## stringr package to parse subjects with "chiller" in scan sheet notes.
MASTER_ANOVA$pCASL.issues<-str_detect(MASTER_ANOVA$ScanNotes, pattern = "chiller")
## Make that a factor
MASTER_ANOVA$pCASL.issues<-if_else(MASTER_ANOVA$pCASL.issues==TRUE, "1", "0")
MASTER_ANOVA$pCASL.issues<-as.factor(MASTER_ANOVA$pCASL.issues)
## Create dataframe to present in table
Chiller.df<-MASTER_ANOVA %>% filter(pCASL.issues==1) %>% select(SubID,Session, Site, Date, ScanNotes,QC3_Notes, QC4_Notes)
## Clean Up for analyses
MASTER_ANOVA<-MASTER_ANOVA[,-c(1:2,45:47)]
datatable(Chiller.df, rownames= FALSE,options = list( pageLength = 5 ))
## Only Kansas
MASTER_KU<-MASTER_ANOVA %>% filter(Site=="Kansas")
## Outmean
# summary(lm(pCASL_outmean ~pCASL.issues,data=MASTER_KU))
# summary(lm(pCASL_outmean ~Date,data=MASTER_KU))
# summary(lm(pCASL_outmean ~pCASL.issues+Date,data=MASTER_KU)) # Date NS
# summary(lm(pCASL_outmean ~pCASL.issues*Date,data=MASTER_KU)) #Interaction, so I'll remove outlier and re-run
## tSNR
# summary(lm(pCASL_tsnr ~Session+pCASL.issues,data=MASTER_KU)) # Non significant
# summary(lm(pCASL_tsnr ~pCASL_outmean:pCASL.issues+Session,data=MASTER_KU))
## Remove outmean outlier and re-run regression
#MASTER_KU<-MASTER_KU[!(MASTER_KU$SubID==c("20145", "20390" )),]
#summary(lm(pCASL_outmean ~pCASL.issues,data=MASTER_KU)) #Non significant this time. Thus, #20145 & #20390 are what's pulling sample variance. Below, I get into more detail
#summary(lm(pCASL_tsnr ~pCASL_outmean:pCASL.issues+Session,data=MASTER_KU)) # Still non-significant
#summary(lm(Rest_snr ~pCASL.issues,data=MASTER_KU))
#summary(lm(RISE_enc_snr ~pCASL.issues,data=MASTER_KU))
#summary(lm(RISE_rec_snr ~pCASL.issues,data=MASTER_KU))
Adjustable Parameters- Use the chunk below to configure your report.
* StartDate:
* EndDate:
* ReportSite: "UPitt", "Kansas", "Northeastern"
* Outliers: (Optional) Include a list of outliers to remove from your report.
##### Enter info you want here ######
StartDate=as.Date("2019-10-30")
EndDate=as.Date("2019-11-30")
ReportSite="Kansas"
#Outliers = c("20145MR2") # Optional If only running outlier report
##### Sets-up anova data structure ####
Report<-MASTER_ANOVA %>% filter(Date<=EndDate)
Report<- Report %>% filter(Site==ReportSite)
Report$Date<-as.Date(Report$Date, format="%Y-%m-%d")
Report$Session<-as.factor(Report$Session)
# Optionally unhash to suit your analyses
#Report<-Report[!(Report$subject_id==Outliers),]
Report$Specs<-if_else(Report$Date <= StartDate, "Prior","Report" )
Report$Specs<-as.factor(Report$Specs)
#Report$Specs<-if_else(Report$pCASL.issues=="1" , "2","1" )
#Report$Specs<-as.factor(Report$Specs)
##### Run ANOVAS for significance, and use emmeans to calculate group differences #####
###### By Scanning Aquistion
MPRAGE.Report<-Report %>%
select(SubID, Session, Date, Specs, starts_with("MPRAGE"))
mlt.MASTER.Report<-melt(MPRAGE.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID", "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0 <- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans <- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]
if (Interaction.p<0.05) {
print( "MPRAGE IQM * Report Range Significant! Mean Comparisions...")
pairs(emeans)
} else {print( "NS")}
## [1] "NS"
NBACK.Report<-Report %>% select(SubID, Session, Date, Specs, starts_with("Nback"))
mlt.MASTER.Report<-melt(NBACK.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID", "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0 <- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans <- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]
if (Interaction.p<0.05) {
print( "N-Back IQM * Report Range Significant! Mean Comparisions...")
