Curated Report for pCASL Chiller Issues at Kansas:

## stringr package to parse subjects with "chiller" in scan sheet notes.
MASTER_ANOVA$pCASL.issues<-str_detect(MASTER_ANOVA$ScanNotes, pattern = "chiller")
  
  ## Make that a factor
  MASTER_ANOVA$pCASL.issues<-if_else(MASTER_ANOVA$pCASL.issues==TRUE, "1", "0")
  MASTER_ANOVA$pCASL.issues<-as.factor(MASTER_ANOVA$pCASL.issues)

  ## Create dataframe to present in table
  Chiller.df<-MASTER_ANOVA %>% filter(pCASL.issues==1) %>% select(SubID,Session, Site, Date, ScanNotes,QC3_Notes, QC4_Notes)
  
  ## Clean Up for analyses
  MASTER_ANOVA<-MASTER_ANOVA[,-c(1:2,45:47)]
  
  datatable(Chiller.df, rownames= FALSE,options = list( pageLength = 5 ))
## Only Kansas 
   MASTER_KU<-MASTER_ANOVA %>% filter(Site=="Kansas")

## Outmean
  # summary(lm(pCASL_outmean  ~pCASL.issues,data=MASTER_KU))
  # summary(lm(pCASL_outmean  ~Date,data=MASTER_KU))
  # summary(lm(pCASL_outmean  ~pCASL.issues+Date,data=MASTER_KU)) # Date NS
  # summary(lm(pCASL_outmean  ~pCASL.issues*Date,data=MASTER_KU))  #Interaction, so I'll remove outlier and re-run

## tSNR 
  # summary(lm(pCASL_tsnr  ~Session+pCASL.issues,data=MASTER_KU)) # Non significant
  # summary(lm(pCASL_tsnr  ~pCASL_outmean:pCASL.issues+Session,data=MASTER_KU)) 

## Remove outmean outlier and re-run regression
    #MASTER_KU<-MASTER_KU[!(MASTER_KU$SubID==c("20145", "20390" )),] 
    #summary(lm(pCASL_outmean ~pCASL.issues,data=MASTER_KU))  #Non significant this time. Thus, #20145 & #20390 are what's pulling sample variance. Below, I get into more detail
  #summary(lm(pCASL_tsnr ~pCASL_outmean:pCASL.issues+Session,data=MASTER_KU)) # Still non-significant

 #summary(lm(Rest_snr ~pCASL.issues,data=MASTER_KU))  
 #summary(lm(RISE_enc_snr ~pCASL.issues,data=MASTER_KU))  
 #summary(lm(RISE_rec_snr  ~pCASL.issues,data=MASTER_KU))  

Site reports with adjustable date ranges:

1. Set-up adjustable report parameters:

Adjustable Parameters- Use the chunk below to configure your report.
* StartDate: The date you want your report range to start.
* EndDate: The date you want your report range to start.
* ReportSite: "UPitt", "Kansas", "Northeastern"
* Outliers: (Optional) Include a list of outliers to remove from your report.

##### Enter info you want here ######
StartDate=as.Date("2019-10-30")
EndDate=as.Date("2019-11-30")
ReportSite="Kansas"
#Outliers = c("20145MR2")  # Optional If only running outlier report

2. Report creates data structure:

  • Edit the chunk below if running report for a new factor or variable.
  • Regression samples will be restricted to reporting date range, but main effects can alternatively be modeled with a different independent variable.
##### Sets-up anova data structure ####
Report<-MASTER_ANOVA %>% filter(Date<=EndDate)  
Report<- Report %>% filter(Site==ReportSite)
Report$Date<-as.Date(Report$Date, format="%Y-%m-%d")
Report$Session<-as.factor(Report$Session)

# Optionally unhash to suit your analyses
#Report<-Report[!(Report$subject_id==Outliers),] 
Report$Specs<-if_else(Report$Date <= StartDate, "Prior","Report" )
Report$Specs<-as.factor(Report$Specs)


#Report$Specs<-if_else(Report$pCASL.issues=="1" , "2","1" )
#Report$Specs<-as.factor(Report$Specs)

