6719, Adjusted R-squared: 0.6714
## F-statistic: 1480 on 1 and 723 DF, p-value: < 2.2e-16
lmod$coef
## (Intercept) Age
## 1.1468578 0.5448484
coef(lmod)
## (Intercept) Age
## 1.1468578 0.5448484
plot(Age, LungCap, main = "Age~LungCap")
abline(lmod)
plot(Age, LungCap, main = "Age~LungCap")
abline(lmod, col= "Green", lwd = 6)
confint(lmod)
## 2.5 % 97.5 %
## (Intercept) 0.7865454 1.5071702
## Age 0.5170471 0.5726497
confint(lmod, level = 0.99)
## 0.5 % 99.5 %
## (Intercept) 0.6728686 1.6208470
## Age 0.5082759 0.5814209
anova(lmod)
## Analysis of Variance Table
##
## Response: LungCap
## Df Sum Sq Mean Sq F value Pr(>F)
## Age 1 3447.0 3447.0 1480.4 < 2.2e-16 ***
## Residuals 723 1683.5 2.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1