pairs(emeans)
} else {print( "NS")}
## [1] "NS"
REST.Report<-Report %>%
select(SubID, Session,Date, Specs, starts_with("Rest_"))
mlt.MASTER.Report<-melt(REST.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID", "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0<- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans <- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]
if (Interaction.p<0.05) {
print( "Resting State IQM * Report Range Significant! Mean Comparisions...")
pairs(emeans)
} else {print( "NS")}
## [1] "Resting State IQM * Report Range Significant! Mean Comparisions..."
## IQMs = Rest_dvars_nstd:
## contrast estimate SE df t.ratio p.value
## Prior - Report -5.797020 1.34 1206 -4.328 <.0001
##
## IQMs = Rest_fd_mean:
## contrast estimate SE df t.ratio p.value
## Prior - Report -0.074084 1.34 1206 -0.055 0.9559
##
## IQMs = Rest_fwhm_avg:
## contrast estimate SE df t.ratio p.value
## Prior - Report -0.008719 1.34 1206 -0.007 0.9948
##
## IQMs = Rest_gcor:
## contrast estimate SE df t.ratio p.value
## Prior - Report -0.000463 1.34 1206 0.000 0.9997
##
## IQMs = Rest_snr:
## contrast estimate SE df t.ratio p.value
## Prior - Report -0.031495 1.34 1206 -0.024 0.9812
##
## IQMs = Rest_tsnr:
## contrast estimate SE df t.ratio p.value
## Prior - Report 1.274516 1.34 1206 0.951 0.3416
RISE1.Report<-Report %>%
select(SubID, Session, Date, Specs, starts_with("RISE_enc"))
mlt.MASTER.Report<-melt(RISE1.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID", "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0 <- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans <- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]
if (Interaction.p<0.05) {
print( "RISE1 IQM * Report Range Significant! Mean Comparisions...")
pairs(emeans)
} else {print( "NS")}
## [1] "RISE1 IQM * Report Range Significant! Mean Comparisions..."
## IQMs = RISE_enc_dvars_nstd:
## contrast estimate SE df t.ratio p.value
## Prior - Report -6.440955 1.79 1212 -3.598 0.0003
##
## IQMs = RISE_enc_fd_mean:
## contrast estimate SE df t.ratio p.value
## Prior - Report -0.105586 1.79 1212 -0.059 0.9530
##
## IQMs = RISE_enc_fwhm_avg:
## contrast estimate SE df t.ratio p.value
## Prior - Report -0.008269 1.79 1212 -0.005 0.9963
##
## IQMs = RISE_enc_gcor:
## contrast estimate SE df t.ratio p.value
## Prior - Report 0.000086 1.79 1212 0.000 1.0000
##
## IQMs = RISE_enc_snr:
## contrast estimate SE df t.ratio p.value
## Prior - Report -0.032799 1.79 1212 -0.018 0.9854
##
## IQMs = RISE_enc_tsnr:
## contrast estimate SE df t.ratio p.value
## Prior - Report 1.442871 1.79 1212 0.806 0.4204
RISE2.Report<-Report %>%
select(SubID, Session, Date, Specs, starts_with("RISE_rec"))
mlt.MASTER.Report<-melt(RISE2.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID", "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0<- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans<- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]
if (Interaction.p<0.05) {
print( "RISE2 IQM * Report Range Significant! Mean Comparisions...")
pairs(emeans)
} else {print( "NS")}
## [1] "NS"
DTI.Report<-Report %>%
select(SubID,Session, Date, Specs, starts_with("DTI"))
mlt.MASTER.Report<-melt(DTI.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID", "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0<- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans<- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]
if (Interaction.p<0.05) {
pairs(emeans)
} else {print( "NS")}
## [1] "NS"
pCASL.Report<-Report %>%
select(SubID,Session, Date, Specs, starts_with("pCASL_"))
mlt.MASTER.Report<-melt(pCASL.Report, id.vars =c("SubID","Session", "Date" , "Specs"))
colnames(mlt.MASTER.Report)<-c("SubID", "Session", "Date","Specs", "IQMs","value" )
mlt.MASTER.Report$Specs<-as.factor(mlt.MASTER.Report$Specs)
mlt.MASTER.Report$IQMs<-as.factor(mlt.MASTER.Report$IQMs)
mlt.MASTER.Report$Session<-as.factor(mlt.MASTER.Report$Session)
lm0 <- aov(value ~ Specs *IQMs, data = mlt.MASTER.Report)
emeans<- emmeans(lm0, "Specs", by="IQMs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)3"]
if (Interaction.p<0.05) {
print( "pCASL IQM * Report Range Significant! Mean Comparisions...")