3. Run Automated Reports -

##### Run ANOVAS for significance, and use emmeans to calculate group differences #####
###### By Scanning Aquistion
MPRAGE.Report<-Report %>%
  select(SubID, Session, Date, Specs, starts_with("MPRAGE"))
mlt.MASTER.Report<-melt(MPRAGE.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID",  "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0 <- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans <- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]
if (Interaction.p<0.05) {
  print( "MPRAGE IQM * Report Range Significant! Mean Comparisions...")
  pairs(emeans)
} else {print( "NS")}
## [1] "NS"
NBACK.Report<-Report %>% select(SubID, Session, Date, Specs, starts_with("Nback"))
mlt.MASTER.Report<-melt(NBACK.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID",  "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0 <- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans <- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]
if (Interaction.p<0.05) {
  print( "N-Back IQM * Report Range Significant! Mean Comparisions...")
  pairs(emeans)
} else {print(  "NS")}
## [1] "NS"
REST.Report<-Report %>%
  select(SubID, Session,Date, Specs, starts_with("Rest_"))
mlt.MASTER.Report<-melt(REST.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID",  "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0<- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans <- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]

if (Interaction.p<0.05) {
  print( "Resting State IQM * Report Range Significant! Mean Comparisions...")
  pairs(emeans)
} else {print( "NS")}
## [1] "Resting State IQM * Report Range Significant! Mean Comparisions..."
## IQMs = Rest_dvars_nstd:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report -5.797020 1.34 1206 -4.328  <.0001 
## 
## IQMs = Rest_fd_mean:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report -0.074084 1.34 1206 -0.055  0.9559 
## 
## IQMs = Rest_fwhm_avg:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report -0.008719 1.34 1206 -0.007  0.9948 
## 
## IQMs = Rest_gcor:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report -0.000463 1.34 1206  0.000  0.9997 
## 
## IQMs = Rest_snr:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report -0.031495 1.34 1206 -0.024  0.9812 
## 
## IQMs = Rest_tsnr:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report  1.274516 1.34 1206  0.951  0.3416
RISE1.Report<-Report %>%
  select(SubID, Session, Date, Specs, starts_with("RISE_enc"))
mlt.MASTER.Report<-melt(RISE1.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID",  "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0 <- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans <- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]

if (Interaction.p<0.05) {
  print( "RISE1 IQM * Report Range Significant! Mean Comparisions...")
  pairs(emeans)
} else {print( "NS")}
## [1] "RISE1 IQM * Report Range Significant! Mean Comparisions..."
## IQMs = RISE_enc_dvars_nstd:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report -6.440955 1.79 1212 -3.598  0.0003 
## 
## IQMs = RISE_enc_fd_mean:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report -0.105586 1.79 1212 -0.059  0.9530 
## 
## IQMs = RISE_enc_fwhm_avg:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report -0.008269 1.79 1212 -0.005  0.9963 
## 
## IQMs = RISE_enc_gcor:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report  0.000086 1.79 1212  0.000  1.0000 
## 
## IQMs = RISE_enc_snr:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report -0.032799 1.79 1212 -0.018  0.9854 
## 
## IQMs = RISE_enc_tsnr:
##  contrast        estimate   SE   df t.ratio p.value
##  Prior - Report  1.442871 1.79 1212  0.806  0.4204
RISE2.Report<-Report %>%
  select(SubID, Session, Date, Specs, starts_with("RISE_rec"))
mlt.MASTER.Report<-melt(RISE2.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID",  "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0<- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans<- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]

if (Interaction.p<0.05) {
  print( "RISE2 IQM * Report Range Significant! Mean Comparisions...")
  pairs(emeans)
} else {print( "NS")}
## [1] "NS"
DTI.Report<-Report %>%
  select(SubID,Session,  Date, Specs, starts_with("DTI"))
mlt.MASTER.Report<-melt(DTI.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID",  "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0<- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans<- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]

if (Interaction.p<0.05) {
  pairs(emeans)
} else {print( "NS")}
## [1] "NS"
pCASL.Report<-Report %>%
  select(SubID,Session,  Date, Specs, starts_with("pCASL_"))
mlt.MASTER.Report<-melt(pCASL.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID",  "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0 <- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans<- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]

if (Interaction.p<0.05) {
  print( "pCASL IQM * Report Range Significant! Mean Comparisions...")
  pairs(emeans)
} else {print( "NS")}
## [1] "NS"
Flair.Report<-Report %>%
  select(SubID,Session,  Date, Specs, starts_with("FLAIR_snr"))
lm0<- aov(FLAIR_snr ~ Specs , data = Flair.Report)
emeans<- emmeans(lm0, "Specs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)1"]

if (Interaction.p<0.05) {
  print( "Flair IQM * Report Range Significant! Mean Comparisions...")
  pairs(emeans)
} else {print( "NS")}
## [1] "NS"