pairs(emeans)
} else {print( "NS")}
## [1] "NS"
Flair.Report<-Report %>%
select(SubID,Session, Date, Specs, starts_with("FLAIR_snr"))
lm0<- aov(FLAIR_snr ~ Specs , data = Flair.Report)
emeans<- emmeans(lm0, "Specs")
model.lm0<-summary(lm0)
sum_test = unlist(model.lm0)
Interaction.p<-sum_test["Pr(>F)1"]
if (Interaction.p<0.05) {
print( "Flair IQM * Report Range Significant! Mean Comparisions...")
pairs(emeans)
} else {print( "NS")}
## [1] "NS"
#summary(lm(pCASL_outmean~ Specs,data=Report))
#summary(lm(pCASL_outmean~ pCASL.issues,data=Report))
#summary(lm(pCASL_outmean~ Session,data=Report))
#summary(lm(pCASL_tsnr~ Specs,data=Report))
#summary(lm(pCASL_tsnr~ pCASL.issues,data=Report))
#summary(lm(pCASL_tsnr~ Session,data=Report))
#summary(lm(MPRAGE_snr_total~ pCASL.issues,data=Report))
#summary(lm(MPRAGE_snr_total~ Specs,data=Report))
summary(lm(Rest_snr~ pCASL.issues,data=Report)) #SIGNIFICANT
##
## Call:
## lm(formula = Rest_snr ~ pCASL.issues, data = Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.78196 -0.18003 0.00224 0.15893 0.80804
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.25078 0.02029 110.95 <2e-16 ***
## pCASL.issues1 0.33546 0.16687 2.01 0.0457 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2869 on 201 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.01971, Adjusted R-squared: 0.01483
## F-statistic: 4.041 on 1 and 201 DF, p-value: 0.04574
summary(lm(Rest_snr~ Specs,data=Report)) #NON-Significant
##
## Call:
## lm(formula = Rest_snr ~ Specs, data = Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.78413 -0.18648 0.00546 0.15996 0.80588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.25295 0.02129 105.81 <2e-16 ***
## SpecsReport 0.03149 0.07151 0.44 0.66
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2896 on 201 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.0009642, Adjusted R-squared: -0.004006
## F-statistic: 0.194 on 1 and 201 DF, p-value: 0.6601
summary(lm(RISE_enc_snr~pCASL.issues,data=Report)) #SIGNIFICANT
##
## Call:
## lm(formula = RISE_enc_snr ~ pCASL.issues, data = Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.77688 -0.17646 -0.00616 0.16629 0.77262
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.2467 0.0198 113.443 <2e-16 ***
## pCASL.issues1 0.3409 0.1633 2.087 0.0381 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2808 on 202 degrees of freedom
## Multiple R-squared: 0.02111, Adjusted R-squared: 0.01627
## F-statistic: 4.357 on 1 and 202 DF, p-value: 0.03811
summary(lm(RISE_enc_snr~Specs,data=Report)) #NON-Significant
##
## Call:
## lm(formula = RISE_enc_snr ~ Specs, data = Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.77900 -0.17858 -0.00426 0.17194 0.77050
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.24880 0.02080 108.130 <2e-16 ***
## SpecsReport 0.03280 0.07001 0.468 0.64
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2836 on 202 degrees of freedom
## Multiple R-squared: 0.001085, Adjusted R-squared: -0.00386
## F-statistic: 0.2195 on 1 and 202 DF, p-value: 0.64
summary(lm(RISE_rec_snr~ pCASL.issues,data=Report)) #SIGNIFICANT
##
## Call:
## lm(formula = RISE_rec_snr ~ pCASL.issues, data = Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.76260 -0.17446 0.00512 0.16543 0.85164
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.23826 0.02002 111.818 <2e-16 ***
## pCASL.issues1 0.34442 0.16506 2.087 0.0382 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2838 on 202 degrees of freedom
## Multiple R-squared: 0.0211, Adjusted R-squared: 0.01625
## F-statistic: 4.354 on 1 and 202 DF, p-value: 0.03818
summary(lm(RISE_rec_snr~ Specs,data=Report)) #NON-Significant
##
## Call:
## lm(formula = RISE_rec_snr ~ Specs, data = Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.76411 -0.18481 0.00942 0.17248 0.85013
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.23976 0.02101 106.58 <2e-16 ***