Kansas Chiller Issues Report:

#summary(lm(pCASL_outmean~ Specs,data=Report))
#summary(lm(pCASL_outmean~ pCASL.issues,data=Report))
#summary(lm(pCASL_outmean~ Session,data=Report))

#summary(lm(pCASL_tsnr~ Specs,data=Report))
#summary(lm(pCASL_tsnr~ pCASL.issues,data=Report))
#summary(lm(pCASL_tsnr~ Session,data=Report))

#summary(lm(MPRAGE_snr_total~ pCASL.issues,data=Report)) 
#summary(lm(MPRAGE_snr_total~ Specs,data=Report)) 

summary(lm(Rest_snr~ pCASL.issues,data=Report))   #SIGNIFICANT
## 
## Call:
## lm(formula = Rest_snr ~ pCASL.issues, data = Report)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.78196 -0.18003  0.00224  0.15893  0.80804 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.25078    0.02029  110.95   <2e-16 ***
## pCASL.issues1  0.33546    0.16687    2.01   0.0457 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2869 on 201 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.01971,    Adjusted R-squared:  0.01483 
## F-statistic: 4.041 on 1 and 201 DF,  p-value: 0.04574
summary(lm(Rest_snr~ Specs,data=Report))  #NON-Significant
## 
## Call:
## lm(formula = Rest_snr ~ Specs, data = Report)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.78413 -0.18648  0.00546  0.15996  0.80588 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.25295    0.02129  105.81   <2e-16 ***
## SpecsReport  0.03149    0.07151    0.44     0.66    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2896 on 201 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0009642,  Adjusted R-squared:  -0.004006 
## F-statistic: 0.194 on 1 and 201 DF,  p-value: 0.6601
summary(lm(RISE_enc_snr~pCASL.issues,data=Report)) #SIGNIFICANT
## 
## Call:
## lm(formula = RISE_enc_snr ~ pCASL.issues, data = Report)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.77688 -0.17646 -0.00616  0.16629  0.77262 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     2.2467     0.0198 113.443   <2e-16 ***
## pCASL.issues1   0.3409     0.1633   2.087   0.0381 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2808 on 202 degrees of freedom
## Multiple R-squared:  0.02111,    Adjusted R-squared:  0.01627 
## F-statistic: 4.357 on 1 and 202 DF,  p-value: 0.03811
summary(lm(RISE_enc_snr~Specs,data=Report)) #NON-Significant
## 
## Call:
## lm(formula = RISE_enc_snr ~ Specs, data = Report)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.77900 -0.17858 -0.00426  0.17194  0.77050 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.24880    0.02080 108.130   <2e-16 ***
## SpecsReport  0.03280    0.07001   0.468     0.64    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2836 on 202 degrees of freedom
## Multiple R-squared:  0.001085,   Adjusted R-squared:  -0.00386 
## F-statistic: 0.2195 on 1 and 202 DF,  p-value: 0.64
summary(lm(RISE_rec_snr~ pCASL.issues,data=Report))  #SIGNIFICANT
## 
## Call:
## lm(formula = RISE_rec_snr ~ pCASL.issues, data = Report)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.76260 -0.17446  0.00512  0.16543  0.85164 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.23826    0.02002 111.818   <2e-16 ***
## pCASL.issues1  0.34442    0.16506   2.087   0.0382 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2838 on 202 degrees of freedom
## Multiple R-squared:  0.0211, Adjusted R-squared:  0.01625 
## F-statistic: 4.354 on 1 and 202 DF,  p-value: 0.03818
summary(lm(RISE_rec_snr~ Specs,data=Report)) #NON-Significant
## 
## Call:
## lm(formula = RISE_rec_snr ~ Specs, data = Report)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.76411 -0.18481  0.00942  0.17248  0.85013 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.23976    0.02101  106.58   <2e-16 ***
## SpecsReport  0.04031    0.07075    0.57    0.569    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2866 on 202 degrees of freedom
## Multiple R-squared:  0.001605,   Adjusted R-squared:  -0.003338 
## F-statistic: 0.3247 on 1 and 202 DF,  p-value: 0.5694

Removing 2 outliers mitigates 'pCASL.issues' significance.

### Remove outlliers & re-run
Clean.Report <-Report[!(Report$SubID==c("20145", "20390")),]
summary(lm(Rest_snr~ pCASL.issues,data=Report))  #SIGNIFICANT
## 
## Call:
## lm(formula = Rest_snr ~ pCASL.issues, data = Report)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.78196 -0.18003  0.00224  0.15893  0.80804 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.25078    0.02029  110.95   <2e-16 ***
## pCASL.issues1  0.33546    0.16687    2.01   0.0457 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2869 on 201 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.01971,    Adjusted R-squared:  0.01483 
## F-statistic: 4.041 on 1 and 201 DF,  p-value: 0.04574
summary(lm(Rest_snr~ Specs,data=Clean.Report)) 
## 
## Call:
## lm(formula = Rest_snr ~ Specs, data = Clean.Report)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7833 -0.1824  0.0070  0.1581  0.8067 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.25209    0.02129 105.798   <2e-16 ***
## SpecsReport -0.01249    0.07526  -0.166    0.868    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2887 on 198 degrees of freedom
##   (1 observation deleted due to missingness)
## Multiple R-squared:  0.0001391,  Adjusted R-squared:  -0.004911 
## F-statistic: 0.02755 on 1 and 198 DF,  p-value: 0.8683
summary(lm(RISE_enc_snr~pCASL.issues,data=Clean.Report)) #NS
## 
## Call:
## lm(formula = RISE_enc_snr ~ pCASL.issues, data = Clean.Report)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.77605 -0.17602 -0.00496  0.16696  0.77345 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.24585    0.01995 112.560   <2e-16 ***
## pCASL.issues1  0.21453    0.28288   0.758    0.449    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2822 on 199 degrees of freedom
## Multiple R-squared:  0.002882,   Adjusted R-squared:  -0.002129 
## F-statistic: 0.5752 on 1 and 199 DF,  p-value: 0.4491
summary(lm(RISE_enc_snr~Specs,data=Clean.Report)) #NS
## 
## Call:
## lm(formula = RISE_enc_snr ~ Specs, data = Clean.Report)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.77811 -0.17808 -0.00702  0.16552  0.77139 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.24791    0.02077  108.21   <2e-16 ***
## SpecsReport -0.01251    0.07363   -0.17    0.865    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2826 on 199 degrees of freedom
## Multiple R-squared:  0.0001451,  Adjusted R-squared:  -0.004879 
## F-statistic: 0.02888 on 1 and 199 DF,  p-value: 0.8652
summary(lm(RISE_rec_snr~ pCASL.issues,data=Clean.Report)) #NS
## 
## Call:
## lm(formula = RISE_rec_snr ~ pCASL.issues, data = Clean.Report)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -0.7618 -0.1805  0.0000  0.1624  0.8525 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    2.23744    0.02017 110.931   <2e-16 ***
## pCASL.issues1  0.23255    0.28595   0.813    0.417    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2852 on 199 degrees of freedom
## Multiple R-squared:  0.003312,   Adjusted R-squared:  -0.001696 
## F-statistic: 0.6614 on 1 and 199 DF,  p-value: 0.4171
summary(lm(RISE_rec_snr~ Specs,data=Clean.Report)) # NS
## 
## Call:
## lm(formula = RISE_rec_snr ~ Specs, data = Clean.Report)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -0.76324 -0.18200  0.01049  0.17228  0.85100 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  2.238892   0.021006 106.583   <2e-16 ***
## SpecsReport -0.003684   0.074453  -0.049    0.961    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.2857 on 199 degrees of freedom
## Multiple R-squared:  1.23e-05,   Adjusted R-squared:  -0.005013 
## F-statistic: 0.002448 on 1 and 199 DF,  p-value: 0.9606