## SpecsReport 0.04031 0.07075 0.57 0.569
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2866 on 202 degrees of freedom
## Multiple R-squared: 0.001605, Adjusted R-squared: -0.003338
## F-statistic: 0.3247 on 1 and 202 DF, p-value: 0.5694
### Remove outlliers & re-run
Clean.Report <-Report[!(Report$SubID==c("20145", "20390")),]
summary(lm(Rest_snr~ pCASL.issues,data=Report)) #SIGNIFICANT
##
## Call:
## lm(formula = Rest_snr ~ pCASL.issues, data = Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.78196 -0.18003 0.00224 0.15893 0.80804
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.25078 0.02029 110.95 <2e-16 ***
## pCASL.issues1 0.33546 0.16687 2.01 0.0457 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2869 on 201 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.01971, Adjusted R-squared: 0.01483
## F-statistic: 4.041 on 1 and 201 DF, p-value: 0.04574
summary(lm(Rest_snr~ Specs,data=Clean.Report))
##
## Call:
## lm(formula = Rest_snr ~ Specs, data = Clean.Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7833 -0.1824 0.0070 0.1581 0.8067
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.25209 0.02129 105.798 <2e-16 ***
## SpecsReport -0.01249 0.07526 -0.166 0.868
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2887 on 198 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.0001391, Adjusted R-squared: -0.004911
## F-statistic: 0.02755 on 1 and 198 DF, p-value: 0.8683
summary(lm(RISE_enc_snr~pCASL.issues,data=Clean.Report)) #NS
##
## Call:
## lm(formula = RISE_enc_snr ~ pCASL.issues, data = Clean.Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.77605 -0.17602 -0.00496 0.16696 0.77345
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.24585 0.01995 112.560 <2e-16 ***
## pCASL.issues1 0.21453 0.28288 0.758 0.449
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2822 on 199 degrees of freedom
## Multiple R-squared: 0.002882, Adjusted R-squared: -0.002129
## F-statistic: 0.5752 on 1 and 199 DF, p-value: 0.4491
summary(lm(RISE_enc_snr~Specs,data=Clean.Report)) #NS
##
## Call:
## lm(formula = RISE_enc_snr ~ Specs, data = Clean.Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.77811 -0.17808 -0.00702 0.16552 0.77139
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.24791 0.02077 108.21 <2e-16 ***
## SpecsReport -0.01251 0.07363 -0.17 0.865
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2826 on 199 degrees of freedom
## Multiple R-squared: 0.0001451, Adjusted R-squared: -0.004879
## F-statistic: 0.02888 on 1 and 199 DF, p-value: 0.8652
summary(lm(RISE_rec_snr~ pCASL.issues,data=Clean.Report)) #NS
##
## Call:
## lm(formula = RISE_rec_snr ~ pCASL.issues, data = Clean.Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7618 -0.1805 0.0000 0.1624 0.8525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.23744 0.02017 110.931 <2e-16 ***
## pCASL.issues1 0.23255 0.28595 0.813 0.417
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2852 on 199 degrees of freedom
## Multiple R-squared: 0.003312, Adjusted R-squared: -0.001696
## F-statistic: 0.6614 on 1 and 199 DF, p-value: 0.4171
summary(lm(RISE_rec_snr~ Specs,data=Clean.Report)) # NS
##
## Call:
## lm(formula = RISE_rec_snr ~ Specs, data = Clean.Report)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.76324 -0.18200 0.01049 0.17228 0.85100
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.238892 0.021006 106.583 <2e-16 ***
## SpecsReport -0.003684 0.074453 -0.049 0.961
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2857 on 199 degrees of freedom
## Multiple R-squared: 1.23e-05, Adjusted R-squared: -0.005013
## F-statistic: 0.002448 on 1 and 199 DF, p-value: 0.9606